
David C Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil bacterial communities at the treeline in subtropical alpine areas. Catena, 2021, 201, 105205.	5.0	7
2	The influences of thorny bamboo growth on the bacterial community in badland soils of southwestern Taiwan. Land Degradation and Development, 2018, 29, 2728-2738.	3.9	3
3	Effects of Reforestation on the Structure and Diversity of Bacterial Communities in Subtropical Low Mountain Forest Soils. Frontiers in Microbiology, 2018, 9, 1968.	3.5	10
4	Cedar and bamboo plantations alter structure and diversity of the soil bacterial community from a hardwood forest in subtropical mountain. Applied Soil Ecology, 2017, 112, 28-33.	4.3	29
5	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	1.2	64
6	Ecosystem Health: An Overview. SSSA Special Publication Series, 2015, , 1-20.	0.2	27
7	Changes of soil bacterial communities in bamboo plantations at different elevations. FEMS Microbiology Ecology, 2015, 91, .	2.7	33
8	Soil Fauna. , 2015, , 111-149.		73
9	Soil Aggregates and Associated Organic Matter under Conventional Tillage, No-Tillage, and Forest Succession after Three Decades. PLoS ONE, 2014, 9, e84988.	2.5	123
10	Changes in the Soil Bacterial Communities in a Cedar Plantation Invaded by Moso Bamboo. Microbial Ecology, 2014, 67, 421-429.	2.8	62
11	Composition of bacterial communities in sand dunes of subtropical coastal forests. Biology and Fertility of Soils, 2014, 50, 809-814.	4.3	18
12	Comparison of soil bacterial communities in a natural hardwood forest and coniferous plantations in perhumid subtropical low mountains. , 2014, 55, 50.		20
13	Toward a Holistic Approach to Soils and Plant Growth. Biodiversity Community and Ecosystems, 2014, , 211-223.	0.2	5
14	Soil Biota, Soil Systems, and Processes. , 2013, , 580-589.		9
15	Comparison of soil bacterial communities between coastal and inland forests in a subtropical area. Applied Soil Ecology, 2012, 60, 49-55.	4.3	18
16	Soil ecology and agroecosystem studies. Advances in Agroecology, 2012, , 1-21.	0.3	1
17	Soil bacterial communities in native and regenerated perhumid montane forests. Applied Soil Ecology, 2011, 47, 111-118.	4.3	27
18	Collaboration and conflict in international ecological research. Frontiers in Ecology and the Environment, 2011, 9, 414-415.	4.0	0

#	Article	IF	CITATIONS
19	Molecular Characterization of Soil Bacterial Community in a Perhumid, Low Mountain Forest. Microbes and Environments, 2011, 26, 325-331.	1.6	4
20	Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology and Biochemistry, 2011, 43, 2184-2193.	8.8	362
21	Change in Bacterial Community Structure in Response to Disturbance of Natural Hardwood and Secondary Coniferous Forest Soils in Central Taiwan. Microbial Ecology, 2011, 61, 429-437.	2.8	35
22	Bacterial Community Diversity in Undisturbed Perhumid Montane Forest Soils in Taiwan. Microbial Ecology, 2010, 59, 369-378.	2.8	43
23	Bacterial community of very wet and acidic subalpine forest and fire-induced grassland soils. Plant and Soil, 2010, 332, 417-427.	3.7	9
24	Development of soil microbial communities during tallgrass prairie restoration. Soil Biology and Biochemistry, 2010, 42, 302-312.	8.8	85
25	Highlights and perspectives of soil biology and ecology research in China. Soil Biology and Biochemistry, 2009, 41, 868-876.	8.8	40
26	Preface to Special Issue on Soil Biology and Ecology in China. Soil Biology and Biochemistry, 2009, 41, 867-867.	8.8	0
