List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368288/publications.pdf Version: 2024-02-01

F N REC

#	Article	IF	CITATIONS
1	Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids. Physical Review Letters, 2000, 84, 670-673.	7.8	664
2	A study of picosecond laser–solid interactions up to 1019 W cmâ^'2. Physics of Plasmas, 1997, 4, 447-457.	. 1.9	583
3	Energetic Heavy-Ion and Proton Generation from Ultraintense Laser-Plasma Interactions with Solids. Physical Review Letters, 2000, 85, 1654-1657.	7.8	470
4	Effect of discrete wires on the implosion dynamics of wire array Z pinches. Physics of Plasmas, 2001, 8, 3734-3747.	1.9	300
5	Plasma Ion Emission from High Intensity Picosecond Laser Pulse Interactions with Solid Targets. Physical Review Letters, 1994, 73, 1801-1804.	7.8	191
6	Effect of Laser Intensity on Fast-Electron-Beam Divergence in Solid-Density Plasmas. Physical Review Letters, 2008, 100, 015003.	7.8	180
7	Hot-Electron Temperature and Laser-Light Absorption in Fast Ignition. Physical Review Letters, 2009, 102, 045008.	7.8	161
8	Plasma Formation on the Front and Rear of Plastic Targets due to High-Intensity Laser-Generated Fast Electrons. Physical Review Letters, 1998, 81, 999-1002.	7.8	127
9	Energetic proton production from relativistic laser interaction with high density plasmas. Physics of Plasmas, 2000, 7, 2055-2061.	1.9	115
10	Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion. Physical Review Letters, 2010, 104, 055002.	7.8	101
11	A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters. Review of Scientific Instruments, 2008, 79, 10E305.	1.3	100
12	Gigabar Spherical Shock Generation on the OMEGA Laser. Physical Review Letters, 2015, 114, 045001.	7.8	100
13	Study of x-ray emission from a table top plasma focus and its application as an x-ray backlighter. Journal of Applied Physics, 2000, 88, 3225-3230.	2.5	99
14	X-ray backlighting of wire array Z-pinch implosions using X pinch. Review of Scientific Instruments, 2001, 72, 671-673.	1.3	92
15	Initial cone-in-shell fast-ignition experiments on OMEGA. Physics of Plasmas, 2011, 18, .	1.9	82
16	Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Physics of Plasmas, 2009, 16, .	1.9	80
17	Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions. Physics of Plasmas, 2011, 18, .	1.9	80
18	Demonstration of Fusion-Evaporation and Direct-Interaction Nuclear Reactions using High-Intensity Laser-Plasma-Accelerated Ion Beams. Physical Review Letters, 2003, 91, 075006.	7.8	71

#	Article	IF	CITATIONS
19	Laser generated neutron source for neutron resonance spectroscopy. Physics of Plasmas, 2010, 17, .	1.9	67
20	Hot Electron Temperature and Coupling Efficiency Scaling with Prepulse for Cone-Guided Fast Ignition. Physical Review Letters, 2012, 108, 115004.	7.8	60
21	Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Physics of Plasmas, 2018, 25, .	1.9	58
22	Titanium K-shell x-ray production from high velocity wire array implosions on the 20-MA Z accelerator. Physics of Plasmas, 1999, 6, 2081-2088.	1.9	57
23	Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities. Physical Review E, 2011, 83, 046401.	2.1	57
24	A Primer on Pulsed Power and Linear Transformer Drivers for High Energy Density Physics Applications. IEEE Transactions on Plasma Science, 2018, 46, 3928-3967.	1.3	57
25	Optical and x-ray observations of carbon and aluminium fibreZ-pinch plasmas. Plasma Physics and Controlled Fusion, 1997, 39, 1-25.	2.1	55
26	Absolute calibration of image plates for electrons at energy between 100keV and 4MeV. Review of Scientific Instruments, 2008, 79, 033301.	1.3	52
27	Table-top X-pinch for x-ray radiography. Applied Physics Letters, 2003, 82, 4602-4604.	3.3	51
