List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364875/publications.pdf Version: 2024-02-01

		1172	877
309	64,135	111	243
papers	citations	h-index	g-index
328	328	328	28935
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Circadian rhythms in infectious diseases and symbiosis. Seminars in Cell and Developmental Biology, 2022, 126, 37-44.	5.0	7
2	Characterization of single nucleotide polymorphisms for a forward genetics approach using genetic crosses in C57BL/6 and BALB/c substrains of mice. Experimental Animals, 2022, 71, 240-251.	1.1	2
3	Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science, 2022, 376, 1192-1202.	12.6	157
4	Time to target the circadian clock for drug discovery. Trends in Biochemical Sciences, 2022, 47, 745-758.	7.5	28
5	Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder. Psychological Medicine, 2021, 51, 494-502.	4.5	6
6	Importance of circadian timing for aging and longevity. Nature Communications, 2021, 12, 2862.	12.8	106
7	Natural antisense transcript of <i>Period2, Per2AS,</i> regulates the amplitude of the mouse circadian clock. Genes and Development, 2021, 35, 899-913.	5.9	13
8	Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature, 2021, 594, 535-540.	27.8	171
9	Adverse impact of polyphasic sleep patterns in humans: Report of the National Sleep Foundation sleep timing and variability consensus panel. Sleep Health, 2021, 7, 293-302.	2.5	10
10	Beth Levine M.D. Prize in Autophagy Research. Autophagy, 2021, 17, 2053-2053.	9.1	0
11	NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron, 2021, 109, 3268-3282.e6.	8.1	46
12	The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell, 2021, 184, 4154-4167.e12.	28.9	97
13	The 50th anniversary of the Konopka and Benzer 1971 paper in PNAS: "Clock Mutants of <i>Drosophila melanogaster</i> ― Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
14	Michael Menaker (1934-2021). Journal of Biological Rhythms, 2021, 36, 074873042110537.	2.6	1
15	Synchronization between peripheral circadian clock and feeding-fasting cycles in microfluidic device sustains oscillatory pattern of transcriptome. Nature Communications, 2021, 12, 6185.	12.8	20
16	Introduction to the Clock System. Advances in Experimental Medicine and Biology, 2021, 1344, 3-20.	1.6	4
17	Circadian alignment of feeding regulates lifespan extension by caloric restriction. Innovation in Aging, 2021, 5, 116-116.	0.1	0
18	Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony. Neuron, 2020, 108, 164-179.e7.	8.1	54

#	Article	IF	CITATIONS
19	Sleeping Sickness Disrupts the Sleep-Regulating Adenosine System. Journal of Neuroscience, 2020, 40, 9306-9316.	3.6	14
20	Sleeping Sickness: A Tale of Two Clocks. Frontiers in Cellular and Infection Microbiology, 2020, 10, 525097.	3.9	14
21	Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Science Translational Medicine, 2020, 12, .	12.4	25
22	Noise-driven cellular heterogeneity in circadian periodicity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10350-10356.	7.1	38
23	The malaria parasite has an intrinsic clock. Science, 2020, 368, 746-753.	12.6	65
24	Circadian control of interferon-sensitive gene expression in murine skin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5761-5771.	7.1	38
25	Epigenetic inheritance of circadian period in clonal cells. ELife, 2020, 9, .	6.0	14
26	An essential role for MEF2C in the cortical response to loss of sleep in mice. ELife, 2020, 9, .	6.0	25
27	Medicine in the Fourth Dimension. Cell Metabolism, 2019, 30, 238-250.	16.2	245
28	Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) Is Required for Normal Circadian and Sleep Behavior in Mice. Journal of Neuroscience, 2019, 39, 7958-7967.	3.6	11
29	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 2019, 10, 3923.	12.8	123
30	A Hyperkinetic Redox Sensor Drives Flies to Sleep. Trends in Neurosciences, 2019, 42, 514-517.	8.6	1
31	A novel mutation in <i>Slc2a4</i> as a mouse model of fatigue. Genes, Brain and Behavior, 2019, 18, e12578.	2.2	0
32	A novel mouse model overexpressing <i>Nocturnin</i> results in decreased fat mass in male mice. Journal of Cellular Physiology, 2019, 234, 20228-20239.	4.1	12
33	Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer–enhancer interactions. Genes and Development, 2019, 33, 294-309.	5.9	103
34	Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. Cell Metabolism, 2019, 29, 1078-1091.e5.	16.2	91
35	Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19449-19457.	7.1	91
36	Tissue-specific FAH deficiency alters sleep–wake patterns and results in chronic tyrosinemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22229-22236.	7.1	3

