List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367388/publications.pdf Version: 2024-02-01



ANIA CEITMANN

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanics and modeling of plant cell growth. Trends in Plant Science, 2009, 14, 467-478.                                                                                                                                  | 8.8  | 264       |
| 2  | Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta, 2005, 220, 582-592.                                                                                   | 3.2  | 252       |
| 3  | The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides   Â. Plant Physiology, 2012, 160, 1940-1955.                                                       | 4.8  | 227       |
| 4  | Relating the mechanics of the primary plant cell wall to morphogenesis. Journal of Experimental Botany, 2016, 67, 449-461.                                                                                                | 4.8  | 204       |
| 5  | Finite Element Model of Polar Growth in Pollen Tubes Â. Plant Cell, 2010, 22, 2579-2593.                                                                                                                                  | 6.6  | 184       |
| 6  | The cytoskeleton in plant and fungal cell tip growth. Journal of Microscopy, 2000, 198, 218-245.                                                                                                                          | 1.8  | 175       |
| 7  | The role of pectin in plant morphogenesis. BioSystems, 2012, 109, 397-402.                                                                                                                                                | 2.0  | 171       |
| 8  | Magnitude and Direction of Vesicle Dynamics in Growing Pollen Tubes Using Spatiotemporal Image<br>Correlation Spectroscopy and Fluorescence Recovery after Photobleaching A A. Plant Physiology, 2008,<br>147, 1646-1658. | 4.8  | 167       |
| 9  | More Than a Leak Sealant. The Mechanical Properties of Callose in Pollen Tubes. Plant Physiology, 2005, 137, 274-286.                                                                                                     | 4.8  | 165       |
| 10 | Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Developmental Biology, 2009, 334, 437-446.                                                              | 2.0  | 148       |
| 11 | Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. Plant Cell, 2000, 12, 1239-1251.                                                                | 6.6  | 146       |
| 12 | Regulator or Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell Growth. PLoS ONE, 2011, 6, e18549.                                                                                                      | 2.5  | 127       |
| 13 | Live imaging of calcium spikes during double fertilization in Arabidopsis. Nature Communications, 2014, 5, 4722.                                                                                                          | 12.8 | 125       |
| 14 | Cellular growth in plants requires regulation of cell wall biochemistry. Current Opinion in Cell<br>Biology, 2017, 44, 28-35.                                                                                             | 5.4  | 121       |
| 15 | Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety, 2010, 73, 1304-1308.                                       | 6.0  | 119       |
| 16 | Under pressure, cell walls set the pace. Trends in Plant Science, 2010, 15, 363-369.                                                                                                                                      | 8.8  | 106       |
| 17 | Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen<br>grains and pollen tubes ofNicotiana tabacum L Protoplasma, 1995, 189, 26-36.                                        | 2.1  | 103       |
| 18 | Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. Cell<br>Reports, 2019, 28, 1237-1250.e6.                                                                                         | 6.4  | 93        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Actin is Involved in Pollen Tube Tropism Through Redefining the Spatial Targeting of Secretory<br>Vesicles. Traffic, 2011, 12, 1537-1551.                                                                              | 2.7  | 92        |
| 20 | Pectin Chemistry and Cellulose Crystallinity Govern Pavement Cell Morphogenesis in a Multi-Step<br>Mechanism. Plant Physiology, 2019, 181, 127-141.                                                                    | 4.8  | 90        |
| 21 | Model for calcium dependent oscillatory growth in pollen tubes. Journal of Theoretical Biology, 2008, 253, 363-374.                                                                                                    | 1.7  | 86        |
| 22 | The middle lamella—more than a glue. Physical Biology, 2017, 14, 015004.                                                                                                                                               | 1.8  | 85        |
| 23 | Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element<br>modeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>8093-8098. | 7.1  | 84        |
| 24 | Microfilament Orientation Constrains Vesicle Flow and Spatial Distribution in Growing Pollen Tubes.<br>Biophysical Journal, 2009, 97, 1822-1831.                                                                       | 0.5  | 82        |
| 25 | The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sexual Plant Reproduction, 2004, 17, 9-16.                                           | 2.2  | 80        |
| 26 | Experimental approaches used to quantify physical parameters at cellular and subcellular levels.<br>American Journal of Botany, 2006, 93, 1380-1390.                                                                   | 1.7  | 80        |