28	Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion. Nature Communications, 2014, 5, 5785.	12.8	50
29	Fast electron energy transport in solid density and compressed plasma. Nuclear Fusion, 2014, 54, 054004.	3.5	49
30	Spherical strong-shock generation for shock-ignition inertial fusion. Physics of Plasmas, 2015, 22, .	1.9	49
31	Visualizing fast electron energy transport into laser-compressed high-density fast-ignitionÂtargets. Nature Physics, 2016, 12, 499-504.	16.7	49
32	Fast electron generation in cones with ultraintense laser pulses. Physics of Plasmas, 2008, 15, 056304.	1.9	47
33	Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers. Physical Review E, 2013, 87, 013108.	2.1	47
34	Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets. Physics of Plasmas, 2009, 16, .	1.9	46
35	Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas. Physical Review Letters, 2016, 116, 155001.	7.8	46
36	Intense laser-plasma interactions: New frontiers in high energy density physics. Physics of Plasmas, 2009, 16, .	1.9	45

#	Article	IF	CITATIONS
37	Magnetically Guided Fast Electrons in Cylindrically Compressed Matter. Physical Review Letters, 2011, 107, 065004.	7.8	45
38	Surface heating of wire plasmas using laser-irradiated cone geometries. Nature Physics, 2007, 3, 853-856.	16.7	44
39	Compact X-pinch based point x-ray source for phase contrast imaging of inertial confinement fusion capsules. Applied Physics Letters, 2006, 89, 101502.	3.3	43
40	Radiative properties of high wire number tungsten arrays with implosion times up to 250 ns. Physics of Plasmas, 1999, 6, 3576-3586.	1.9	41
41	Measurements of fast electron scaling generated by petawatt laser systems. Physics of Plasmas, 2009, 16, .	1.9	40
42	Dynamics of Relativistic Laser-Plasma Interaction on Solid Targets. Physical Review Letters, 2012, 109, 145006.	7.8	40
43	Effect of Target Material on Fast-Electron Transport and Resistive Collimation. Physical Review Letters, 2013, 110, 025001.	7.8	40
44	Transport study of intense-laser-produced fast electrons in solid targets with a preplasma created by a long pulse laser. Physics of Plasmas, 2010, 17, .	1.9	37
45	Relativistic High-Current Electron-Beam Stopping-Power Characterization in Solids and Plasmas: Collisional Versus Resistive Effects. Physical Review Letters, 2012, 109, 255002.	7.8	35
46	Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction. Physics of Plasmas, 2012, 19, 060703.	1.9	35
47	Self-Consistent Simulation of Transport and Energy Deposition of Intense Laser-Accelerated Proton Beams in Solid-Density Matter. Physical Review Letters, 2015, 115, 054801.	7.8	35
48	Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes. Physics of Plasmas, 2016, 23, .	1.9	35
49	First demonstration of ARC-accelerated proton beams at the National Ignition Facility. Physics of Plasmas, 2019, 26, .	1.9	34
50	The effect of current prepulse on wire array Z-pinch implosions. Physics of Plasmas, 2002, 9, 375-377.	1.9	32
51	Comparison of sensitivities of Moiré deflectometry and interferometry to measure electron densities inz-pinch plasmas. Journal Physics D: Applied Physics, 2007, 40, 2026-2032.	2.8	32
52	Thermal conductivity measurements of proton-heated warm dense aluminum. Scientific Reports, 2017, 7, 7015.	3.3	32
53	Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas. Physics of Plasmas, 2013, 20, .	1.9	30
54	Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers. Physics of Plasmas, 2012, 19, 093106.	1.9	29

#	Article	IF	CITATIONS
55	Kα and bremsstrahlung x-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy. Physics of Plasmas, 2014, 21, .	1.9	29
56	Z-pinch discharges in aluminum and tungsten wires. Physics of Plasmas, 1999, 6, 2579-2587.	1.9	28