#	Article	IF	CITATIONS
37	Genomics of circadian rhythms in health and disease. Genome Medicine, 2019, 11, 82.	8.2	296
38	Circadian clock genes and the transcriptional architecture of the clock mechanism. Journal of Molecular Endocrinology, 2019, 63, R93-R102.	2.5	243
39	2. Molecular Architecture of the Circadian Clock in Mammals. Biological Psychiatry, 2018, 83, S1.	1.3	1
40	Sleeping sickness is a circadian disorder. Nature Communications, 2018, 9, 62.	12.8	75
41	The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. Cell Systems, 2018, 6, 314-328.e2.	6.2	183
42	An evolutionary hotspot defines functional differences between CRYPTOCHROMES. Nature Communications, 2018, 9, 1138.	12.8	72
43	Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems. Annual Review of Pharmacology and Toxicology, 2018, 58, 231-252.	9.4	119
44	Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice. G3: Genes, Genomes, Genetics, 2018, 8, 3783-3790.	1.8	10
45	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. Cell Reports, 2018, 25, 1-9.e5.	6.4	100
46	Enriching the Circadian Proteome. Cell Metabolism, 2017, 25, 1-2.	16.2	28
47	Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1560-1565.	7.1	92
48	Trypanosoma brucei metabolism is under circadian control. Nature Microbiology, 2017, 2, 17032.	13.3	68
49	Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 2017, 18, 164-179.	16.3	1,766
50	<i>Period2</i> 3′-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8855-E8864.	7.1	71
51	HCFC2 is needed for IRF1- and IRF2-dependent <i>Tlr3</i> transcription and for survival during viral infections. Journal of Experimental Medicine, 2017, 214, 3263-3277.	8.5	23
52	HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors. Neuron, 2017, 96, 130-144.e6.	8.1	88
53	Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Reports, 2017, 20, 1061-1072.	6.4	79
54	Novel transcriptional networks regulated by CLOCK in human neurons. Genes and Development, 2017, 31, 2121-2135.	5.9	30

#	Article	IF	CITATIONS
55	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
56	Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metabolism, 2017, 26, 267-277.e2.	16.2	176
57	An actigraphy study investigating sleep in bipolar I patients, unaffected siblings and controls. Journal of Affective Disorders, 2017, 208, 248-254.	4.1	12
58	Bmal1 function in skeletal muscle regulates sleep. ELife, 2017, 6, .	6.0	106
59	Circadian rhythms in parasites. PLoS Pathogens, 2017, 13, e1006590.	4.7	22
60	Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. ELife, 2016, 5, .	6.0	22
61	The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metabolism, 2016, 23, 610-621.	16.2	380
62	Molecular Architecture of the Circadian Clock in Mammals. Research and Perspectives in Endocrine Interactions, 2016, , 13-24.	0.2	48
63	Circadian Oscillations of NADH Redox State Using a Heterologous Metabolic Sensor in Mammalian Cells. Journal of Biological Chemistry, 2016, 291, 23906-23914.	3.4	10
64	Identification of mutations through dominant screening for obesity using C57BL/6 substrains. Scientific Reports, 2016, 6, 32453.	3.3	9
65	Forward-genetics analysis of sleep in randomly mutagenized mice. Nature, 2016, 539, 378-383.	27.8	266
66	Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E754-61.	7.1	77
67	Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. ELife, 2016, 5, .	6.0	38
68	Molecular components of the circadian clock in mammals. Diabetes, Obesity and Metabolism, 2015, 17, 6-11.	4.4	170
69	Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale. Cell Reports, 2015, 13, 1868-1880.	6.4	55
70	InÂVivo Single-Cell Detection of Metabolic Oscillations in Stem Cells. Cell Reports, 2015, 10, 1-7.	6.4	118
71	ChIP-seq and RNA-seq Methods to Study Circadian Control of Transcription in Mammals. Methods in Enzymology, 2015, 551, 285-321.	1.0	26
72	The Circadian Clock in Skin. Journal of Biological Rhythms, 2015, 30, 163-182.	2.6	135

#	Article	IF	CITATIONS
73	Neuromedin S-Producing Neurons Act as Essential Pacemakers in the Suprachiasmatic Nucleus to Couple Clock Neurons and Dictate Circadian Rhythms. Neuron, 2015, 85, 1086-1102.	8.1	148
74	Vasoactive Intestinal Polypeptide (VIP)-Expressing Neurons in the Suprachiasmatic Nucleus Provide Sparse GABAergic Outputs to Local Neurons with Circadian Regulation Occurring Distal to the Opening of Postsynaptic GABA _A Ionotropic Receptors. Journal of Neuroscience, 2015, 35, 1905-1920.	3.6	48
75	A tunable artificial circadian clock in clock-defective mice. Nature Communications, 2015, 6, 8587.	12.8	43
76	Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. ELife, 2014, 3, e03674.	6.0	90
77	Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18757-18762.	7.1	75
78	Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5039-48.	7.1	59
79	Molecular architecture of the mammalian circadian clock. Trends in Cell Biology, 2014, 24, 90-99.	7.9	1,084
80	Phosphorylation of LSD1 by PKCα Is Crucial for Circadian Rhythmicity and Phase Resetting. Molecular Cell, 2014, 53, 791-805.	9.7	84
81	Circadian Metabolic Oscillations in the Epidermis Stem Cells by Fluorescence Lifetime Microscopy of NADH in Vivo. Biophysical Journal, 2014, 106, 24a.	0.5	1
82	Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. ELife, 2014, 3, .	6.0	140
83	Small molecule modifiers of circadian clocks. Cellular and Molecular Life Sciences, 2013, 70, 2985-2998.	5.4	95
84	FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nature Medicine, 2013, 19, 1147-1152.	30.7	430
85	T _H 17 Cell Differentiation Is Regulated by the Circadian Clock. Science, 2013, 342, 727-730.	12.6	355
86	C57BL/6N Mutation in <i>Cytoplasmic FMRP interacting protein 2</i> Regulates Cocaine Response. Science, 2013, 342, 1508-1512.	12.6	198
87	Epidermal stem cells ride the circadian wave. Genome Biology, 2013, 14, 140.	9.6	6
88	Phosphorylation of the Cryptochrome 1 C-terminal Tail Regulates Circadian Period Length. Journal of Biological Chemistry, 2013, 288, 35277-35286.	3.4	66
89	Competing E3ÂUbiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell, 2013, 152, 1091-1105.	28.9	280
90	Molecular Components of the Mammalian Circadian Clock. Handbook of Experimental Pharmacology, 2013, , 3-27.	1.8	544