27	Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biology and Biochemistry, 2008, 40, 1294-1305.	8.8	105
28	From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 2008, 40, 271-289.	8.8	165
29	Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 2008, 40, 2843-2853.	8.8	450
30	Microbial community response to transition from conventional to conservation tillage in cotton fields. Applied Soil Ecology, 2008, 40, 518-528.	4.3	59
31	Differential effects of understory and overstory gaps on tree regeneration ¹ . Journal of the Torrey Botanical Society, 2008, 135, 1-11.	0.3	31
32	ASSESSMENT OF SOIL AND PLANT CARBON LEVELS IN TWO ECOSYSTEMS (WOODY BAMBOO AND PASTURE) IN MONTANE ECUADOR. Soil Science, 2007, 172, 459-468.	0.9	12
33	Changes in nestedness in experimental communities of soil fauna undergoing extinction. Pedobiologia, 2007, 50, 497-503.	1.2	35
34	Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Applied Soil Ecology, 2007, 35, 329-339.	4.3	64
35	Resolution of Respect. Bulletin of the Ecological Society of America, 2007, 88, 15-17.	0.2	0
36	A Masterful Underview. Conservation Biology, 2006, 20, 1328-1330.	4.7	0

#	Article	IF	CITATIONS
37	Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agriculture, Ecosystems and Environment, 2006, 114, 323-334.	5.3	79
38	Short-term dynamics and long-term recolonization of protozoa in soil. Journal of Eukaryotic Microbiology, 2005, 52, 7S-27S.	1.7	0
39	Dynamics of soil protozoa using a direct count method. Biology and Fertility of Soils, 2005, 42, 168-171.	4.3	42
40	Decomposition of chestnut oak (Quercus prinus) leaves and nitrogen mineralization in an urban environment. Biology and Fertility of Soils, 2005, 41, 343-349.	4.3	62
41	Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 2005, 49, 479-497.	1.2	170
42	From the Frontier to the Biosphere. Rangelands, 2004, 26, 8-15.	1.9	6
43	Detritus, trophic dynamics and biodiversity. Ecology Letters, 2004, 7, 584-600.	6.4	948
44	Evaluation of the effectiveness of riparian zone restoration in the southern Appalachians by assessing soil microbial populations. Applied Soil Ecology, 2004, 26, 63-68.	4.3	15
45	Winter decomposition of transgenic cotton residue in conventional-till and no-till systems. Applied Soil Ecology, 2004, 27, 135-142.	4.3	42
46	Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management, 2004, 187, 19-33.	3.2	41
47	Hillslope Nutrient Dynamics Following Upland Riparian Vegetation Disturbance. Ecosystems, 2003, 6, 154-167.	3.4	35
48	Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biology and Biochemistry, 2003, 35, 1547-1555.	8.8	144
49	Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient?. Forest Ecology and Management, 2003, 176, 563-574.	3.2	49
50	Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia, 2003, 47, 101-115.	1.2	88
51	Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 485-490.	1.7	92
52	Molecular and Culture-Based Analyses of Prokaryotic Communities from an Agricultural Soil and the Burrows and Casts of the Earthworm Lumbricus rubellus. Applied and Environmental Microbiology, 2002, 68, 1265-1279.	3.1	206
53	Soil foodwebs in agroecosystems: impacts of herbivory and tillage management. European Journal of Soil Biology, 2002, 38, 21-28.	3.2	44
54	Soil respiration from four aggrading forested watersheds measured over a quarter century. Forest Ecology and Management, 2002, 157, 247-253.	3.2	14

#	Article	IF	CITATIONS
55	Impact of the rhizosphere on soil microarthropods in agroecosystems on the Georgia piedmont. Applied Soil Ecology, 2001, 16, 141-148.	4.3	34
