Anja Geitmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367388/publications.pdf

Version: 2024-02-01

50276 76900 6,222 128 46 74 citations h-index g-index papers 133 133 133 4510 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomechanics of hair fibre growth: A multi-scale modeling approach. Journal of the Mechanics and Physics of Solids, 2021, 148, 104290.	4.8	6
2	Cytoskeletal regulation of primary plant cell wall assembly. Current Biology, 2021, 31, R681-R695.	3.9	36
3	Microfluidics-Based Bioassays and Imaging of Plant Cells. Plant and Cell Physiology, 2021, 62, 1239-1250.	3.1	16
4	Mechanosensitive ion channels contribute to mechanically evoked rapid leaflet movement in <i>Mimosa pudica</i> . Plant Physiology, 2021, 187, 1704-1712.	4.8	13
5	Modeling the nonlinear elastic behavior of plant epidermis. Botany, 2020, 98, 49-64.	1.0	19
6	Travel Less. Make It Worthwhile Cell, 2020, 182, 790-793.	28.9	8
7	Form Follows Function: How to Build a Deadly Trap. Cell, 2020, 180, 826-828.	28.9	0
8	Plant biomechanics â€" an interdisciplinary lens on plant biology. Botany, 2020, 98, vii-viii.	1.0	1
9	Durotropic Growth of Pollen Tubes. Plant Physiology, 2020, 183, 558-569.	4.8	25
10	Fluorescence visualization of cellulose and pectin in the primary plant cell wall. Journal of Microscopy, 2020, 278, 164-181.	1.8	44
11	Assembly of a simple scalable device for micromechanical testing of plant tissues. Methods in Cell Biology, 2020, 160, 327-348.	1.1	1
12	Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous Confocal Imaging of Intracellular Dynamics. Methods in Molecular Biology, 2020, 2160, 191-200.	0.9	0
13	Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments. Methods in Molecular Biology, 2020, 2160, 211-221.	0.9	2
14	Pectin Chemistry and Cellulose Crystallinity Govern Pavement Cell Morphogenesis in a Multi-Step Mechanism. Plant Physiology, 2019, 181, 127-141.	4.8	90
15	Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. Cell Reports, 2019, 28, 1237-1250.e6.	6.4	93
16	Methods to quantify primary plant cell wall mechanics. Journal of Experimental Botany, 2019, 70, 3615-3648.	4.8	51
17	Plant biomechanics in the 21st century. Journal of Experimental Botany, 2019, 70, 3435-3438.	4.8	18
18	Geometrical Details Matter for Mechanical Modeling of Cell Morphogenesis. Developmental Cell, 2019, 50, 117-125.e2.	7.0	36

#	Article	IF	CITATIONS
19	Plant AP180 N-Terminal Homolog Proteins Are Involved in Clathrin-Dependent Endocytosis during Pollen Tube Growth in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 1316-1330.	3.1	33
20	Finite Element Modeling of Shape Changes in Plant Cells. Plant Physiology, 2018, 176, 41-56.	4.8	65
21	Cell mechanics of pollen tube growth. Current Opinion in Genetics and Development, 2018, 51, 11-17.	3.3	36
22	Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip (FiLoC). Technology, 2018, 06, 101-109.	1.4	17
23	Bracing for Abscission. Cell, 2018, 173, 1320-1322.	28.9	9
24	FRAP Experiments Show Pectate Lyases Promote Pollen Germination and Lubricate the Path of the Pollen Tube in Arabidopsis thaliana Microscopy and Microanalysis, 2018, 24, 1376-1377.	0.4	7
25	Tensile Testing of Primary Plant Cells and Tissues. , 2018, , 321-347.		7
26	Cellular growth in plants requires regulation of cell wall biochemistry. Current Opinion in Cell Biology, 2017, 44, 28-35.	5.4	121
27	Vesicle Dynamics during Plant Cell Cytokinesis Reveals Distinct Developmental Phases. Plant Physiology, 2017, 174, 1544-1558.	4.8	40
28	The middle lamellaâ€"more than a glue. Physical Biology, 2017, 14, 015004.	1.8	85
29	The middle lamellaâ€"more than a glue. Physical Biology, 2017, 14, 015004. A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009.	1.8	70
	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature		
29	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and	12.8	70
30	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and Biology, 2017, 107, 51-66. Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking., 2017,	12.8	70 5
30 31	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and Biology, 2017, 107, 51-66. Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking., 2017, 129-148. Microfluidic- and Microelectromechanical System (MEMS)-Based Platforms for Experimental Analysis	12.8	70 5 2
29 30 31 32	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and Biology, 2017, 107, 51-66. Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking., 2017, 129-148. Microfluidic- and Microelectromechanical System (MEMS)-Based Platforms for Experimental Analysis of Pollen Tube Growth Behavior and Quantification of Cell Mechanical Properties., 2017,, 87-103.	12.8	70 5 2 1
30 31 32 33	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and Biology, 2017, 107, 51-66. Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking. , 2017, 129-148. Microfluidic- and Microelectromechanical System (MEMS)-Based Platforms for Experimental Analysis of Pollen Tube Growth Behavior and Quantification of Cell Mechanical Properties. , 2017, , 87-103. Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip. Scientific Reports, 2016, 6, 19812.	12.8 2.1 3.3	70 5 2 1 25