#	Article	IF	CITATIONS
91	Central Circadian Control of Female Reproductive Function. Frontiers in Endocrinology, 2013, 4, 195.	3.5	93
92	Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. ELife, 2013, 2, e00426.	6.0	63
93	Brain-Specific Rescue of Clock Reveals System-Driven Transcriptional Rhythms in Peripheral Tissue. PLoS Genetics, 2012, 8, e1002835.	3.5	97
94	Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 101-106.	7.1	195
95	Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11758-11763.	7.1	211
96	Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to the lateral hypothalamic arousal center. Molecular Metabolism, 2012, 1, 79-85.	6.5	18
97	Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485, 62-68.	27.8	638
98	Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals. Science, 2012, 338, 349-354.	12.6	1,194
99	Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex. Science, 2012, 337, 189-194.	12.6	270
100	Central and Peripheral Circadian Clocks in Mammals. Annual Review of Neuroscience, 2012, 35, 445-462.	10.7	1,741
101	Genetics of Circadian Rhythms in Mammalian Model Organisms. Advances in Genetics, 2011, 74, 175-230.	1.8	468
102	Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends in Neurosciences, 2011, 34, 349-358.	8.6	195
103	Redox redux. Nature, 2011, 469, 476-478.	27.8	40
104	Second-generation high-throughput forward genetic screen in mice to isolate subtle behavioral mutants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15557-15564.	7.1	29
105	Impaired Limbic Gamma Oscillatory Synchrony during Anxiety-Related Behavior in a Genetic Mouse Model of Bipolar Mania. Journal of Neuroscience, 2011, 31, 6449-6456.	3.6	38
106	Phase-Resetting Sensitivity of the Suprachiasmatic Nucleus and Oscillator Amplitude. Journal of Biological Rhythms, 2011, 26, 371-373.	2.6	3
107	Generation of N-Ethyl-N-nitrosourea (ENU) Diabetes Models in Mice Demonstrates Genotype-specific Action of Glucokinase Activators. Journal of Biological Chemistry, 2011, 286, 39560-39572.	3.4	13
108	Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 2010, 466, 627-631.	27.8	1,261

#	Article	IF	CITATIONS
109	Lithium Ameliorates Nucleus Accumbens Phase-Signaling Dysfunction in a Genetic Mouse Model of Mania. Journal of Neuroscience, 2010, 30, 16314-16323.	3.6	76
110	CLOCK and BMAL1 regulate <i>MyoD</i> and are necessary for maintenance of skeletal muscle phenotype and function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19090-19095.	7.1	299
111	Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker. PLoS Biology, 2010, 8, e1000513.	5.6	172
112	Divergent and nonuniform gene expression patterns in mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19049-19054.	7.1	34
113	Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators. Science, 2010, 330, 379-385.	12.6	745
114	Circadian Integration of Metabolism and Energetics. Science, 2010, 330, 1349-1354.	12.6	1,596
115	PARP around the Clock. Cell, 2010, 142, 841-843.	28.9	10
116	Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annual Review of Physiology, 2010, 72, 551-577.	13.1	1,056
117	Genetic suppression of the circadian Clock mutation by the melatonin biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8399-8403.	7.1	52
118	CKIε/Î^-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15744-15749.	7.1	239
119	Identification of genetic loci involved in diabetes using a rat model of depression. Mammalian Genome, 2009, 20, 486-497.	2.2	14
120	Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD ⁺ Biosynthesis. Science, 2009, 324, 651-654.	12.6	992
121	Rhythmic PER Abundance Defines a Critical Nodal Point for Negative Feedback within the Circadian Clock Mechanism. Molecular Cell, 2009, 36, 417-430.	9.7	207
122	Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling. PLoS Genetics, 2009, 5, e1000573.	3.5	146
123	The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Reviews Genetics, 2008, 9, 764-775.	16.3	1,357
124	Setting Clock Speed in Mammals: The CK1É› tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron, 2008, 58, 78-88.	8.1	342
125	The Meter of Metabolism. Cell, 2008, 134, 728-742.	28.9	873
126	cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker. Science, 2008, 320, 949-953.	12.6	381

