Akihiro Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365212/publications.pdf

Version: 2024-02-01

		516710	552781
59	813	16	26
papers	citations	h-index	g-index
59	59	59	342
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanical properties and superstructure of high-modulus and high-strength PET fiber prepared by zone annealing. Journal of Applied Polymer Science, 1981, 26, 1951-1960.	2.6	92
2	Preparation of high-modulus and high-strength poly(ethylene terephthalate) fiber by zone annealing. Journal of Applied Polymer Science, 1981, 26, 213-221.	2.6	76
3	Preparation of high-modulus and high-strength poly(ethylene terephthalate) film by zone-annealing method. Journal of Applied Polymer Science, 1986, 31, 429-439.	2.6	52
4	Biodegradable poly(l-lactic acid) nanofiber prepared by a carbon dioxide laser supersonic drawing. European Polymer Journal, 2008, 44, 2499-2505.	5.4	39
5	Polypropylene nanofiber sheets prepared by CO2 laser supersonic multi-drawing. European Polymer Journal, 2012, 48, 1169-1176.	5.4	32
6	Poly(ethylene terephthalate) nanofibers prepared by CO2 laser supersonic drawing. Polymer, 2009, 50, 913-921.	3.8	31
7	Application of a continuous zone-drawing method to nylon 66 fibres. Polymer, 1998, 39, 5335-5341.	3.8	28
8	Mechanical properties and superstructure of poly(ethylene terephthalate) fibers zone-drawn and zone-annealed by CO2 laser heating. Journal of Applied Polymer Science, 2001, 82, 2775-2783.	2.6	27
9	Application of zone-drawing and zone-annealing method to poly(p-phenylene sulfide) fibers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1731-1738.	2.1	25
10	Preparation of high-modulus nylon 6 fibers by vibrating hot drawing and zone annealing. Journal of Applied Polymer Science, 1998, 67, 1993-2000.	2.6	25
11	Application of CO2 laser heating zone drawing and zone annealing to nylon 6 fibers. Journal of Applied Polymer Science, 2002, 83, 1711-1716.	2.6	22
12	Application of continuous zone-drawing/zone-annealing method to poly(ethylene terephthalate) fibers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 473-481.	2.1	18
13	Application of a zone-drawing and zone-annealing method to poly(ethylene-2,6-naphthalate) fibres. Polymer, 1998, 39, 4235-4241.	3.8	18
14	PET microfiber prepared by carbon dioxide laser heating. Journal of Applied Polymer Science, 2003, 88, 3279-3283.	2.6	17
15	Nylon 6 microfiber obtained by a continuous-thinning method with a carbon dioxide laser. Journal of Applied Polymer Science, 2004, 92, 1454-1458.	2.6	17
16	Zone drawing and zone annealing of poly(ethylene terephthalate) microfiber prepared by CO2 laser thinning. Journal of Applied Polymer Science, 2004, 92, 2989-2994.	2.6	17
17	Mechanical properties and microstructure of poly(ethylene terephthalate) microfiber prepared by carbon dioxide laser heating. Journal of Applied Polymer Science, 2003, 90, 1955-1958.	2.6	16
18	Biodegradable poly(glycolic acid) nanofiber prepared by CO ₂ laser supersonic drawing. Journal of Applied Polymer Science, 2011, 121, 3078-3084.	2.6	16

#	Article	IF	CITATIONS
19	Preparation of high-modulus poly(ethylene terephthalate) fibers by vibrating hot drawing. Journal of Applied Polymer Science, 1996, 62, 713-719.	2.6	15
20	Isotactic polypropylene microfiber prepared by carbon dioxide laser-heating. Journal of Applied Polymer Science, 2004, 92, 1534-1539.	2.6	14
21	Nylon 66 nanofibers prepared by CO ₂ laser supersonic drawing. Journal of Applied Polymer Science, 2014, 131, .	2.6	14
22	Superstructure and mechanical properties of poly(L-lactic acid) microfibers prepared by CO2 laser-thinning. Polymer, 2005, 46, 5550-5555.	3.8	12
23	Microstructure and mechanical properties of hot-air drawn poly(ethylene terephthalate) fibers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1703-1713.	2.1	11
24	Isotactic polypropylene microfiber prepared by continuous laser-thinning method. Journal of Applied Polymer Science, 2006, 99, 27-31.	2.6	11
25	Poly(ethyleneâ€2,6â€naphthalate) nanofiber prepared by carbon dioxide laser supersonic drawing. Journal of Applied Polymer Science, 2010, 116, 1913-1919.	2.6	11
26	Nylon 6 microfiber prepared by carbon dioxide laser heating. Journal of Applied Polymer Science, 2004, 92, 1449-1453.	2.6	10
27	High temperature zone-drawing of nylon 66 microfiber prepared by CO2 laser-thinning. Journal of Applied Polymer Science, 2006, 101, 42-47.	2.6	10
28	Poly(ethylene terephthalate) nanosheets prepared by CO2-laser supersonic multi-drawing. Polymer, 2010, 51, 1830-1836.	3.8	10
29	Mechanical properties and superstructure of isotactic polypropylene fibers prepared by continuous vibrating zone-drawing. Journal of Applied Polymer Science, 2001, 81, 600-608.	2.6	9
30	Broad poly(ethylene terephthalate) nanofiber sheet prepared by CO 2 laser supersonic continuous multi-drawing. Polymer, 2015, 60, 252-259.	3.8	9
31	Characterization of Fluoropolymer Nanofiber Sheets Fabricated by CO ₂ Laser Drawing without Solvents. Industrial & Engineering Chemistry Research, 2012, 51, 10117-10123.	3.7	8
32	High-performance poly(ethylene-2,6-naphthalate) fiber prepared by high-tension annealing. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 61-67.	2.1	7
33	Strain-rate dependence of the microstructure and mechanical properties for hot-air-drawn nylon 6 fibers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1137-1145.	2.1	7
34	Superstructure and mechanical properties of nylon 66 microfiber prepared by carbon dioxide laser-thinning method. Journal of Applied Polymer Science, 2006, 99, 802-807.	2.6	7
35	Poly(ethylene-2,6-naphthalate) microfiber prepared by carbon dioxide laser-thinning method. European Polymer Journal, 2007, 43, 2922-2927.	5.4	7
36	Preparation of poly(ethylene terephthalate) nonwoven fabric from endless microfibers obtained by CO2 laser-thinning method. Polymer, 2007, 48, 2729-2736.	3.8	7