| 27 | <scp>T</scp> ip <scp>C</scp> hip: a modular, <scp>MEMS</scp> â€based platform for experimentation and phenotyping of tipâ€growing cells. Plant Journal, 2013, 73, 1057-1068.                                           | 5.7  | 80        |
| 28 | Transport Logistics in Pollen Tubes. Molecular Plant, 2013, 6, 1037-1052.                                                                                                                                              | 8.3  | 80        |
| 29 | Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biology, 2012, 14, 64-76.                                                                                                           | 3.8  | 79        |
| 30 | Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta, 2007, 226, 405-416.                                                                                                            | 3.2  | 73        |
| 31 | A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009.                                                                                       | 12.8 | 70        |
| 32 | Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip<br>(BLOC). Lab on A Chip, 2013, 13, 2599.                                                                               | 6.0  | 69        |
| 33 | A specific role for Arabidopsis TRAPPII in postâ€Golgi trafficking that is crucial for cytokinesis and cell<br>polarity. Plant Journal, 2011, 68, 234-248.                                                             | 5.7  | 68        |
| 34 | Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sexual Plant Reproduction, 2010, 23, 15-27.                                                          | 2.2  | 66        |
| 35 | Ca2+ channels control the rapid expansions in pulsating growth of Petunia hybrida pollen tubes.<br>Journal of Plant Physiology, 1998, 152, 439-447.                                                                    | 3.5  | 65        |
| 36 | Pollen tubes and the physical world. Trends in Plant Science, 2011, 16, 353-355.                                                                                                                                       | 8.8  | 65        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The cellular mechanics of an invasive lifestyle. Journal of Experimental Botany, 2013, 64, 4709-4728.                                                                                                                 | 4.8  | 65        |
| 38 | Finite Element Modeling of Shape Changes in Plant Cells. Plant Physiology, 2018, 176, 41-56.                                                                                                                          | 4.8  | 65        |
| 39 | How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sexual Plant Reproduction, 2010, 23, 63-71.                                                                   | 2.2  | 64        |
| 40 | Mechanical modeling and structural analysis of the primary plant cell wall. Current Opinion in Plant<br>Biology, 2010, 13, 693-699.                                                                                   | 7.1  | 63        |
| 41 | PDMS Microcantilever-Based Flow Sensor Integration for Lab-on-a-Chip. IEEE Sensors Journal, 2013, 13, 601-609.                                                                                                        | 4.7  | 62        |
| 42 | The Role of the Cytoskeleton and Dictyosome Activity in the Pulsatory Growth of <i>Nicotiana tabacum</i> and <i>Petunia hybrida</i> Pollen Tubes. Botanica Acta, 1996, 109, 102-109.                                  | 1.6  | 61        |
| 43 | Immunogold Localization of Pectin and Callose in Pollen Grains and Pollen Tubes of Brugmansia<br>suaveolens — Implications for the Self-Incompatibility Reaction. Journal of Plant Physiology, 1995, 147,<br>225-235. | 3.5  | 57        |
| 44 | The Architecture and Properties of the Pollen Tube Cell Wall. , 0, , 177-200.                                                                                                                                         |      | 57        |
| 45 | Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell<br>Reports, 2009, 28, 347-357.                                                                                      | 5.6  | 56        |
| 46 | The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death and Differentiation, 2004, 11, 812-822.                                                    | 11.2 | 54        |
| 47 | Finite-Element Analysis of Geometrical Factors in Micro-Indentation of Pollen Tubes. Biomechanics and Modeling in Mechanobiology, 2006, 5, 227-236.                                                                   | 2.8  | 53        |
| 48 | Methods to quantify primary plant cell wall mechanics. Journal of Experimental Botany, 2019, 70,<br>3615-3648.                                                                                                        | 4.8  | 51        |
| 49 | The pollen tube paradigm revisited. Current Opinion in Plant Biology, 2012, 15, 618-624.                                                                                                                              | 7.1  | 46        |
| 50 | Navigating the plant cell: intracellular transport logistics in the green kingdom. Molecular Biology of the Cell, 2015, 26, 3373-3378.                                                                                | 2.1  | 44        |
| 51 | Fluorescence visualization of cellulose and pectin in the primary plant cell wall. Journal of Microscopy, 2020, 278, 164-181.                                                                                         | 1.8  | 44        |
| 52 | Vesicle Dynamics during Plant Cell Cytokinesis Reveals Distinct Developmental Phases. Plant<br>Physiology, 2017, 174, 1544-1558.                                                                                      | 4.8  | 40        |