#	Article	IF	CITATIONS
37	Navigating a Maze - Sensing and Responding to Mechanical Obstacles during Cellular Invasive Growth. Biophysical Journal, 2015, 108, 12a.	0.5	O
38	Navigating the plant cell: intracellular transport logistics in the green kingdom. Molecular Biology of the Cell, 2015, 26, 3373-3378.	2.1	44
39	Live Cell and Immuno-Labeling Techniques to Study Gravitational Effects on Single Plant Cells. Methods in Molecular Biology, 2015, 1309, 209-226.	0.9	3
40	Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. Current Opinion in Plant Biology, 2015, 23, 76-82.	7.1	32
41	Live imaging of calcium spikes during double fertilization in Arabidopsis. Nature Communications, 2014, 5, 4722.	12.8	125
42	Matching Anatomies - Correlating Pollen Tube Anatomy With Pistillar Geometry. Microscopy and Microanalysis, 2014, 20, 1278-1279.	0.4	0
43	Quantitative Determination of Cell Wall Mechanical Properties using Microfluidics. Biophysical Journal, 2014, 106, 574a.	0.5	0
44	Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. Journal of Bioscience and Bioengineering, 2014, 117, 504-511.	2.2	21
45	Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomedical Microdevices, 2014, 16, 23-33.	2.8	17
46	Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes. , 2014, 2014, 6175-8.		1
47	Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant Journal, 2014, 80, 185-195.	5.7	35
48	Assessing the Influence of Electric Cues and Conductivity on Pollen Tube Growth via Lab-On-A-Chip Technology. Biophysical Journal, 2014, 106, 574a.	0.5	1
49	Welcome from the Society Presidents. Microscopy and Microanalysis, 2014, 20, xciii-xciii.	0.4	0
50	Welcome to this Microscopy and Microanalysis meeting, M & M 2014 in Hartford, Connecticut!. Microscopy and Microanalysis, 2014, 20, xciv-xcvi.	0.4	0
51	Modeling of the Primary Plant Cell Wall in the Context of Plant Development. , 2014, , 1-17.		3
52	Lab-on-a-Chip for Studying Growing Pollen Tubes. Methods in Molecular Biology, 2014, 1080, 237-248.	0.9	1
53	In Vitro Study of Oscillatory Growth Dynamics of Camellia Pollen Tubes in Microfluidic Environment. IEEE Transactions on Biomedical Engineering, 2013, 60, 3185-3193.	4.2	11
54	Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab on A Chip, 2013, 13, 2599.	6.0	69

#	Article	IF	Citations
55	<scp>T</scp> ip <scp>C</scp> hip: a modular, <scp>MEMS</scp> â€based platform for experimentation and phenotyping of tipâ€growing cells. Plant Journal, 2013, 73, 1057-1068.	5.7	80
56	The cellular mechanics of an invasive lifestyle. Journal of Experimental Botany, 2013, 64, 4709-4728.	4.8	65
57	Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta, 2013, 237, 1367-1378.	3.2	31
58	Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8093-8098.	7.1	84
59	Pollen Tubes With More Viscous Cell Walls Oscillate at Lower Frequencies. Mathematical Modelling of Natural Phenomena, 2013, 8, 25-34.	2.4	13
60	PDMS Microcantilever-Based Flow Sensor Integration for Lab-on-a-Chip. IEEE Sensors Journal, 2013, 13, 601-609.	4.7	62
61	Transport Logistics in Pollen Tubes. Molecular Plant, 2013, 6, 1037-1052.	8.3	80
62	Cell Wall Assembly and Intracellular Trafficking in Plant Cells Are Directly Affected by Changes in the Magnitude of Gravitational Acceleration. PLoS ONE, 2013, 8, e58246.	2.5	21
63	Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biology, 2012, 14, 64-76.	3.8	79
64	Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen tube growth. Plant Signaling and Behavior, 2012, 7, 879-881.	2.4	22
65	The Cell Wall of the Arabidopsis Pollen Tubeâ€"Spatial Distribution, Recycling, and Network Formation of Polysaccharides Â. Plant Physiology, 2012, 160, 1940-1955.	4.8	227
66	The role of pectin in plant morphogenesis. BioSystems, 2012, 109, 397-402.	2.0	171
67	Logistics of Intracellular Transport Required for Cell Wall Assembly. Biophysical Journal, 2012, 102, 378a.	0.5	0
68	A microfluidic platform for the investigation of elongation growth in pollen tubes. Journal of Micromechanics and Microengineering, 2012, 22, 115009.	2.6	26
69	The pollen tube paradigm revisited. Current Opinion in Plant Biology, 2012, 15, 618-624.	7.1	46
70	Mapping Vesicle Trafficking during Plant Cell Cytokinesis using Spatio-Temporal Image Correlation Spectroscopy. Biophysical Journal, 2012, 102, 378a.	0.5	0
71	Pollen tube growth: Getting a grip on cell biology through modeling. Mechanics Research Communications, 2012, 42, 32-39.	1.8	35
72	Persistent Symmetry Frustration in Pollen Tubes. PLoS ONE, 2012, 7, e48087.	2.5	7