#	Article	IF	CITATIONS
127	Searching for Genes Underlying Behavior: Lessons from Circadian Rhythms. Science, 2008, 322, 909-912.	12.6	89
128	Gene Set Enrichment in eQTL Data Identifies Novel Annotations and Pathway Regulators. PLoS Genetics, 2008, 4, e1000070.	3.5	90
129	Circadian Transcriptional Output in the SCN and Liver of the Mouse. Novartis Foundation Symposium, 2008, , 171-183.	1.1	35
130	Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3342-3347.	7.1	439
131	System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock. PLoS Biology, 2007, 5, e34.	5.6	584
132	Inducible and Reversible Clock Gene Expression in Brain Using the tTA System for the Study of Circadian Behavior. PLoS Genetics, 2007, 3, e33.	3.5	54
133	Generation, identification and functional characterization of thenob4mutation ofGrm6in the mouse. Visual Neuroscience, 2007, 24, 111-123.	1.0	61
134	Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiological Genomics, 2007, 31, 86-95.	2.3	300
135	Genomewide Association Analysis in Diverse Inbred Mice: Power and Population Structure. Genetics, 2007, 176, 675-683.	2.9	68
136	A Circadian Sleep Disorder Reveals a Complex Clock. Cell, 2007, 128, 22-23.	28.9	25
137	Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell, 2007, 129, 605-616.	28.9	676
138	Circadian Mutant Overtime Reveals F-box Protein FBXL3 Regulation of Cryptochrome and Period Gene Expression. Cell, 2007, 129, 1011-1023.	28.9	487
139	Mania-like behavior induced by disruption of <i>CLOCK</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6406-6411.	7.1	720
140	Genetics and Neurobiology of Circadian Clocks in Mammals. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 251-259.	1.1	88
141	Interpretation of the mouse electroretinogram. Documenta Ophthalmologica, 2007, 115, 127-136.	2.2	59
142	The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9327-9332.	7.1	209
143	Xenobiotic metabolism in the fourth dimension: PARtners in time. Cell Metabolism, 2006, 4, 3-4.	16.2	10
144	Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behavioural Brain Research, 2006, 169, 220-230.	2.2	53

JOSEPH S TAKAHASHI

#	Article	IF	CITATIONS
145	Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends in Neurosciences, 2006, 29, 233-240.	8.6	48
146	Genetic analysis of the stress-responsive adrenocortical axis. Physiological Genomics, 2006, 27, 362-369.	2.3	50
147	BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience, 2006, 9, 1041-1049.	14.8	225
148	Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Research, 2006, 16, 436-440.	5.5	89
149	Dissecting the Functions of the Mammalian Clock Protein BMAL1 by Tissue-Specific Rescue in Mice. Science, 2006, 314, 1304-1308.	12.6	274
150	Molecular components of the mammalian circadian clock. Human Molecular Genetics, 2006, 15, R271-R277.	2.9	1,384
151	Vasopressin Regulation of the Proestrous Luteinizing Hormone Surge in Wild-Type and Clock Mutant Mice1. Biology of Reproduction, 2006, 75, 778-784.	2.7	101
152	Lineage is an Epigenetic Modifier of QTL Influencing Behavioral Coping with Stress. Behavior Genetics, 2005, 35, 189-198.	2.1	22
153	Forward Genetic Screens to Identify Circadian Rhythm Mutants in Mice. Methods in Enzymology, 2005, 393, 219-229.	1.0	23
154	Mouse Chimeras and Their Application to Circadian Biology. Methods in Enzymology, 2005, 393, 478-492.	1.0	2
155	Quantitative Trait Loci Associated with Elevated Thyroid-Stimulating Hormone in the Wistar-Kyoto Rat. Endocrinology, 2005, 146, 870-878.	2.8	15
156	Regulation of dopaminergic transmission and cocaine reward by the <i>Clock</i> gene. Proceedings of the United States of America, 2005, 102, 9377-9381.	7.1	453
157	Loss of Circadian Photoentrainment and Abnormal Retinal Electrophysiology inMath5Mutant Mice. , 2005, 46, 2540.		56
158	From The Cover: Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3407-3412.	7.1	231
159	Circadian Rhythm Generation and Entrainment in Astrocytes. Journal of Neuroscience, 2005, 25, 404-408.	3.6	248
160	Generation, characterization, and molecular cloning of the <i>Noerg-1</i> mutation of rhodopsin in the mouse. Visual Neuroscience, 2005, 22, 619-629.	1.0	21
161	Circadian Clock Genes as Modulators of Sensitivity to Genotoxic Stress. Cell Cycle, 2005, 4, 901-907.	2.6	68
162	Obesity and Metabolic Syndrome in Circadian <i>Clock</i> Mutant Mice. Science, 2005, 308, 1043-1045.	12.6	2,181