| 53 | Spatial and Temporal Expression of Actin Depolymerizing Factors ADF7 and ADF10 during Male<br>Gametophyte Development in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52, 1177-1192.                        | 3.1  | 39        |
| 54 | Cell mechanics of pollen tube growth. Current Opinion in Genetics and Development, 2018, 51, 11-17.                                                                                                                   | 3.3  | 36        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Geometrical Details Matter for Mechanical Modeling of Cell Morphogenesis. Developmental Cell, 2019, 50, 117-125.e2.                                                                           | 7.0  | 36        |
| 56 | Cytoskeletal regulation of primary plant cell wall assembly. Current Biology, 2021, 31, R681-R695.                                                                                            | 3.9  | 36        |
| 57 | Pollen tube growth: Getting a grip on cell biology through modeling. Mechanics Research<br>Communications, 2012, 42, 32-39.                                                                   | 1.8  | 35        |
| 58 | Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant Journal, 2014, 80, 185-195.                                          | 5.7  | 35        |
| 59 | Inhibition of Intracellular Pectin Transport in Pollen Tubes by Monensin, Brefeldin A and Cytochalasin<br>D*. Botanica Acta, 1996, 109, 373-381.                                              | 1.6  | 33        |
| 60 | Signalling and the Cytoskeleton of Pollen Tubes of Papaver rhoeas. Annals of Botany, 2000, 85, 49-57.                                                                                         | 2.9  | 33        |
| 61 | Not-so-tip-growth. Plant Signaling and Behavior, 2009, 4, 136-138.                                                                                                                            | 2.4  | 33        |
| 62 | Plant AP180 N-Terminal Homolog Proteins Are Involved in Clathrin-Dependent Endocytosis during<br>Pollen Tube Growth in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 1316-1330.  | 3.1  | 33        |
| 63 | Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers.<br>Current Opinion in Plant Biology, 2015, 23, 76-82.                                             | 7.1  | 32        |
| 64 | Actuators Acting without Actin. Cell, 2016, 166, 15-17.                                                                                                                                       | 28.9 | 32        |
| 65 | Cell Wall Accumulation of Cu Ions and Modulation of Lignifying Enzymes in Primary Leaves of Bean<br>Seedlings Exposed to Excess Copper. Biological Trace Element Research, 2011, 139, 97-107. | 3.5  | 31        |
| 66 | Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta, 2013, 237, 1367-1378.                                                          | 3.2  | 31        |
| 67 | Ultrastructural immunolocalization of periodic pectin depositions in the cell wall ofNicotiana tabacum pollen tubes. Protoplasma, 1995, 187, 168-171.                                         | 2.1  | 29        |
| 68 | A microfluidic platform for the investigation of elongation growth in pollen tubes. Journal of Micromechanics and Microengineering, 2012, 22, 115009.                                         | 2.6  | 26        |
| 69 | Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical<br>Lab-on-Chip. Scientific Reports, 2016, 6, 19812.                                               | 3.3  | 25        |
| 70 | Durotropic Growth of Pollen Tubes. Plant Physiology, 2020, 183, 558-569.                                                                                                                      | 4.8  | 25        |
| 71 | Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen<br>tube growth. Plant Signaling and Behavior, 2012, 7, 879-881.                          | 2.4  | 22        |
| 72 | Structural Changes of Cell Wall and Lignifying Enzymes Modulations in Bean Roots in Response to<br>Copper Stress. Biological Trace Element Research, 2010, 136, 232-240.                      | 3.5  | 21        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cell Wall Assembly and Intracellular Trafficking in Plant Cells Are Directly Affected by Changes in the<br>Magnitude of Gravitational Acceleration. PLoS ONE, 2013, 8, e58246.                                                      | 2.5 | 21        |
| 74 | Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. Journal of<br>Bioscience and Bioengineering, 2014, 117, 504-511.                                                                               | 2.2 | 21        |
| 75 | The Rheological Properties of the Pollen Tube Cell Wall. , 1999, , 283-302.                                                                                                                                                         |     | 21        |
| 76 | Cytomechanical Properties of Papaver Pollen Tubes Are Altered after Self-Incompatibility Challenge.<br>Biophysical Journal, 2004, 86, 3314-3323.                                                                                    | 0.5 | 20        |
| 77 | Plant and fungal cytomechanics: quantifying and modeling cellular architectureThis review is one of<br>a selection of papers published in the Special Issue on Plant Cell Biology Canadian Journal of Botany,<br>2006, 84, 581-593. | 1.1 | 20        |
| 78 | Modeling the nonlinear elastic behavior of plant epidermis. Botany, 2020, 98, 49-64.                                                                                                                                                | 1.0 | 19        |