#	Article	IF	Citations
73	Finite Element Modeling of Polar Growth in Walled Cells. Biophysical Journal, 2011, 100, 190a.	0.5	o
74	Pollen tubes and the physical world. Trends in Plant Science, 2011, 16, 353-355.	8.8	65
75	Regulator or Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell Growth. PLoS ONE, 2011, 6, e18549.	2.5	127
76	Gravity Research on Plants: Use of Single-Cell Experimental Models. Frontiers in Plant Science, 2011, 2, 56.	3.6	16
77	A specific role for Arabidopsis TRAPPII in postâ€Golgi trafficking that is crucial for cytokinesis and cell polarity. Plant Journal, 2011, 68, 234-248.	5.7	68
78	Actin is Involved in Pollen Tube Tropism Through Redefining the Spatial Targeting of Secretory Vesicles. Traffic, 2011, 12, 1537-1551.	2.7	92
79	Cell Wall Accumulation of Cu Ions and Modulation of Lignifying Enzymes in Primary Leaves of Bean Seedlings Exposed to Excess Copper. Biological Trace Element Research, 2011, 139, 97-107.	3.5	31
80	Modeling pollen tube growth: Feeling the pressure to deliver testifiable predictions. Plant Signaling and Behavior, 2011, 6, 1828-1830.	2.4	16
81	Spatial and Temporal Expression of Actin Depolymerizing Factors ADF7 and ADF10 during Male Gametophyte Development in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52, 1177-1192.	3.1	39
82	Generating a Cellular Protuberance: Mechanics of Tip Growth. Signaling and Communication in Plants, $2011, 117-132$.	0.7	5
83	Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sexual Plant Reproduction, 2010, 23, 15-27.	2.2	66
84	How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sexual Plant Reproduction, 2010, 23, 63-71.	2.2	64
85	Structural Changes of Cell Wall and Lignifying Enzymes Modulations in Bean Roots in Response to Copper Stress. Biological Trace Element Research, 2010, 136, 232-240.	3.5	21
86	Mechanical modeling and structural analysis of the primary plant cell wall. Current Opinion in Plant Biology, 2010, 13, 693-699.	7.1	63
87	Cupric stress induces oxidative damage marked by accumulation of H2O2and changes to chloroplast ultrastructure in primary leaves of beans (Phaseolus vulgarisL.). Acta Biologica Hungarica, 2010, 61, 191-203.	0.7	5
88	Finite Element Model of Polar Growth in Pollen Tubes Â. Plant Cell, 2010, 22, 2579-2593.	6.6	184
89	Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety, 2010, 73, 1304-1308.	6.0	119
90	Under pressure, cell walls set the pace. Trends in Plant Science, 2010, 15, 363-369.	8.8	106