#	Article	IF	CITATIONS
163	Methods to Record Circadian Rhythm Wheel Running Activity in Mice. Methods in Enzymology, 2005, 393, 230-239.	1.0	60
164	A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proceedings of the United States of America, 2005, 102, 2608-2613.	7.1	272
165	Real-Time Luminescence Reporting of Circadian Gene Expression in Mammals. Methods in Enzymology, 2005, 393, 288-301.	1.0	167
166	The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker. Journal of Molecular Endocrinology, 2004, 33, 585-608.	2.5	138
167	From The Cover: The gene for soluble N-ethylmaleimide sensitive factor attachment protein is mutated in hydrocephaly with hop gait (hyh) mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1748-1753.	7.1	65
168	Finding New Clock Components: Past and Future. Journal of Biological Rhythms, 2004, 19, 339-347.	2.6	114
169	Biography of Joseph S. Takahashi. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5336-5338.	7.1	1
170	A genome end-game: understanding gene function in the nervous system. Nature Neuroscience, 2004, 7, 484-485.	14.8	9
171	Circadian Clock Mutation Disrupts Estrous Cyclicity and Maintenance of Pregnancy. Current Biology, 2004, 14, 1367-1373.	3.9	302
172	Bioluminescence Imaging of Individual Fibroblasts Reveals Persistent, Independently Phased Circadian Rhythms of Clock Gene Expression. Current Biology, 2004, 14, 2289-2295.	3.9	614
173	Implementing Large-Scale ENU Mutagenesis Screens in North America. Genetica, 2004, 122, 51-64.	1.1	81
174	Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mammalian Genome, 2004, 15, 648-662.	2.2	129
175	PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5339-5346.	7.1	2,032
176	Maternal behavior modulates x-linked inheritance of behavioral coping in the defensive burying test. Biological Psychiatry, 2004, 55, 1069-1074.	1.3	16
177	Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Research, 2004, 44, 3335-3345.	1.4	23
178	Large-scale mutagenesis of the mouse to understand the genetic bases of nervous system structure and function. Molecular Brain Research, 2004, 132, 105-115.	2.3	77
179	Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiology of Aging, 2004, 25, 517-523.	3.1	48
180	MAMMALIAN CIRCADIAN BIOLOGY: Elucidating Genome-Wide Levels of Temporal Organization. Annual Review of Genomics and Human Genetics, 2004, 5, 407-441.	6.2	830

#	Article	IF	CITATIONS
181	X-linked and lineage-dependent inheritance of coping responses to stress. Mammalian Genome, 2003, 14, 748-757.	2.2	32
182	Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto × Fisher 344 cross. Molecular Psychiatry, 2003, 8, 423-433.	7.9	50
183	Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biology, 2003, 4, R61.	9.6	204
184	Aging Alters Circadian and Light-Induced Expression of Clock Genes in Golden Hamsters. Journal of Biological Rhythms, 2003, 18, 159-169.	2.6	143
185	Chemically Induced Mutations in the Mouse that Affect the Fundus and Electroretinogram. , 2003, , 188-189.		0
186	Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proceedings of the United States of America, 2002, 99, 489-494.	7.1	135
187	Future of genetics of mood disorders research. Biological Psychiatry, 2002, 52, 457-477.	1.3	116
188	Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock. Cell, 2002, 109, 307-320.	28.9	2,099
189	Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. Peptides, 2002, 23, 2203-2211.	2.4	50
190	Regulation of Tryptophan Hydroxylase by Cyclic AMP, Calcium, Norepinephrine, and Light in Cultured Chick Pineal Cells. Journal of Neurochemistry, 2002, 67, 242-250.	3.9	21
191	The cancer connection. Nature, 2002, 420, 373-374.	27.8	43
192	Chimera Analysis of the Clock Mutation in Mice Shows that Complex Cellular Integration Determines Circadian Behavior. Cell, 2001, 105, 25-42.	28.9	135
193	Stopping Time: The Genetics of Fly and Mouse Circadian Clocks. Annual Review of Neuroscience, 2001, 24, 1091-1119.	10.7	287
194	Familial Advanced Sleep Phase Syndrome. Archives of Neurology, 2001, 58, 1089.	4.5	137
195	Effect of circadian phase on context and cued fear conditioning in C57BL/6J mice. Learning and Behavior, 2001, 29, 133-142.	3.4	55
196	Genome-Wide Epistatic Interaction Analysis Reveals Complex Genetic Determinants of Circadian Behavior in Mice. Genome Research, 2001, 11, 959-980.	5.5	211
197	Introduction to Circadian Rhythms. Handbook of Behavioral Neurobiology, 2001, , 3-6.	0.3	6
198	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	12.6	125