| 79 | Plant biomechanics in the 21st century. Journal of Experimental Botany, 2019, 70, 3435-3438.                                                                                                                                        | 4.8 | 18        |
| 80 | Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomedical Microdevices, 2014, 16, 23-33.                                                                             | 2.8 | 17        |
| 81 | Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip (FiLoC).<br>Technology, 2018, 06, 101-109.                                                                                                | 1.4 | 17        |
| 82 | Effect of copper excess on H <sub>2</sub> O <sub>2</sub> accumulation and peroxidase activities in bean roots. Acta Biologica Hungarica, 2008, 59, 233-245.                                                                         | 0.7 | 16        |
| 83 | Gravity Research on Plants: Use of Single-Cell Experimental Models. Frontiers in Plant Science, 2011, 2,<br>56.                                                                                                                     | 3.6 | 16        |
| 84 | Modeling pollen tube growth: Feeling the pressure to deliver testifiable predictions. Plant Signaling and Behavior, 2011, 6, 1828-1830.                                                                                             | 2.4 | 16        |
| 85 | Microfluidics-Based Bioassays and Imaging of Plant Cells. Plant and Cell Physiology, 2021, 62, 1239-1250.                                                                                                                           | 3.1 | 16        |
| 86 | Inhibition of ethylene biosynthesis does not block microtubule re-orientation in wounded pea roots.<br>Protoplasma, 1997, 198, 135-142.                                                                                             | 2.1 | 13        |
| 87 | Pollen Tubes With More Viscous Cell Walls Oscillate at Lower Frequencies. Mathematical Modelling<br>of Natural Phenomena, 2013, 8, 25-34.                                                                                           | 2.4 | 13        |
| 88 | Mechanosensitive ion channels contribute to mechanically evoked rapid leaflet movement in<br><i>Mimosa pudica</i> . Plant Physiology, 2021, 187, 1704-1712.                                                                         | 4.8 | 13        |
| 89 | Nucleoside intermediates in blasticidin S biosynthesis identified by the in vivo use of enzyme inhibitors. Canadian Journal of Chemistry, 1994, 72, 6-11.                                                                           | 1.1 | 12        |
| 90 | In Vitro Study of Oscillatory Growth Dynamics of Camellia Pollen Tubes in Microfluidic Environment.<br>IEEE Transactions on Biomedical Engineering, 2013, 60, 3185-3193.                                                            | 4.2 | 11        |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Bracing for Abscission. Cell, 2018, 173, 1320-1322.                                                                                                                                                                                       | 28.9 | 9         |
| 92  | Travel Less. Make It Worthwhile Cell, 2020, 182, 790-793.                                                                                                                                                                                 | 28.9 | 8         |
| 93  | Cell Biology of Plant and Fungal Tip Growth – Getting to the Point. Plant Cell, 2000, 12, 1513.                                                                                                                                           | 6.6  | 7         |
| 94  | FRAP Experiments Show Pectate Lyases Promote Pollen Germination and Lubricate the Path of the Pollen Tube in Arabidopsis thaliana Microscopy and Microanalysis, 2018, 24, 1376-1377.                                                      | 0.4  | 7         |
| 95  | Tensile Testing of Primary Plant Cells and Tissues. , 2018, , 321-347.                                                                                                                                                                    |      | 7         |
| 96  | Cell Death of Self-Incompatible Pollen Tubes: Necrosis or Apoptosis?. , 1999, , 113-137.                                                                                                                                                  |      | 7         |
| 97  | Persistent Symmetry Frustration in Pollen Tubes. PLoS ONE, 2012, 7, e48087.                                                                                                                                                               | 2.5  | 7         |
| 98  | Biomechanics of hair fibre growth: A multi-scale modeling approach. Journal of the Mechanics and Physics of Solids, 2021, 148, 104290.                                                                                                    | 4.8  | 6         |
| 99  | Cupric stress induces oxidative damage marked by accumulation of H2O2and changes to chloroplast<br>ultrastructure in primary leaves of beans (Phaseolus vulgarisL.). Acta Biologica Hungarica, 2010, 61,<br>191-203.                      | 0.7  | 5         |
| 100 | Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds<br>that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and<br>Biology, 2017, 107, 51-66. | 2.1  | 5         |
| 101 | Generating a Cellular Protuberance: Mechanics of Tip Growth. Signaling and Communication in Plants, 2011, , 117-132.                                                                                                                      | 0.7  | 5         |
| 102 | Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. Plant Cell, 2000, 12, 1239.                                                                                     | 6.6  | 4         |
