List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7366006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Form and function: The laminin family of heterotrimers. Developmental Dynamics, 2000, 218, 213-234.	1.8	1,051
2	Molecular architecture of basement membranes. FASEB Journal, 1990, 4, 1577-1590.	0.5	876
3	A simplified laminin nomenclature. Matrix Biology, 2005, 24, 326-332.	3.6	760
4	A new nomenclature for the laminins. Matrix Biology, 1994, 14, 209-211.	3.6	740
5	Basement Membranes: Cell Scaffoldings and Signaling Platforms. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004911-a004911.	5.5	717
6	LAMININ FUNCTIONS IN TISSUE MORPHOGENESIS. Annual Review of Cell and Developmental Biology, 2004, 20, 255-284.	9.4	646
7	Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biology, 2001, 3, 831-838.	10.3	416
8	The nature and biology of basement membranes. Matrix Biology, 2017, 57-58, 1-11.	3.6	400
9	Laminin mediates tissue-specific gene expression in mammary epithelia Journal of Cell Biology, 1995, 129, 591-603.	5.2	377
10	Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes and Development, 2003, 17, 926-940.	5.9	348
11	Self-assembly of basement membrane collagen. Biochemistry, 1984, 23, 1839-1850.	2.5	346
12	Laminins in basement membrane assembly. Cell Adhesion and Migration, 2013, 7, 56-63.	2.7	333
13	Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biology, 2004, 22, 521-538.	3.6	328
14	Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network Journal of Cell Biology, 1987, 105, 2559-2568.	5.2	326
15	Developmental and Pathogenic Mechanisms of Basement Membrane Assembly. Current Pharmaceutical Design, 2009, 15, 1277-1294.	1.9	304
16	Basal lamina assembly. Current Opinion in Cell Biology, 1994, 6, 674-681.	5.4	302
17	Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. Journal of Cell Biology, 2002, 157, 1279-1290.	5.2	300
18	Laminin Polymerization Induces a Receptor–Cytoskeleton Network. Journal of Cell Biology, 1999, 145, 619-631	5.2	280

#	Article	IF	CITATIONS
19	The Role of Laminin in Embryonic Cell Polarization and Tissue Organization. Developmental Cell, 2003, 4, 613-624.	7.0	273
20	Laminin forms an independent network in basement membranes [published erratum appears in J Cell Biol 1992 Jun;118(2):493]. Journal of Cell Biology, 1992, 117, 1119-1133.	5.2	257
21	Self-assembly of Laminin Isoforms. Journal of Biological Chemistry, 1997, 272, 31525-31532.	3.4	217
22	Role of α-Dystroglycan as a Schwann Cell Receptor for <i>Mycobacterium leprae</i> . Science, 1998, 282, 2076-2079.	12.6	210
23	Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan Journal of Cell Biology, 1992, 119, 945-959.	5.2	193
24	Binding of laminin to type IV collagen: a morphological study Journal of Cell Biology, 1985, 100, 1848-1853.	5.2	187
25	Developmental expression of perlecan during murine embryogenesis. Developmental Dynamics, 1997, 210, 130-145.	1.8	176
26	Neural Targeting of Mycobacterium leprae Mediated by the G Domain of the Laminin-α2 Chain. Cell, 1997, 88, 811-821.	28.9	171
27	Models for the self-assembly of basement membrane Journal of Histochemistry and Cytochemistry, 1986, 34, 93-102.	2.5	170
28	Structure of low density heparan sulfate proteoglycan isolated from a mouse tumor basement membrane. Journal of Molecular Biology, 1987, 197, 297-313.	4.2	164
29	Role of Laminin Terminal Globular Domains in Basement Membrane Assembly. Journal of Biological Chemistry, 2007, 282, 21437-21447.	3.4	155
30	Laminin α subunits and their role in C. elegansdevelopment. Development (Cambridge), 2003, 130, 3343-3358.	2.5	131
31	A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes and Development, 2015, 29, 1-6.	5.9	131
