Tobias Jonas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365834/publications.pdf Version: 2024-02-01

TORIAS LONAS

#	Article	IF	CITATIONS
1	Exploring snow distribution dynamics in steep forested slopes with UAV-borne LiDAR. Cold Regions Science and Technology, 2022, 200, 103587.	3.5	9
2	Fractional snow-covered area: scale-independent peak of winter parameterization. Cryosphere, 2021, 15, 615-632.	3.9	10
3	Increasing the Physical Representation of Forest‧now Processes in Coarseâ€Resolution Models: Lessons Learned From Upscaling Hyperâ€Resolution Simulations. Water Resources Research, 2021, 57, e2020WR029064.	4.2	16
4	Effect of Forest Canopy Structure on Wintertime Land Surface Albedo: Evaluating CLM5 Simulations With In‣itu Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034118.	3.3	10
5	Snow interception modelling: Isolated observations have led to many land surface models lacking appropriate temperature sensitivities. Hydrological Processes, 2021, 35, e14274.	2.6	15
6	Hatching phenology is lagging behind an advancing snowmelt pattern in a high-alpine bird. Scientific Reports, 2021, 11, 22191.	3.3	11
7	Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models. Remote Sensing of Environment, 2020, 249, 112017.	11.0	17
8	Toward Snow Cover Estimation in Mountainous Areas Using Modern Data Assimilation Methods: A Review. Frontiers in Earth Science, 2020, 8, .	1.8	44
9	Process‣evel Evaluation of a Hyperâ€Resolution Forest Snow Model Using Distributed Multisensor Observations. Water Resources Research, 2020, 56, e2020WR027572.	4.2	21
10	Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Science of the Total Environment, 2020, 725, 138380.	8.0	22
11	Resolving Smallâ€Scale Forest Snow Patterns Using an Energy Balance Snow Model With a One‣ayer Canopy. Water Resources Research, 2020, 56, e2019WR026129.	4.2	32
12	HPEval: A canopy shortwave radiation transmission model using high-resolution hemispherical images. Agricultural and Forest Meteorology, 2020, 284, 107903.	4.8	13
13	Revisiting Snow Cover Variability and Canopy Structure Within Forest Stands: Insights From Airborne Lidar Data. Water Resources Research, 2019, 55, 6198-6216.	4.2	56
14	Estimating belowâ€canopy light regimes using airborne laser scanning: An application to plant community analysis. Ecology and Evolution, 2019, 9, 9149-9159.	1.9	22
15	Spatially Continuous Characterization of Forest Canopy Structure and Subcanopy Irradiance Derived from Handheld Radiometer Surveys. Journal of Hydrometeorology, 2019, 20, 1417-1433.	1.9	12
16	Comparing Aerial Lidar Observations With Terrestrial Lidar and Snowâ€Probe Transects From NASA's 2017 SnowEx Campaign. Water Resources Research, 2019, 55, 6285-6294.	4.2	49
17	Shading by Trees and Fractional Snow Cover Control the Subcanopy Radiation Budget. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3195-3207.	3.3	25
18	Simulation of Longwave Enhancement in Boreal and Montane Forests. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,731.	3.3	10

Tobias Jonas

#	Article	IF	CITATIONS
19	Measuring snow ablation rates in alpine terrain with a mobile multioffset groundâ€penetrating radar system. Hydrological Processes, 2018, 32, 3272-3282.	2.6	14
20	Influence of canopy shading and snow coverage on effective albedo in a snow-dominated evergreen needleleaf forest. Remote Sensing of Environment, 2018, 214, 48-58.	11.0	30
21	Spatio-temporal aspects of snowpack runoff formation during rain on snow. Hydrological Processes, 2018, 32, 3434-3445.	2.6	9
22	Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps. Journal of Hydrometeorology, 2017, 18, 1021-1031.	1.9	85
23	Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9154-9172.	3.3	40
24	Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions. Hydrology and Earth System Sciences, 2017, 21, 4973-4987.	4.9	19
25	Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow. Hydrology and Earth System Sciences, 2017, 21, 1741-1756.	4.9	44
26	Influence of Initial Snowpack Properties on Runoff Formation during Rain-on-Snow Events. Journal of Hydrometeorology, 2016, 17, 1801-1815.	1.9	70
27	Measurement of Incoming Radiation below Forest Canopies: A Comparison of Different Radiometer Configurations. Journal of Hydrometeorology, 2016, 17, 853-864.	1.9	28
28	Representing spatial variability of forest snow: Implementation of a new interception model. Water Resources Research, 2016, 52, 1208-1226.	4.2	34
29	Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1220-1235.	3.3	38
30	Improved snow interception modeling using canopy parameters derived from airborne <scp>L</scp> i <scp>DAR</scp> data. Water Resources Research, 2015, 51, 5041-5059.	4.2	50
31	Evaluating snow models with varying process representations for hydrological applications. Water Resources Research, 2015, 51, 2707-2723.	4.2	94
32	Snow depth mapping in high-alpine catchments using digital photogrammetry. Cryosphere, 2015, 9, 229-243.	3.9	94
33	Novel forest structure metrics from airborne LiDAR data for improved snow interception estimation. Agricultural and Forest Meteorology, 2015, 208, 40-49.	4.8	36
34	A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741). Geoscientific Model Development, 2015, 8, 2379-2398.	3.6	35
35	Model simulations of the modulating effect of the snow cover in a rain-on-snow event. Hydrology and Earth System Sciences, 2014, 18, 4657-4669.	4.9	31
36	A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere, 2014, 8, 73-90.	3.9	73

TOBIAS JONAS

#	Article	IF	CITATIONS
37	Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images. Agricultural and Forest Meteorology, 2014, 197, 158-168.	4.8	86
38	Alpine snow cover in a changing climate: a regional climate model perspective. Climate Dynamics, 2013, 41, 735-754.	3.8	99
39	Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps. Remote Sensing of Environment, 2012, 121, 497-515.	11.0	44
40	Dynamics of snow ablation in a small Alpine catchment observed by repeated terrestrial laser scans. Hydrological Processes, 2012, 26, 1574-1585.	2.6	86
41	Changes in alpine plant growth under future climate conditions. Biogeosciences, 2010, 7, 2013-2024.	3.3	64
42	The role of snow interception in winterâ€time radiation processes of a coniferous subâ€alpine forest. Hydrological Processes, 2009, 23, 2498-2512.	2.6	51
43	Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrological Processes, 2009, 23, 95-108.	2.6	168
44	Comparison of different automatic methods for estimating snow water equivalent. Cold Regions Science and Technology, 2009, 57, 107-115.	3.5	69
45	Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 2009, 114, .	3.3	290
46	How alpine plant growth is linked to snow cover and climate variability. Journal of Geophysical Research, 2008, 113, .	3.3	175
47	Mortality pattern of the Alpine chamois: the influence of snow–meteorological factors. Annals of Glaciology, 2008, 49, 56-62.	1.4	26
48	Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements. Sensors, 2008, 8, 2833-2853.	3.8	100
49	Observations of a quasi shear-free lacustrine convective boundary layer: Stratification and its implications on turbulence. Journal of Geophysical Research, 2003, 108, .	3.3	65
50	CO2exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 2003, 108, .	3.3	153
51	Surface turbulence in natural waters: A comparison of large eddy simulations with microstructure observations. Journal of Geophysical Research, 2000, 105, 1195-1207.	3.3	16
52	Internal wave generation in lakes with very slow flow. , 1999, , .		8