| 103 | Immunocytochemical localization of pectin in stylar tissues. Micron and Microscopica Acta, 1992, 23, 125-126.                                                                                                                             | 0.2  | 3         |
| 104 | Live Cell and Immuno-Labeling Techniques to Study Gravitational Effects on Single Plant Cells.<br>Methods in Molecular Biology, 2015, 1309, 209-226.                                                                                      | 0.9  | 3         |
| 105 | Modeling of the Primary Plant Cell Wall in the Context of Plant Development. , 2014, , 1-17.                                                                                                                                              |      | 3         |
| 106 | Actin Rearrangements in Pollen Tubes are Stimulated by the Self-Incompatibility (SI) Response in<br>Papaver Rhoeas L , 2000, , 347-360.                                                                                                   |      | 3         |
| 107 | Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking. , 2017, ,<br>129-148.                                                                                                                             |      | 2         |
| 108 | Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments. Methods in<br>Molecular Biology, 2020, 2160, 211-221.                                                                                                 | 0.9  | 2         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes. , 2014, 2014, 6175-8.                                                                                     |     | 1         |
| 110 | Assessing the Influence of Electric Cues and Conductivity on Pollen Tube Growth via Lab-On-A-Chip<br>Technology. Biophysical Journal, 2014, 106, 574a.                                              | 0.5 | 1         |
| 111 | Mechanics of Interdigitating Morphogenesis in Pavement Cells. Microscopy and Microanalysis, 2015, 21, 201-202.                                                                                      | 0.4 | 1         |
| 112 | Plant biomechanics — an interdisciplinary lens on plant biology. Botany, 2020, 98, vii-viii.                                                                                                        | 1.0 | 1         |
| 113 | Lab-on-a-Chip for Studying Growing Pollen Tubes. Methods in Molecular Biology, 2014, 1080, 237-248.                                                                                                 | 0.9 | 1         |
| 114 | Microfluidic- and Microelectromechanical System (MEMS)-Based Platforms for Experimental Analysis of Pollen Tube Growth Behavior and Quantification of Cell Mechanical Properties. , 2017, , 87-103. |     | 1         |
| 115 | Assembly of a simple scalable device for micromechanical testing of plant tissues. Methods in Cell<br>Biology, 2020, 160, 327-348.                                                                  | 1.1 | 1         |
| 116 | Calendar of Meetings and Courses. Microscopy and Microanalysis, 2006, 12, 438-440.                                                                                                                  | 0.4 | 0         |
| 117 | Visualization of the Pollen Tube Cytoskeleton using Structured Illumination Fluorescence<br>Microscopy. Microscopy and Microanalysis, 2006, 12, 438-439.                                            | 0.4 | 0         |
| 118 | Modeling Cytoskeletal Dynamics and Vesicle Movements in Growing Pollen Tubes. Biophysical Journal, 2010, 98, 721a.                                                                                  | 0.5 | 0         |
| 119 | Finite Element Modeling of Polar Growth in Walled Cells. Biophysical Journal, 2011, 100, 190a.                                                                                                      | 0.5 | 0         |
| 120 | Logistics of Intracellular Transport Required for Cell Wall Assembly. Biophysical Journal, 2012, 102, 378a.                                                                                         | 0.5 | 0         |
| 121 | Mapping Vesicle Trafficking during Plant Cell Cytokinesis using Spatio-Temporal Image Correlation<br>Spectroscopy. Biophysical Journal, 2012, 102, 378a.                                            | 0.5 | 0         |
| 122 | Matching Anatomies - Correlating Pollen Tube Anatomy With Pistillar Geometry. Microscopy and<br>Microanalysis, 2014, 20, 1278-1279.                                                                 | 0.4 | 0         |
| 123 | Quantitative Determination of Cell Wall Mechanical Properties using Microfluidics. Biophysical<br>Journal, 2014, 106, 574a.                                                                         | 0.5 | 0         |
| 124 | Welcome from the Society Presidents. Microscopy and Microanalysis, 2014, 20, xciii-xciii.                                                                                                           | 0.4 | 0         |
| 125 | Welcome to this Microscopy and Microanalysis meeting, M & M 2014 in Hartford, Connecticut!.<br>Microscopy and Microanalysis, 2014, 20, xciv-xcvi.                                                   | 0.4 | 0         |
| 126 | Navigating a Maze - Sensing and Responding to Mechanical Obstacles during Cellular Invasive Growth.<br>Biophysical Journal, 2015, 108, 12a.                                                         | 0.5 | 0         |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Form Follows Function: How to Build a Deadly Trap. Cell, 2020, 180, 826-828.                                                                                                                | 28.9 | 0         |
| 128 | Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous<br>Confocal Imaging of Intracellular Dynamics. Methods in Molecular Biology, 2020, 2160, 191-200. | 0.9  | 0         |