57	Fast electron temperature and conversion efficiency measurements in laser-irradiated foil targets using a bremsstrahlung x-ray detector. Physics of Plasmas, 2011, 18, .	1.9	26
58	Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency. Plasma Physics and Controlled Fusion, 2019, 61, 065016.	2.1	26
59	Effect of insulator sleeve material on neutron emission from a plasma focus. Physica Scripta, 1992, 46, 152-154.	2.5	25
60	Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP. New Journal of Physics, 2017, 19, 023008.	2.9	25
61	250ÅkA compact linear transformer driver for wire array <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>z</mml:mi>-pinch loads. Physical Review Special Topics: Accelerators and Beams. 2011. 14</mml:math 	1.8	23
62	Supersonic jet formation and propagation in x-pinches. Astrophysics and Space Science, 2011, 336, 33-40.	1.4	23
63	Enhanced Relativistic-Electron-Beam Energy Loss in Warm Dense Aluminum. Physical Review Letters, 2015, 114, 095004.	7.8	23
64	Computational modeling of proton acceleration with multi-picosecond and high energy, kilojoule, lasers. Physics of Plasmas, 2018, 25, 083109.	1.9	23
65	lon acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses. Physical Review E, 2020, 102, 021201.	2.1	23
66	Study of relativistic electron beam production and transport in high-intensity laser interaction with a wire target by integratedLSPmodeling. Physics of Plasmas, 2008, 15, 083101.	1.9	22
67	Mapping return currents in laser-generated Z-pinch plasmas using proton deflectometry. Applied Physics Letters, 2012, 100, .	3.3	21
68	Study of the effect of current rise time on the formation of the precursor column in cylindrical wire array Z pinches at 1 MA. Physics of Plasmas, 2009, 16, .	1.9	20
69	Study of silver Kα and bremsstrahlung radiation from short-pulse laser-matter interactions with applications for x-ray radiography. Physics of Plasmas, 2010, 17, 082703.	1.9	20
70	Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition. Physics of Plasmas, 2017, 24, .	1.9	19
71	Transport of energy by ultraintense laser-generated electrons in nail-wire targets. Physics of Plasmas, 2009, 16, 112702.	1.9	18
72	Proton trajectories and electric fields in a laser-accelerated focused proton beam. Physics of Plasmas, 2012, 19, 056702.	1.9	18

#	Article	IF	CITATIONS
73	Target material dependence of positron generation from high intensity laser-matter interactions. Physics of Plasmas, 2016, 23, .	1.9	18
74	Measurement of pulsed-power-driven magnetic fields via proton deflectometry. Applied Physics Letters, 2014, 105, .	3.3	17
75	Focussing Protons from a Kilojoule Laser for Intense Beam Heating using Proximal Target Structures. Scientific Reports, 2020, 10, 9415.	3.3	17
76	MA-class linear transformer driver for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi> -pinch research. Physical Review Accelerators and Beams, 2020, 23, .</mml:math 	1.6	17
77	Observations of proton beam enhancement due to erbium hydride on gold foil targets. Physics of Plasmas, 2009, 16, 093113.	1.9	16
78	Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas. Physics of Plasmas, 2011, 18, 043108.	1.9	16
79	Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes. Plasma Physics and Controlled Fusion, 2017, 59, 075003.	2.1	16
80	Experimental study of hot electron generation in shock ignition relevant high-intensity regime with large scale hot plasmas. Physics of Plasmas, 2020, 27, 023111.	1.9	16
81	X-ray spectroscopy of buried layer foils irradiated at laser intensities in excess of 1020â€,W/cm2. Physics of Plasmas, 2009, 16, .	1.9	15