#	Article	IF	CITATIONS
199	Nonphotic phase-shifting in Clock mutant mice. Brain Research, 2000, 859, 398-403.	2.2	29
200	The Circadian <i>Clock</i> Mutation Alters Sleep Homeostasis in the Mouse. Journal of Neuroscience, 2000, 20, 8138-8143.	3.6	355
201	The Basic Helix-Loop-Helix-PAS Protein MOP9 Is a Brain-Specific Heterodimeric Partner of Circadian and Hypoxia Factors. Journal of Neuroscience, 2000, 20, RC83-RC83.	3.6	104
202	The Xenopus Clock gene is constitutively expressed in retinal photoreceptors. Molecular Brain Research, 2000, 75, 303-308.	2.3	43
203	Molecular Genetics of Circadian Rhythms in Mammals. Annual Review of Neuroscience, 2000, 23, 713-742.	10.7	503
204	Locomotor response to an open field during C57BL/6J active and inactive phases. Physiology and Behavior, 2000, 69, 269-275.	2.1	60
205	Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals. Cell, 2000, 103, 1009-1017.	28.9	1,380
206	Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau. Science, 2000, 288, 483-491.	12.6	800
207	Genetics of the Mammalian Circadian System: Photic Entrainment, Circadian Pacemaker Mechanisms, and Posttranslational Regulation. Annual Review of Genetics, 2000, 34, 533-562.	7.6	268
208	The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5. Genome Research, 2000, 10, 1928-1940.	5.5	17
209	The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5. Genome Research, 2000, 10, 1928-1940.	5.5	3
210	Integration and saturation within the circadian photic entrainment pathway of hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1351-R1361.	1.8	36
211	Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12114-12119.	7.1	637
212	NEUROBIOLOGY:Enhanced: Narcolepsy Genes Wake Up the Sleep Field. Science, 1999, 285, 2076-2077.	12.6	14
213	Targeted Deletion of the Vgf Gene Indicates that the Encoded Secretory Peptide Precursor Plays a Novel Role in the Regulation of Energy Balance. Neuron, 1999, 23, 537-548.	8.1	201
214	Molecular Cloning and Characterization of the HumanCLOCKGene: Expression in the Suprachiasmatic Nuclei. Genomics, 1999, 57, 189-200.	2.9	115
215	Chapter 2.1.7 Genetic dissection of mouse behavior using induced mutagenesis. Handbook of Behavioral Neuroscience, 1999, , 147-165.	0.0	3
216	Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nature Neuroscience, 1998, 1, 708-713.	14.8	347

#	Article	IF	CITATIONS
217	Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. Neuroscience Letters, 1998, 258, 167-170.	2.1	45
218	Circadian rhythms: molecular basis of the clock. Current Opinion in Genetics and Development, 1998, 8, 595-602.	3.3	79
219	Mammalian Circadian Autoregulatory Loop. Neuron, 1998, 21, 1101-1113.	8.1	333
220	Role of the CLOCK Protein in the Mammalian Circadian Mechanism. Science, 1998, 280, 1564-1569.	12.6	1,769
221	Closing the Circadian Loop: CLOCK-Induced Transcription of Its Own Inhibitors per and tim. Science, 1998, 280, 1599-1603.	12.6	784
222	Role of Mouse Cryptochrome Blue-Light Photoreceptor in Circadian Photoresponses. , 1998, 282, 1490-1494.		380
223	Light-dependent Activation of Rod Transducin by Pineal Opsin. Journal of Biological Chemistry, 1998, 273, 26820-26826.	3.4	24
224	Day/Night Differences in the Stimulation of Adenylate Cyclase Activity by Calcium/Calmodulin in Chick Pineal Cell Cultures: Evidence for Circadian Regulation of Cyclic AMP. Journal of Biological Rhythms, 1998, 13, 479-493.	2.6	14
225	Circadian Behavior and Plasticity of Light-Induced c-fos Expression in SCN of tau Mutant Hamsters. Journal of Biological Rhythms, 1998, 13, 305-314.	2.6	25
226	A CLOCK Polymorphism Associated with Human Diurnal Preference. Sleep, 1998, 21, 569-576.	1.1	540
227	Automated Measurement of Mouse Freezing Behavior and its Use for Quantitative Trait Locus Analysis of Contextual Fear Conditioning in (BALB/cJ A— C57BL/6J)F ₂ Mice. Learning and Memory, 1998, 5, 391-403.	1.3	75
228	Lability of Circadian Pacemaker Amplitude in Chick Pineal Cells: A Temperature-Dependent Process. Journal of Biological Rhythms, 1997, 12, 309-318.	2.6	25
229	Positional Cloning of the Mouse Circadian Gene. Cell, 1997, 89, 641-653.	28.9	1,298
230	Functional Identification of the Mouse Circadian Clock Gene by Transgenic BAC Rescue. Cell, 1997, 89, 655-667.	28.9	642
231	Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Molecular Brain Research, 1997, 46, 303-310.	2.3	33
232	Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1957-R1964.	1.8	158
233	Regulation of thevgf gene in the golden hamster suprachiasmatic nucleus by light and by the circadian clock. Journal of Comparative Neurology, 1997, 378, 229-238.	1.6	33
234	The Mouse <i>Clock</i> Mutation Behaves as an Antimorph and Maps Within the <i>W19H</i> Deletion, Distal of <i>Kit</i> . Genetics, 1997, 146, 1049-1060.	2.9	156

