Theresa L Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/736664/publications.pdf

Version: 2024-02-01

43 papers

8,624 citations

34 h-index 254184 43 g-index

43 all docs 43 docs citations

43 times ranked 11259 citing authors

#	Article	IF	CITATIONS
1	<i>Batf3</i> Deficiency Reveals a Critical Role for CD8 \hat{l} ± ⁺ Dendritic Cells in Cytotoxic T Cell Immunity. Science, 2008, 322, 1097-1100.	12.6	1,665
2	Signaling and Transcription in T Helper Development. Annual Review of Immunology, 2000, 18, 451-494.	21.8	584
3	B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunology, 2005, 6, 90-98.	14.5	543
4	BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature, 2012, 490, 543-546.	27.8	392
5	Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature, 2012, 490, 502-507.	27.8	367
6	Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages. Cell, 2014, 156, 1223-1234.	28.9	359
7	Transcriptional Control of Dendritic Cell Development. Annual Review of Immunology, 2016, 34, 93-119.	21.8	354
8	$CD8\hat{l}_{\pm}+$ Dendritic Cells Are the Critical Source of Interleukin-12 that Controls Acute Infection by Toxoplasma gondii Tachyzoites. Immunity, 2011, 35, 249-259.	14.3	334
9	Klf4 Expression in Conventional Dendritic Cells Is Required for T Helper 2 Cell Responses. Immunity, 2015, 42, 916-928.	14.3	326
10	Specificity through cooperation: BATF–IRF interactions control immune-regulatory networks. Nature Reviews Immunology, 2013, 13, 499-509.	22.7	319
11	Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor. Nature Immunology, 2015, 16, 708-717.	14.5	313
12	A Genomic Regulatory Element That Directs Assembly and Function of Immune-Specific AP-1–IRF Complexes. Science, 2012, 338, 975-980.	12.6	298
13	cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature, 2020, 584, 624-629.	27.8	298
14	IL-18–stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nature Immunology, 2001, 2, 157-164.	14.5	240
15	WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science, 2018, 362, 694-699.	12.6	216
16	Slow Down and Survive: Enigmatic Immunoregulation by BTLA and HVEM. Annual Review of Immunology, 2010, 28, 389-411.	21.8	193
17	Induction of interferon- \hat{l}^3 production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. European Journal of Immunology, 1999, 29, 548-555.	2.9	186
18	Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nature Immunology, 2000, 1, 65-69.	14.5	171

#	Article	IF	Citations
19	Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nature Communications, 2014, 5, 3551.	12.8	152
20	Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells. Cell Reports, 2016, 15, 2462-2474.	6.4	151
21	<i>Mafb</i> lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. Journal of Experimental Medicine, 2016, 213, 2553-2565.	8.5	102
22	Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nature Immunology, 2019, 20, 1161-1173.	14.5	100
23	Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF–IRF4 transcription factor complex. Nature Immunology, 2017, 18, 563-572.	14.5	95
24	Dendritic cells in cancer immunology. Cellular and Molecular Immunology, 2022, 19, 3-13.	10.5	91
25	Conivaptan Bolus Dosing for the Correction of Hyponatremia in the Neurointensive Care Unit. Neurocritical Care, 2009, 11, 14-19.	2.4	87
26	L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature, 2014, 507, 243-247.	27.8	87
27	An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nature Immunology, 2019, 20, 1174-1185.	14.5	80
28	Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14775-14780.	7.1	67
29	RAB43 facilitates cross-presentation of cell-associated antigens by CD8α+ dendritic cells. Journal of Experimental Medicine, 2016, 213, 2871-2883.	8.5	63
30	Role of the Stat4 N Domain in Receptor Proximal Tyrosine Phosphorylation. Molecular and Cellular Biology, 2000, 20, 7121-7131.	2.3	47
31	Complementary diversification of dendritic cells and innate lymphoid cells. Current Opinion in Immunology, 2014, 29, 69-78.	5.5	46
32	High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity. Immunity, 2020, 53, 759-774.e9.	14.3	46
33	<i>Batf3</i> -Dependent Genes Control Tumor Rejection Induced by Dendritic Cells Independently of Cross-Presentation. Cancer Immunology Research, 2019, 7, 29-39.	3.4	45
34	Altered compensatory cytokine signaling underlies the discrepancy between <i>Flt3–/–</i> and <i>Flt3l–/倓</i> mice. Journal of Experimental Medicine, 2018, 215, 1417-1435.	8.5	44
35	Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity, 2022, 55, 1032-1050.e14.	14.3	41
36	Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3957-3962.	7.1	31

#	Article	IF	CITATIONS
37	cDC1 Vaccines Drive Tumor Rejection by Direct Presentation Independently of Host cDC1. Cancer Immunology Research, 2022, 10, 920-931.	3.4	24
38	Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity, 2021, 54, 1417-1432.e7.	14.3	17
39	The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4885-4893.	7.1	16
40	Transition from <i>cMyc</i> to <i>L-Myc</i> during dendritic cell development coordinated by rising levels of IRF8. Journal of Experimental Medicine, 2022, 219, .	8.5	11
41	Therapeutic Potential of B and T Lymphocyte Attenuator Expressed on CD8+ T Cells for Contact Hypersensitivity. Journal of Investigative Dermatology, 2013, 133, 702-711.	0.7	10
42	Revisiting the specificity of the MHC class Il transactivator CIITA in classical murine dendritic cells in vivo. European Journal of Immunology, 2017, 47, 1317-1323.	2.9	9
43	<i>Bcl6</i> -Independent In Vivo Development of Functional Type 1 Classical Dendritic Cells Supporting Tumor Rejection. Journal of Immunology, 2021, 207, 125-132.	0.8	4