82	Laser-accelerated proton conversion efficiency thickness scaling. Physics of Plasmas, 2009, 16, 123108.	1.9	15
83	Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas. Physics of Plasmas, 2014, 21, 033101.	1.9	15
84	Calibration and characterization of a highly efficient spectrometer in von Hamos geometry for 7-10 keV x-rays. Review of Scientific Instruments, 2017, 88, 043110.	1.3	15
85	Characterization of fast electron divergence and energy spectrum from modeling of angularly resolved bremsstrahlung measurements. Physics of Plasmas, 2018, 25, .	1.9	15
86	Study of stability in a liner-on-target gas puff Z-pinch as a function of pre-embedded axial magnetic field. Physics of Plasmas, 2020, 27, .	1.9	15
87	Effect of the global to local magnetic field ratio on the ablation modulations on X-pinches driven by 80 kA peak current. New Journal of Physics, 2012, 14, 043021.	2.9	14
88	Effect of wire number on x-pinch discharges. Applied Physics Letters, 2006, 88, 261501.	3.3	13
89	Electron and ion dynamics during the expansion of a laser-heated plasma under vacuum. Physics of Plasmas, 2012, 19, 033109.	1.9	13
90	Characterizing the energy distribution of laser-generated relativistic electrons in cone-wire targets. Physics of Plasmas, 2012, 19, .	1.9	13

#	Article	IF	CITATIONS
91	Study of X-pinch dynamics using a low current (25 kA) and slower current (400 ns) pulse. Physics of Plasmas, 2013, 20, 042704.	1.9	13
92	Characterization of the fast electrons distribution produced in a high intensity laser target interaction. Physics of Plasmas, 2014, 21, 031212.	1.9	13
93	Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas. Scientific Reports, 2018, 8, 14586.	3.3	13
94	Ar and Kr on deuterium gas-puff staged Z-pinch implosions on a 1-MA driver: Experiment and simulation. Physics of Plasmas, 2019, 26, .	1.9	13
95	Direct comparison of wire, foil, and hybrid X-pinches on a 200 kA, 150 ns current driver. Journal of Applied Physics, 2021, 129, .	2.5	13
96	Proton stopping measurements at low velocity in warm dense carbon. Nature Communications, 2022, 13, .	12.8	13
97	Varying stopping and self-focusing of intense proton beams as they heat solid density matter. Physics of Plasmas, 2016, 23, .	1.9	12
98	Single-shot divergence measurements of a laser-generated relativistic electron beam. Physics of Plasmas, 2010, 17, .	1.9	11
99	Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon. Physical Review Letters, 2017, 118, 205001.	7.8	11
100	Characterization of a Liner-on-Target Gas Injector for Staged Z-Pinch Experiments. IEEE Transactions on Plasma Science, 2018, 46, 3855-3863.	1.3	11
101	Investigation into the dynamics of laser-cut foil X-pinches and their potential use for high repetition rate operation. Applied Physics Letters, 2014, 105, 024101.	3.3	10
102	The response function of Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions. Review of Scientific Instruments, 2019, 90, 083302.	1.3	10
103	Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography. Physical Review Letters, 2019, 123, 215001.	7.8	10
104	Cross-point coronal plasma dynamics in two- and four-wire x-pinches. Physics of Plasmas, 2008, 15, .	1.9	9
105	Improved laser-to-proton conversion efficiency in isolated reduced mass targets. Applied Physics Letters, 2013, 103, .	3.3	9
106	Acceleration of high charge-state target ions in high-intensity laser interactions with sub-micron targets. New Journal of Physics, 2016, 18, 113032.	2.9	9
107	Effect of krypton admixture in deuterium on neutron yield in a megaampere dense plasma focus. Journal of Applied Physics, 2020, 128, .	2.5	9
108	A quasi-monoenergetic short time duration compact proton source for probing high energy density states of matter. Scientific Reports, 2021, 11, 6881.	3.3	9