#	Article	IF	CITATIONS
235	Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, Fos expression and creb phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience, 1996, 70, 951-961.	2.3	132
236	Molecular cloning of chick pineal tryptophan hydroxylase and circadian oscillation of its mRNA levels. Molecular Brain Research, 1996, 42, 25-30.	2.3	32
237	Chapter 1 The biological clock: it's all in the genes. Progress in Brain Research, 1996, 111, 5-9.	1.4	4
238	Chapter 10 Light entrainment and activation of signal transduction pathways in the SCN. Progress in Brain Research, 1996, 111, 133-146.	1.4	29
239	Calcium modulates circadian variation in cAMP-stimulated melatonin in chick pineal cells. Brain Research, 1996, 716, 1-10.	2.2	19
240	Light, immediate-early genes, and circadian rhythms. Behavior Genetics, 1996, 26, 221-240.	2.1	140
241	Critical period for cycloheximide blockade of light-induced phase advances of the circadian locomotor activity rhythm in golden hamsters. Brain Research, 1996, 740, 285-290.	2.2	23
242	Ion channels get the message. Nature, 1996, 382, 117-118.	27.8	7
243	Quantitative Two-Dimensional Gel Electrophoretic Analysis of Clock-Controlled Proteins in Cultured Chick Pineal Cells: Circadian Regulation of Tryptophan Hydroxylase. Journal of Biological Rhythms, 1996, 11, 241-257.	2.6	12
244	Genetic analysis of the circadian system of mammals: properties and prospects. Seminars in Neuroscience, 1995, 7, 61-70.	2.2	5
245	Pharmacological and Genetic Approaches for the Study of Circadian Rhythms in Mammals. Frontiers in Neuroendocrinology, 1995, 16, 191-223.	5.2	23
246	Forskolin and camptothecin induce a 30 kDa protein associated with melatonin production in Y79 human retinoblastoma cells. Journal of Neuroscience, 1995, 15, 298-309.	3.6	8
247	Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. Journal of Neuroscience, 1995, 15, 5681-5692.	3.6	99
248	The Circadian Clock: From Molecules to Behaviour. Annals of Medicine, 1995, 27, 481-490.	3.8	25
249	Pineal opsin: a nonvisual opsin expressed in chick pineal. Science, 1995, 267, 1502-1506.	12.6	159
250	Alterations in the Circadian System in Advanced Age. Novartis Foundation Symposium, 1995, 183, 212-234.	1.1	11
251	The Circadian Clock: From Molecules to Behaviour. Annals of Medicine, 1995, 27, 481-490.	3.8	0
252	Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 1994, 264, 719-725.	12.6	1,507

#	Article	IF	CITATIONS
253	Forward and Reverse Genetic Approaches to Behavior in the Mouse. Science, 1994, 264, 1724-1733.	12.6	231
254	Circadian Rhythms: ICER is nicer at night (sir!). Current Biology, 1994, 4, 165-168.	3.9	32
255	Characterization of the Chicken Rhodopsin Promoter: Identification of Retina-Specific and glass-like Protein Binding Domains. Molecular and Cellular Neurosciences, 1994, 5, 309-318.	2.2	24
256	RNA synthesis inhibitors increase melatonin production in Y79 human retinoblastoma cells. Molecular Brain Research, 1994, 23, 47-56.	2.3	5
257	Neuropeptide Y stimulates luteinizing hormone-releasing hormone release from superfused hypothalamic GT1-7 cells. Endocrinology, 1994, 135, 1621-1627.	2.8	27
258	Circadian clocks à la CREM. Nature, 1993, 365, 299-300.	27.8	30
259	A cholinergic antagonist, mecamylamine, blocks light-induced Fos immunoreactivity in specific regions of the hamster suprachiasmatic nucleus. Brain Research, 1993, 615, 107-112.	2.2	44
260	Circadian-clock regulation of gene expression. Current Opinion in Genetics and Development, 1993, 3, 301-309.	3.3	89
261	Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science, 1993, 260, 238-241.	12.6	801
262	Circadian regulation of lodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron, 1993, 10, 579-584.	8.1	169
263	Fos protein expression in the circadian clock is not associated with phase shifts induced by a nonphotic stimulus, triazolam. Neuroscience Letters, 1993, 164, 203-208.	2.1	31
264	Molecular Approaches to Understanding Circadian Oscillations. Annual Review of Physiology, 1993, 55, 729-753.	13.1	59
265	Biological Rhythms: From Gene Expression to Behavior**This paper is dedicated to Dr Aaron B. Lerner for his seminal work on melatonin , 1993, , 3-20.		6
266	Circadian clock genes are ticking. Science, 1992, 258, 238-240.	12.6	81
267	Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science, 1992, 255, 1581-1584.	12.6	213
268	Circadian rhythms: from gene expression to behaviour. Current Biology, 1992, 2, 51.	3.9	0
269	Light Regulates c-fos Gene Expression in the Hamster SCN: Implications for Circadian and Seasonal Control of Reproduction. , 1992, , 95-106.		0
270	Circadian rhythms: From gene expression to behavior. Current Opinion in Neurobiology, 1991, 1, 556-561.	4.2	59