56	Short-term impacts of aboveground herbivory (grasshopper) on the abundance and 14C activity of soil nematodes in conventional tillage and no-till agroecosytems. Soil Biology and Biochemistry, 2001, 33, 1253-1258.	8.8	19
57	14C distribution in soil organisms and respiration after the decomposition of crop residue in conventional tillage and no-till agroecosystems at Georgia Piedimont. Soil and Tillage Research, 2000, 57, 31-41.	5.6	30
58	On spatiotemporal patchiness and the coexistence of five species of Chronogaster (Nematoda:) Tj ETQq0 0 0 rgl	3T /Overlo 2.0	ck 10 Tf 50 6
59	Biological indices of soil quality: an ecosystem case study of their use. Forest Ecology and Management, 2000, 138, 357-368.	3.2	169
60	Soil carbon dynamics of conventional tillage and no-till agroecosystems at Georgia Piedmont — HSB-C models. Ecological Modelling, 2000, 131, 229-248.	2.5	31
61	Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes. Soil Biology and Biochemistry, 2000, 32, 1731-1741.	8.8	90
62	Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience, 2000, 50, 1049.	4.9	614
63	SOIL CARBON DIFFERENCES AMONG FOREST, AGRICULTURE, AND SECONDARY VEGETATION IN LOWER MONTANE ECUADOR. , 2000, 10, 497-505.		153
64	Method for ¹⁴ Câ€labeling maize field plots and assessment of label uniformity within plots. Communications in Soil Science and Plant Analysis, 1999, 30, 1759-1771.	1.4	8
65	Nitrogen dynamics in decomposing chestnut oak (Quercus prinus L.) in mesic temperate and tropical forest. Applied Soil Ecology, 1999, 13, 169-175.	4.3	12
66	Riparian soil response to surface nitrogen input: temporal changes in denitrification, labile and microbial C and N pools, and bacterial and fungal respiration. Soil Biology and Biochemistry, 1999, 31, 1609-1624.	8.8	57
67	Riparian soil response to surface nitrogen input: the indicator potential of free-living soil nematode populations. Soil Biology and Biochemistry, 1999, 31, 1625-1638.	8.8	23
68	THE EFFECTS OF DISTURBANCE EVENTS ON LABILE PHOSPHORUS FRACTIONS AND TOTAL ORGANIC PHOSPHORUS IN THE SOUTHERN APPALACHIANS. Soil Science, 1999, 164, 391-402.	0.9	13
69	Effect of Pasture Trees on Soil Nitrogen and Organic Matter: Implications for Tropical Montane Forest Restoration. Restoration Ecology, 1998, 6, 262-270.	2.9	102
70	SPATIOTEMPORAL DISTRIBUTIONS OF BACTERIVOROUS NEMATODES AND SOIL RESOURCES IN A RESTORED RIPARIAN WETLAND. Ecology, 1998, 79, 2721-2734.	3.2	90
71	Spatiotemporal Distributions of Bacterivorous Nematodes and Soil Resources in a Restored Riparian Wetland. Ecology, 1998, 79, 2721.	3.2	55
72	Is available carbon limiting microbial respiration in the rhizosphere?. Soil Biology and Biochemistry, 1996, 28, 1283-1288.	8.8	222

#	Article	IF	CITATIONS
73	Microcosms and soil Ecology: Critical Linkages between Fields Studies and Modelling Food Webs. Ecology, 1996, 77, 694-705.	3.2	77
74	Seasonal dynamics of nematode and microbial biomass in soils of riparian-zone forests of the Southern Appalachians. Soil Biology and Biochemistry, 1995, 27, 79-84.	8.8	24
75	Investigating Shortâ€Term Carbon Flows in the Rhizospheres of Different Plant Species, Using Isotopic Trapping. Agronomy Journal, 1994, 86, 782-788.	1.8	58
76	In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biology and Biochemistry, 1993, 25, 1189-1196.	8.8	147
77	Patterns of Survival and Extinction of Nematodes in Isolated Soil. Oikos, 1993, 67, 563.	2.7	22