32	Mild Congenital Muscular Dystrophy in Two Patients with an Internally Deleted Laminin Â2-Chain. Human Molecular Genetics, 1997, 6, 747-752.	2.9	130
33	The chain of laminin-1 is independently secreted and drives secretion of its Â- and Â-chain partners. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10189-10194.	7.1	129
34	Regulation of Neurite Outgrowth by Integrin Activation. Journal of Neuroscience, 2000, 20, 6551-6560.	3.6	129
35	Laminin–sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. Journal of Cell Biology, 2005, 169, 179-189.	5.2	125
36	Terminal short arm domains of basement membrane laminin are critical for its self-assembly Journal of Cell Biology, 1990, 110, 825-832.	5.2	118

#	Article	IF	CITATIONS
37	Recombinant Laminin-8 (Î \pm 4Î ² 1Î ³ 1). Journal of Biological Chemistry, 2000, 275, 14853-14859.	3.4	116
38	Division of Labor among the α6β4 Integrin, β1 Integrins, and an E3 Laminin Receptor to Signal Morphogenesis and β-Casein Expression in Mammary Epithelial Cells. Molecular Biology of the Cell, 1999, 10, 2817-2828.	2.1	114
39	Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. Journal of Clinical Investigation, 2014, 124, 1329-39.	8.2	110
40	Mapping of Network-forming, Heparin-binding, and α1β1 Integrin-recognition Sites within the α-Chain Short Arm of Laminin-1. Journal of Biological Chemistry, 1995, 270, 9398-9406.	3.4	108
41	Cell and heparin binding in the distal long arm of laminin: identification of active and cryptic sites with recombinant and hybrid glycoprotein [published erratum appears in J Cell Biol 1993 Dec;123(6 Pt) Tj ETQq1	1 ଈ 278431	41.000 / Ove
42	Assembly and tissue functions of early embryonic laminins and netrins. Current Opinion in Cell Biology, 2004, 16, 572-579.	5.4	99
43	Utrophin Binds Laterally along Actin Filaments and Can Couple Costameric Actin with Sarcolemma When Overexpressed in Dystrophin-deficient Muscle. Molecular Biology of the Cell, 2002, 13, 1512-1521.	2.1	98
44	Domain-specific activation of neuronal migration and neurite outgrowth-promoting activities of laminin. Neuron, 1994, 13, 117-130.	8.1	92
45	PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage. Journal of Cell Science, 2005, 118, 2913-2921.	2.0	91
46	Identification of dystroglycan as a second laminin receptor in oligodendrocytes, with a role in myelination. Development (Cambridge), 2007, 134, 1723-1736.	2.5	91
47	The Laminin α2-Chain Short Arm Mediates Cell Adhesion through Both the α1β1 and α2β1 Integrins. Journal of Biological Chemistry, 1997, 272, 29330-29336.	3.4	90
48	Recognition of the N-terminal Modules of Thrombospondin-1 and Thrombospondin-2 by α6β1 Integrin. Journal of Biological Chemistry, 2003, 278, 40679-40687.	3.4	90
49	The laminin α2 expressed by dystrophic dy2J mice is defective in its ability to form polymers. Current Biology, 1999, 9, 1327-1330.	3.9	80
50	Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biology, 2018, 71-72, 174-187.	3.6	80
51	Contributions of the LG Modules and Furin Processing to Laminin-2 Functions. Journal of Biological Chemistry, 2002, 277, 18928-18937.	3.4	79
52	Equilibration of fucosyl glycoprotein pools in HeLa cells. Biochemistry, 1977, 16, 944-953.	2.5	76
53	Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nature Communications, 2016, 7, 13515.	12.8	74
54	Dystroglycan binding to laminin α1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation, 2001, 69, 121-134.	1.9	72

#	Article	IF	CITATIONS
55	β1 integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Development (Cambridge), 2009, 136, 3357-3366.	2.5	72
56	Laminin-induced Clustering of Dystroglycan on Embryonic Muscle Cells: Comparison with Agrin-induced Clustering. Journal of Cell Biology, 1997, 136, 1047-1058.	5.2	71
57	Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. Journal of Cell Science, 2002, 115, 1005-1015.	2.0	71