3

#	Article	IF	CITATIONS
37	Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing. Journal of Polymer Engineering, 2017, 37, 53-60.	1.4	7
38	Application of the high-tension multiannealing to nylon 46 fibers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2737-2743.	2.1	6
39	Changes in superstructure and mechanical properties of poly(ethylene-2,6-naphthalate) fibers with critical necking tension. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1629-1637.	2.1	6
40	Zone-drawing and zone-annealing of poly(L-lactic acid) microfiber prepared by CO2 laser-thinning method. Journal of Applied Polymer Science, 2006, 102, 472-478.	2.6	6
41	Poly(<i>p</i> fi>â€phenylene sulfide) nanofibers prepared by <scp>CO₂</scp> laser supersonic drawing. Journal of Applied Polymer Science, 2014, 131, .	2.6	6
42	Polyethylene Terephthalate Nanofiber Sheet as the Novel Extraction Medium for the Determination of Phthalates in Water Samples. Analytical Sciences, 2020, 36, 277-281.	1.6	5
43	Mechanical properties of poly(ethylene terephthalate) nanofiber threeâ€dimensional structure prepared by CO ₂ laser supersonic drawing. Journal of Applied Polymer Science, 2018, 135, 45763.	2.6	5
44	Combined processing of polypropylene film by coextrusion and zone-annealing. Journal of Applied Polymer Science, 1991, 43, 429-435.	2.6	4
45	Poly(l-lactic acid) twisted nanofiber yarn prepared by carbon dioxide laser supersonic multi-drawing. European Polymer Journal, 2019, 110, 145-154.	5.4	4
46	Application of High-Tension Annealing to Nylon 46 Fibers. Polymer Journal, 1998, 30, 275-280.	2.7	3
47	Superstructure and mechanical properties of poly(ethylene terephthalate) fibers zone-drawn under critical necking tension. Journal of Applied Polymer Science, 2002, 83, 179-185.	2.6	3
48	Isotactic polypropylene hollow microfibers prepared by CO2 laser-thinning. Journal of Applied Polymer Science, 2006, 102, 2600-2607.	2.6	3
49	Preparation of poly(ethylene-2,6-naphthalate) nanofibers by CO2 laser supersonic drawing. Polymer Journal, 2021, 53, 593-601.	2.7	2
50	Increase in dynamic modulus of nylon 6 fiber in repeated heating and cooling cycles under sinusoidal deformation. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 803-805.	2.1	1
51	Improvement in mechanical properties of poly(p-phenylene sulfide) fibers by high-tension multiannealing method. Journal of Applied Polymer Science, 2000, 75, 1569-1576.	2.6	1
52	Poly(l-lactic acid) nonwoven fabric prepared by carbon dioxide laser-thinning method. European Polymer Journal, 2009, 45, 278-283.	5.4	1
53	Poly(l-lactic acid) nanofiber multifilament prepared by carbon dioxide laser supersonic multi-drawing. Polymer, 2016, 91, 24-32.	3.8	1
54	Crystal growth of PPS nanofibers during annealing studied by solidâ€state 13 C CPMAS NMR. Journal of Applied Polymer Science, 0, , 51752.	2.6	1

AKIHIRO SUZUKI

#	Article	lF	CITATIONS
55	Carbon Dioxide Laser Supersonic Drawing Nanofiber Sheet for Extraction of Polycyclic Aromatic Hydrocarbons in Water Samples. Chromatography, 2020, 41, 85-89.	1.7	1
56	Poly(ethylene terephthalate) nanoparticles prepared by CO ₂ laser supersonic atomization. Journal of Applied Polymer Science, 2014, 131, .	2.6	0
57	Nylon 66 Nanofiber Sheets Prepared by Carbon Dioxide Laser Supersonic Multi-drawing. E-Journal of Soft Materials, 2014, 10, 1-8.	2.0	O
58	The Relation between the Curing Conditions and Mechanical Properties of Polyimide Resin. Seikei-Kakou, 1994, 6, 356-362.	0.0	0
59	Repeating Measurement of Dynamic Viscoelasticity for High-temperature Zone-drawn Nylon 6 Fibers. Seikei-Kakou, 1994, 6, 202-206.	0.0	0