78	Microbial and Faunal Interactions and Effects on Litter Nitrogen and Decomposition in Agroecosystems. Ecological Monographs, 1992, 62, 569-591.	5.4	526
79	Phosphorus relations of roots and mycorrhizas of Rhododendron maximum L. in the southern Appalachians, North Carolina. Mycorrhiza, 1992, 1, 175-184.	2.8	44
80	Microbial communities, activity and biomass. Agriculture, Ecosystems and Environment, 1991, 34, 3-33.	5.3	145
81	Measuring root turnover using the minirhizotron technique. Agriculture, Ecosystems and Environment, 1991, 34, 261-267.	5.3	63
82	Relationships between fungal and bacterial substrate-induced respiration, biomass and plant residue decomposition. Soil Biology and Biochemistry, 1991, 23, 947-954.	8.8	116
83	A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biology and Biochemistry, 1990, 22, 585-594.	8.8	226
84	Effect of genetically-altered Pseudomonas solanacearum on predatory protozoa. Soil Biology and Biochemistry, 1990, 22, 115-117.	8.8	23
85	Effect of living roots on soil organic matter decomposition. Soil Biology and Biochemistry, 1990, 22, 781-787.	8.8	140
86	The importance of the fauna in agricultural soils: Research approaches and perspectives. Agriculture, Ecosystems and Environment, 1989, 27, 47-55.	5.3	54
87	A simple method for measuring co2 in a continuous air-flow system: Modifications to the substrate-induced respiration technique. Soil Biology and Biochemistry, 1989, 21, 385-388.	8.8	77
88	Terrestrial nutrient cycles. Biogeochemistry, 1988, 5, 3-5.	3.5	16
89	Interactions of organisms at root/soil and litter/ soil interfaces in terrestrial ecosystems. Agriculture, Ecosystems and Environment, 1988, 24, 117-134.	5.3	25
90	Detritus Food Webs in Conventional and No-Tillage Agroecosystems. BioScience, 1986, 36, 374-380.	4.9	555

6

#	Article	IF	CITATIONS
91	Interactions of Bacteria, Fungi, and their Nematode Grazers: Effects on Nutrient Cycling and Plant Growth. Ecological Monographs, 1985, 55, 119-140.	5.4	950
92	The impacts of acid deposition on soil biota and C cycling. Environmental and Experimental Botany, 1983, 23, 225-233.	4.2	15
93	Population Development and Interactions Between Two Species of Bacteriophagic Nematodes. Nematologica, 1981, 27, 6-19.	0.2	33
94	Nitrogen Mineralization by <i>Acanthamoeba polyphaga</i> in Grazed <i>Pseudomonas paucimobilis</i> Populations. Applied and Environmental Microbiology, 1981, 42, 667-671.	3.1	15
95	Habitable Pore Space and Microbial Trophic Interactions. Oikos, 1980, 35, 327.	2.7	317
96	Effect of Bacteria and Amoebae on Rhizosphere Phosphatase Activity. Applied and Environmental Microbiology, 1979, 37, 943-946.	3.1	18
97	Trophic interactions in soils as they affect energy and nutrient dynamics. II. Physiological responses of selected rhizosphere bacteria. Microbial Ecology, 1977, 4, 351-359.	2.8	38
98	Soil Carbon Balance in a Successional Grassland. Oikos, 1973, 24, 195.	2.7	65
99	Compartmental Analysis of "Total Soil Respiration": An Exploratory Study. Oikos, 1973, 24, 361.	2.7	72
100	Quantification of Fungus-Small Arthropod Food Chains in the Soil. Oikos, 1970, 21, 134.	2.7	39
101	EFFECT OF FOOD AVAILABILITY ON RATES OF LOSS OF 45CALCIUM FROM HYPHANTRIA CUNEA (LEPIDOPTERA:)	TjEŢQq1	1 p.7843 14
102	A Method for Intensity Labelling of Fungi for Ecological Studies. Mycologia, 1968, 60, 960-961.	1.9	4
103	The Recolonization of Gamma-Irradiated Soil by Small Arthropods. A Preliminary Study. Oikos, 1966, 17, 62.	2.7	37
104	Faunal Indicators of Soil Quality. SSSA Special Publication Series, 0, , 91-106.	0.2	34