58	Modulation of Angiogenesis in Vitro by Laminin-Entactin Complex. Developmental Biology, 1994, 164, 197-206.	2.0	68
59	Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. Journal of Cell Science, 2002, 115, 1005-15.	2.0	68
60	Basement membranes: molecular organization and function in development and disease. Current Opinion in Cell Biology, 1989, 1, 983-988.	5.4	67
61	Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Developmental Dynamics, 2007, 236, 2767-2778.	1.8	67
62	Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function. Current Topics in Membranes, 2015, 76, 1-30.	0.9	67
63	Assembly of Basement Membranes. Annals of the New York Academy of Sciences, 1990, 580, 195-213.	3.8	62
64	Linker proteins restore basement membrane and correct <i>LAMA2</i> -related muscular dystrophy in mice. Science Translational Medicine, 2017, 9, .	12.4	60
65	Fucosyl-glycoprotein and precursor pools in HeLa cells. Biochemistry, 1975, 14, 3107-3114.	2.5	55
66	Crystal Structure and Cell Surface Anchorage Sites of Laminin α1LG4-5. Journal of Biological Chemistry, 2007, 282, 11573-11581.	3.4	55
67	[23] Basement membrane assembly. Methods in Enzymology, 1994, 245, 489-518.	1.0	54
68	[17] Labeling complex carbohydrates of animal cells with monosaccharides. Methods in Enzymology, 1978, 50, 175-204.	1.0	53
69	Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. Journal of Cell Science, 2004, 117, 735-742.	2.0	50
70	Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly. Journal of Biological Chemistry, 2009, 284, 8984-8994.	3.4	50
71	Schwann Cell Myelination Requires Integration of Laminin Activities. Journal of Cell Science, 2012, 125, 4609-19.	2.0	49
72	α6β1 and α7β1 Integrins Are Required in Schwann Cells to Sort Axons. Journal of Neuroscience, 2013, 33, 17995-18007.	3.6	49

#	Article	IF	CITATIONS
73	Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods in Cell Biology, 2002, 69, 111-144.	1.1	48
74	Mechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrin. Journal of Cellular Biochemistry, 1986, 30, 51-69.	2.6	46
75	Characterization of commercial laminin preparations from human placenta in comparison to recombinant laminins 2 (α2β1γ1), 8 (α4β1γ1), 10 (α5β1γ1). Matrix Biology, 2006, 25, 89-93.	3.6	46
76	The molecular structure of human tissue typeÂXV presents a unique conformation among the collagens. Biochemical Journal, 2007, 404, 535-544.	3.7	40
77	Integrin and dystroglycan compensate each other to mediate laminin-dependent basement membrane assembly and epiblast polarization. Matrix Biology, 2017, 57-58, 272-284.	3.6	38
78	Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype. Journal of Clinical Investigation, 2017, 127, 1075-1089.	8.2	38
79	Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin. Journal of Cell Biology, 2015, 208, 313-329.	5.2	37
80	Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion. MBio, 2017, 8, .	4.1	36
81	High resolution platinum-carbon replication of freeze-dried basement membrane. Microscopy Research and Technique, 1994, 28, 13-28.	2.2	32
82	Expression of red cell membrane proteins in erythroid precursor cells. Journal of Supramolecular Structure, 1980, 13, 255-269.	2.3	31
83	Localization of Heparin Binding Activity in Recombinant Laminin G Domain. FEBS Journal, 1997, 250, 138-143.	0.2	30
84	Laminin Self-Assembly: A Three-Arm Interaction Hypothesis for the Formation of a Network in Basement Membranes. Contributions To Nephrology, 1994, 107, 47-56.	1.1	29
85	Neuronal Receptors Mediating Responses to AntibodyActivated Laminin-1. Journal of Neuroscience, 1998, 18, 9703-9715.	3.6	29
86	Rac1 Is Essential for Basement Membrane-Dependent Epiblast Survival. Molecular and Cellular Biology, 2010, 30, 3569-3581.	2.3	29