#	Article	IF	CITATIONS
109	Heating of solid target in electron refluxing dominated regime with ultra-intense laser. Journal of Physics: Conference Series, 2008, 112, 022063.	0.4	8
110	Supra-thermal electron beam stopping power and guiding in dense plasmas. Journal of Plasma Physics, 2013, 79, 429-435.	2.1	8
111	Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions. Physics of Plasmas, 2016, 23, .	1.9	8
112	Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils. Journal of Applied Physics, 2016, 119, .	2.5	8
113	Study of self-generated fields in strongly-shocked, low-density systems using broadband proton radiography. Applied Physics Letters, 2017, 111, .	3.3	8
114	Measurement of temperature and density using non-collective X-ray Thomson scattering in pulsed power produced warm dense plasmas. Scientific Reports, 2018, 8, 8432.	3.3	8
115	Clarket al.Reply:. Physical Review Letters, 2006, 96, .	7.8	7
116	Three-channel x-ray crystal spectrometer for diagnosing high energy density plasmas. Review of Scientific Instruments, 2006, 77, 103104.	1.3	6
117	Study of instability formation and EUV emission in thin liners driven with a compact 250 kA, 150 ns linear transformer driver. Physics of Plasmas, 2014, 21, 031208.	1.9	6
118	Characterization of laser-cut copper foil X-pinches. Physics of Plasmas, 2016, 23, .	1.9	6
119	A broadband proton backlighting platform to probe shock propagation in low-density systems. Review of Scientific Instruments, 2017, 88, 013503.	1.3	6
120	Transport and spatial energy deposition of relativistic electrons in copper-doped fast ignition plasmas. Physics of Plasmas, 2017, 24, 102710.	1.9	6
121	A semi-analytic model of gas-puff liner-on-target magneto-inertial fusion. Physics of Plasmas, 2019, 26, 032708.	1.9	6
122	Pump depletion and hot-electron generation in long-density-scale-length plasma with shock-ignition high-intensity laser. Physical Review E, 2020, 101, 033206.	2.1	6
123	Mitigation of magneto-Rayleigh-Taylor instability growth in a triple-nozzle, neutron-producing gas-puff Z pinch. Physical Review E, 2021, 104, L023201.	2.1	6
124	Investigation of fast-electron-induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi>α x rays in laser-produced blow-off plasma. Physical Review E, 2014, 89, 033105.</mml:math 	2.1	5
125	Injector design for liner-on-target gas-puff experiments. Review of Scientific Instruments, 2017, 88, 113509.	1.3	5
126	High-angle deflection of the energetic electrons by a voluminous magnetic structure in near-normal intense laser-plasma interactions. Physical Review E, 2018, 98, .	2.1	5

#	Article	IF	CITATIONS
127	Anomalous material-dependent transport of focused, laser-driven proton beams. Scientific Reports, 2018, 8, 17538.	3.3	5
128	Development of broadband x-ray radiography for diagnosing magnetically driven cylindrically compressed matter. Physics of Plasmas, 2019, 26, 083104.	1.9	5
129	Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme. New Journal of Physics, 2019, 21, 103005.	2.9	5
130	Overview of recent progress in US fast ignition research. European Physical Journal Special Topics, 2006, 133, 95-100.	0.2	5
131	Determination of electron-heated temperatures of petawatt laser-irradiated foil targets with 256 and 68 eV extreme ultraviolet imaging. Review of Scientific Instruments, 2008, 79, 093507.	1.3	4
132	Proton Focusing Characteristics Relevant to Fast Ignition. IEEE Transactions on Plasma Science, 2011, 39, 2818-2819.	1.3	4
133	Characterization of an imploding cylindrical plasma for electron transport studies using x-ray emission spectroscopy. Physics of Plasmas, 2020, 27, .	1.9	4