#	Article	IF	Citations
91	Modeling Cytoskeletal Dynamics and Vesicle Movements in Growing Pollen Tubes. Biophysical Journal, 2010, 98, 721a.	0.5	0
92	Not-so-tip-growth. Plant Signaling and Behavior, 2009, 4, 136-138.	2.4	33
93	Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell Reports, 2009, 28, 347-357.	5.6	56
94	Mechanics and modeling of plant cell growth. Trends in Plant Science, 2009, 14, 467-478.	8.8	264
95	Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Developmental Biology, 2009, 334, 437-446.	2.0	148
96	Microfilament Orientation Constrains Vesicle Flow and Spatial Distribution in Growing Pollen Tubes. Biophysical Journal, 2009, 97, 1822-1831.	0.5	82
97	Model for calcium dependent oscillatory growth in pollen tubes. Journal of Theoretical Biology, 2008, 253, 363-374.	1.7	86
98	Magnitude and Direction of Vesicle Dynamics in Growing Pollen Tubes Using Spatiotemporal Image Correlation Spectroscopy and Fluorescence Recovery after Photobleaching À Â. Plant Physiology, 2008, 147, 1646-1658.	4.8	167
99	Effect of copper excess on H ₂ O ₂ accumulation and peroxidase activities in bean roots. Acta Biologica Hungarica, 2008, 59, 233-245.	0.7	16
100	Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta, 2007, 226, 405-416.	3.2	73
101	Plant and fungal cytomechanics: quantifying and modeling cellular architectureThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology Canadian Journal of Botany, 2006, 84, 581-593.	1.1	20
102	Calendar of Meetings and Courses. Microscopy and Microanalysis, 2006, 12, 438-440.	0.4	0
103	Visualization of the Pollen Tube Cytoskeleton using Structured Illumination Fluorescence Microscopy. Microscopy and Microanalysis, 2006, 12, 438-439.	0.4	0
104	Finite-Element Analysis of Geometrical Factors in Micro-Indentation of Pollen Tubes. Biomechanics and Modeling in Mechanobiology, 2006, 5, 227-236.	2.8	53
105	Experimental approaches used to quantify physical parameters at cellular and subcellular levels. American Journal of Botany, 2006, 93, 1380-1390.	1.7	80
106	Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta, 2005, 220, 582-592.	3.2	252
107	More Than a Leak Sealant. The Mechanical Properties of Callose in Pollen Tubes. Plant Physiology, 2005, 137, 274-286.	4.8	165
108	The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death and Differentiation, 2004, 11, 812-822.	11.2	54

#	Article	IF	Citations
109	The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sexual Plant Reproduction, 2004, 17, 9-16.	2.2	80
110	Cytomechanical Properties of Papaver Pollen Tubes Are Altered after Self-Incompatibility Challenge. Biophysical Journal, 2004, 86, 3314-3323.	0.5	20
111	Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. Plant Cell, 2000, 12, 1239.	6.6	4
112	The cytoskeleton in plant and fungal cell tip growth. Journal of Microscopy, 2000, 198, 218-245.	1.8	175
113	Cell Biology of Plant and Fungal Tip Growth Getting to the Point. Plant Cell, 2000, 12, 1513.	6.6	7
114	Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. Plant Cell, 2000, 12, 1239-1251.	6.6	146
115	Signalling and the Cytoskeleton of Pollen Tubes of Papaver rhoeas. Annals of Botany, 2000, 85, 49-57.	2.9	33
116	Actin Rearrangements in Pollen Tubes are Stimulated by the Self-Incompatibility (SI) Response in Papaver Rhoeas L, 2000, , 347-360.		3
117	Cell Death of Self-Incompatible Pollen Tubes: Necrosis or Apoptosis?. , 1999, , 113-137.		7
118	The Rheological Properties of the Pollen Tube Cell Wall. , 1999, , 283-302.		21
119	Ca2+ channels control the rapid expansions in pulsating growth of Petunia hybrida pollen tubes. Journal of Plant Physiology, 1998, 152, 439-447.	3.5	65
120	Inhibition of ethylene biosynthesis does not block microtubule re-orientation in wounded pea roots. Protoplasma, 1997, 198, 135-142.	2.1	13
121	Inhibition of Intracellular Pectin Transport in Pollen Tubes by Monensin, Brefeldin A and Cytochalasin D*. Botanica Acta, 1996, 109, 373-381.	1.6	33
122	The Role of the Cytoskeleton and Dictyosome Activity in the Pulsatory Growth of <i>Nicotiana tabacum</i> and <i>Petunia hybrida</i> Pollen Tubes. Botanica Acta, 1996, 109, 102-109.	1.6	61
123	Ultrastructural immunolocalization of periodic pectin depositions in the cell wall ofNicotiana tabacum pollen tubes. Protoplasma, 1995, 187, 168-171.	2.1	29
124	Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L Protoplasma, 1995, 189, 26-36.	2.1	103
125	Immunogold Localization of Pectin and Callose in Pollen Grains and Pollen Tubes of Brugmansia suaveolens — Implications for the Self-Incompatibility Reaction. Journal of Plant Physiology, 1995, 147, 225-235.	3.5	57
126	Nucleoside intermediates in blasticidin S biosynthesis identified by the in vivo use of enzyme inhibitors. Canadian Journal of Chemistry, 1994, 72, 6-11.	1.1	12

#	Article	IF	CITATIONS
127	Immunocytochemical localization of pectin in stylar tissues. Micron and Microscopica Acta, 1992, 23, 125-126.	0.2	3
128	The Architecture and Properties of the Pollen Tube Cell Wall. , 0, , 177-200.		57