87	Assembly of Laminin and Type IV Collagen into Basement Membrane Networks. , 1994, , 351-388.		29
88	A mutation affecting laminin alpha 5 polymerisation gives rise to a syndromic developmental disorder. Development (Cambridge), 2020, 147, .	2.5	28
89	Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Development (Cambridge), 2011, 138, 4535-4544.	2.5	27
90	Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Molecular Biology of the Cell, 2015, 26, 1857-1874.	2.1	27

#	Article	IF	CITATIONS
91	Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 949-960.	6.1	27
92	Conjugation of LG Domains of Agrins and Perlecan to Polymerizing Laminin-2 Promotes Acetylcholine Receptor Clustering. Journal of Biological Chemistry, 2005, 280, 41449-41457.	3.4	26
93	Matrix Assembly, Cell Polarization, and Cell Survival: Analysis of Peri-Implantation Development With Cultured Embryonic Stem Cells. , 2006, 329, 113-126.		24
94	Integrin alpha6 maintains the structural integrity of the kidney collecting system. Matrix Biology, 2017, 57-58, 244-257.	3.6	24
95	Analysis of Integrin Functions in Periâ€Implantation Embryos, Hematopoietic System, and Skin. Methods in Enzymology, 2007, 426, 239-289.	1.0	23
96	Supramolecular Organization of Basement Membranes. , 1993, , 19-47.		18
97	The Ultrastructural Organization and Architecture of Basement Membranes. Novartis Foundation Symposium, 1984, 108, 6-24.	1.1	17
98	Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues. Matrix Biology, 2018, 67, 32-46.	3.6	14
99	Organization of the laminin polymer node. Matrix Biology, 2021, 98, 49-63.	3.6	14
100	Linker Protein Repair of LAMA2 Dystrophic Neuromuscular Basement Membranes. Frontiers in Molecular Neuroscience, 2019, 12, 305.	2.9	11
101	Type IV Collagen "7S" Tetramer Formation: Aspects of Kinetics and Thermodynamics. Annals of the New York Academy of Sciences, 1985, 460, 530-533.	3.8	10
102	A deletion in the N-terminal polymerizing domain of laminin β2 is a new mouse model of chronic nephrotic syndrome. Kidney International, 2020, 98, 133-146.	5.2	10
103	Solute partitioning and filtration by extracellular matrices. American Journal of Physiology - Renal Physiology, 2009, 297, F1092-F1100.	2.7	8
104	Amelioration of muscle and nerve pathology of Lama2-related dystrophy by AAV9-laminin-αLN linker protein. JCI Insight, 2022, 7, .	5.0	6
105	Form and function: The laminin family of heterotrimers. , 0, .		4
106	Binding of the Renal Epithelial Cell Line LLC-PK1 to Laminin Is Regulated by Protein Kinase C. Journal of the American Society of Nephrology: JASN, 1999, 10, 1214-1223.	6.1	4
107	Analysis of Laminin Structure and Function with Recombinant Glycoprotein Expressed in Insect Cells. , 2000, 139, 27-37.		3
108	Laminin Polymerization and Binding to Glycosaminoglycans: A Hypothesis for Modulation of Basement Membrane Structure. Springer Series in Biophysics, 1989, , 357-366.	0.4	3

#	Article	IF	CITATIONS
109	Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands. Neuromuscular Disorders, 2021, 31, 673-680.	0.6	2
110	Binding of Laminin to Type IV Collagen: A Morphological Study. Annals of the New York Academy of Sciences, 1985, 460, 401-403.	3.8	1
111	Developmental expression of perlecan during murine embryogenesis. , 0, .		1
112	Corrections - Equilibration of Fucosyl Glycoprotein Pools in HeLa Cells. Biochemistry, 1977, 16, 2580-2580.	2.5	0
113	Laminin matrix assembly and the mediation of epithelial differentiation. FASEB Journal, 2007, 21, A90.	0.5	0
114	Evidence for lateral associations in the Type IV collagen network from freeze-dried platinum-carbon replicated amniotic basement membrane. Proceedings Annual Meeting Electron Microscopy Society of America, 1987, 45, 968-969.	0.0	0