134	Laser reflection as a catalyst for direct laser acceleration in multipicosecond laser-plasma interaction. Physics of Plasmas, 2020, 27, 013106.	1.9	4
135	Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials. Physical Review E, 2020, 101, 023205.	2.1	4
136	Dynamics and energy coupling of gas puff Z-pinches on a fast linear transformer driver. Journal of Applied Physics, 2021, 130, .	2.5	4
137	Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas. Physics of Plasmas, 2021, 28, .	1.9	4
138	Approach to the study of fast electron transport in cylindrically imploded targets. Laser and Particle Beams, 2015, 33, 525-534.	1.0	3
139	Investigation of Current Transport in <inline-formula> <tex-math notation="LaTeX">\$2imes 2\$ </tex-math </inline-formula> Wire Array Plasmas. IEEE Transactions on Plasma Science, 2015, 43, 2527-2531.	1.3	3
140	Soft X-ray backlighter source driven by a short-pulse laser for pump-probe characterization of warm dense matter. Review of Scientific Instruments, 2018, 89, 10F122.	1.3	3
141	Gated liquid scintillator detector for neutron time of flight measurements in a gas-puff Z-pinch experiment. Review of Scientific Instruments, 2019, 90, 073505.	1.3	3
142	Effect of target material on relativistic electron beam transport. Physics of Plasmas, 2019, 26, 033111.	1.9	3
143	Magnetohydrodynamic simulations of a megaampere-class Kr-doped deuterium dense plasma focus. Physics of Plasmas, 2021, 28, 022707.	1.9	3
144	Azimuthal magnetic field distribution in gas-puff <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> -pinch implosions with and without external magnetic stabilization. Physical Review E, 2021, 103, 053205.</mml:math 	iath> 2.1	3

#	Article	IF	CITATIONS
145	Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic. Review of Scientific Instruments, 2021, 92, 065110.	1.3	3
146	Effect of insulator surface conditioning on the pinch dynamics and x-ray production of a Ne-filled dense plasma focus. Journal of Applied Physics, 2021, 129, .	2.5	3
147	Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology. , 2010, , .		2
148	Investigation of magnetic flux transport and shock formation in a staged Z-pinch. Physics of Plasmas, 2017, 24, . Flectron acceleration at oblique angles via stimulated Raman scattering at laser irradiance.	1.9	2
149	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>></mml:mo><mml:msup><mn width="0.16em"></mn><mml:mi mathvariant="normal">W</mml:mi><mml:mspace width="0.16em"></mml:mspace><mml:msup><mml:mio><mml:mi></mml:mi></mml:mio></mml:msup></mml:msup></mml:mrow><mml:mrow><mml:mo>â^^</mml:mo></mml:mrow></mml:math></pre>	2.1	2
150	mathvariant. Physical Review E, 2021, 103, 033203. Pump-depletion dynamics and saturation of stimulated Brillouin scattering in shock ignition relevant experiments. Physical Review E, 2021, 103, 063208.	2.1	2
151	Stability Measurements of a Staged Z-Pinch with Applied Axial Magnetic Field. , 2018, , .		2
152	Dynamic focusing of laser driven positron jets by self-generated fields. New Journal of Physics, 2020, 22, 123020.	2.9	2
153	Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200052.	3.4	2
154	Material effects on dynamics in triple-nozzle gas-puff <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi> pinches. Physical Review E, 2022, 105, 045205.</mml:math 	2.1	2
155	Time Resolved X-ray Plasma Emission in low Current X-Pinches. , 2007, , .		1
156	Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study. Physics of Plasmas, 2012, 19, 092705.	1.9	1
157	Effect of defocusing on picosecond laser-coupling into gold cones. Physics of Plasmas, 2014, 21, 012702.	1.9	1
158	Pulsed power produced counter-propagating plasma flows and the study of shock wave formation for laboratory astrophysical phenomena. , 2014, , .		1
159	Transport of kJ-laser-driven relativistic electron beams in cold and shock-heated vitreous carbon and diamond. New Journal of Physics, 2020, 22, 033031.	2.9	1
160	The effects of laser pulse length and collisional ionization on the acceleration of titanium ions. Plasma Physics and Controlled Fusion, 2021, 63, 065011.	2.1	1
161	Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics. Plasma Physics and Controlled Fusion, 2022, 64, 035011.	2.1	1
162	Transport of an intense proton beam from a cone-structured target through plastic foam with unique proton source modeling. Physical Review E, 2022, 105, .	2.1	1

#	Article	IF	CITATIONS
163	Direct Laser Ablation Of Silicon as A Function Of Pulse Length at 10 ¹⁵ W/Cm ² Intensities. , 2022, , .		1
164	High intensity laser generation of proton beams for the production of \hat{I}^2 [sup +] sources used in positron emission tomography. AIP Conference Proceedings, 2001, , .	0.4	0
165	Nuclear diagnostics of high intensity laser plasma interactions. AIP Conference Proceedings, 2002, , .	0.4	0
166	Investigation of X-ray emission as a function of wire number and material using a compact 80 kA current generator. , 2006, , .		0
167	Study of the laser plasma interaction and energetic electron beam production using the LSP code. , 2006, , .		0
168	Study of Jet Formation in Wire X-pinches. AIP Conference Proceedings, 2006, , .	0.4	0
169	Time resolved x-ray plasma emission in low current x-pinches. , 2007, , .		0
170	Effect of Current Rise-time on the Formation of Precursor Structures and Mass Ablation Rate in Cylindrical Wire Array Z-Pinches. , 2009, , .		0
171	Suprathermal electron generation in fast ignition relevant short-pulse laser plasma interactions. , 2010, , .		0
172	Particle transport and electric fields in a laser-generated focused proton beam. , 2012, , .		0
173	Study of instability formation in liners driven with a compact linear transformer driver. , 2013, , .		0
174	Target effects on focusing and acceleration of laser-driven ion beams. , 2013, , .		0
175	Generation of heavy ion beams using short pulse lasers. , 2013, , .		0
176	Examination of X-pinch dynamics using a low current (25kA) and slower rising (400ns) pulse. , 2013, , .		0
177	Summary report of working group 6: Laser-plasma acceleration of ions. AIP Conference Proceedings, 2017, , .	0.4	0
178	Reduced fast electron transport in shock-heated plasma in multilayer targets due to self-generated magnetic fields. Physical Review E, 2018, 98, .	2.1	0
179	The Good, the Bad and the Ugly: The story of fast ignition and a path forward. , 2021, , .		0
180	Liner on Target Gas Puff Z-Pinches with Different Gas Species on the CESZAR Linear Transformer Driver*. , 2021, , .		0

#	Article	IF	CITATIONS
181	Gas Puff Z-Pinch Experiments with NE, AR and KR on the Ceszar Linear Transformer Driver. , 2020, , .		Ο
182	Simultaneous Measurements of Gas-Puff Z-Pinch Parameters Using Visible Spectroscopy. , 2020, , .		0
183	Effect of Insulator and Anode Geometries on Neutron Yield in A 4.6 Kj Dense Plasma Focus. , 2022, , .		Ο
184	Neutron-Producing Gas Puff Z-Pinches on the Ceszar Linear Transformer Driver. , 2022, , .		0
185	Characterizing the Effect of Magnetization at >10 KT in Cylindrically Imploded Hot Dense Plasmas Using Dopant Spectroscopy Techniques and Benchmarked Simulations. , 2022, , .		Ο
186	Investigation of Nanosecond Laser Ablation From Metal Targets. , 2022, , .		0
187	A Pulse Length and Intensity Study of Proton Generation from Microtube Foil Targets. , 2022, , .		0
188	Investigation of Resistive Magnetic Field Generation by Intense Proton Beams in Dense Plasmas. , 2022, ,		0