#	Article	IF	CITATIONS
271	Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster. Brain Research, 1991, 554, 272-277.	2.2	85
272	N-acetyltransferase and protein synthesis modulate melatonin production by Y79 human retinoblastoma cells. Brain Research, 1991, 540, 138-144.	2.2	18
273	Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus) Journal of Physiology, 1991, 439, 115-145.	2.9	290
274	Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron, 1990, 5, 127-134.	8.1	500
275	Photic threshold for stimulation of testicular growth and pituitary FSH release in male Djungarian hamsters. Brain Research, 1990, 512, 304-308.	2.2	1
276	Vasoactive Intestinal Polypeptide and α2-Adrenoceptor Agonists Regulate Adenosine 3′,5′-Monophosphate Accumulation and Melatonin Release in Chick Pineal Cell Cultures*. Endocrinology, 1989, 125, 2375-2384.	2.8	30
277	Characteristics and Autoradiographic Localization of 2-[1251]Iodomelatonin Binding Sites in Djungarian Hamster Brain*. Endocrinology, 1989, 125, 1011-1018.	2.8	129
278	Cyclic AMP-Dependent Melatonin Production in Y79 Human Retinoblastoma Cells. Journal of Neurochemistry, 1989, 53, 307-310.	3.9	29
279	Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. Neuroscience, 1989, 28, 139-147.	2.3	32
280	Twenty-four hour oscillation of cAMP in chick pineal cells: Role of cAMP in the acute and circadian regulation of melatonin production. Neuron, 1989, 3, 609-619.	8.1	60
281	Phase shifting the circadian clock with cycloheximide: response of hamster with an intact or a split rhythm of locomotor activity. Brain Research, 1989, 496, 82-88.	2.2	23
282	The Avian Pineal, a Vertebrate Model System of the Circadian Oscillator: Cellular Regulation of Circadian Rhythms by Light, Second Messengers, and Macromolecular Synthesis. , 1989, 45, 279-352.		121
283	A Pertussis Toxin-Sensitive C-Protein Mediates the α2-Adrenergic Receptor Inhibition of Melatonin Release in Photoreceptive Chick Pineal Cell Cultures*. Endocrinology, 1988, 123, 277-283.	2.8	18
284	2-[¹²⁵ I]Iodomelatonin Binding Sites in Hamster Brain Membranes: Pharmacological Characteristics and Regional Distribution*. Endocrinology, 1988, 122, 1825-1833.	2.8	136
285	Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells. Journal of Neuroscience, 1988, 8, 22-30.	3.6	105
286	Circadian clock in cell culture: I. Oscillation of melatonin release from dissociated chick pineal cells in flow-through microcarrier culture. Journal of Neuroscience, 1988, 8, 12-21.	3.6	141
287	Use of 2-[125I]iodomelatonin to characterize melatonin binding sites in chicken retina Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3916-3920.	7.1	208
288	Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker. Brain Research, 1987, 405, 199-203.	2.2	66

JOSEPH S TAKAHASHI

#	Article	IF	CITATIONS
289	A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster. Brain Research, 1987, 403, 308-312.	2.2	56
290	Alpha-2 adrenergic regulation of melatonin release in chick pineal cell cultures. Journal of Neuroscience, 1987, 7, 3665-3674.	3.6	54
291	Why the neuroendocrine system is important in aging processes. Experimental Gerontology, 1987, 22, 1-15.	2.8	98
292	Dynamics of noradrenergic circadian input to the chicken pineal gland. Brain Research, 1986, 384, 334-341.	2.2	43
293	Characterization of 2-[1251]iodomelatonin binding sites in hamster brain. European Journal of Pharmacology, 1986, 132, 333-334.	3.5	23
294	Light-dependent regulation of dopamine receptors in mammalian retina. Brain Research, 1985, 335, 321-325.	2.2	62
295	Cyclic guanosine 3':5'-monophosphate mimics the effects of light on a circadian pacemaker in the eye of aplysia. Journal of Neuroscience, 1984, 4, 2466-2471.	3.6	54
296	Somatostatin pretreatment desensitizes somatostatin receptors linked to adenylate cyclase and facilitates the stimulation of cyclic adenosine 3':5'-monophosphate accumulation in anterior pituitary tumor cells. Journal of Neuroscience, 1984, 4, 812-819.	3.6	37
297	Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature, 1984, 308, 186-188.	27.8	516
298	Multiple redundant circadian oscillators within the isolated avian pineal gland. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 154, 435-440.	1.6	71
299	Circadian Rhythmicity. , 1984, , 285-303.		9
300	Light-induced decrease of serotonin N-acetyltransferase activity and melatonin in the chicken pineal gland and retina. Brain Research, 1983, 266, 287-293.	2.2	89
301	Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science, 1983, 220, 82-84.	12.6	84
302	Regulation of circadian rhythmicity. Science, 1982, 217, 1104-1111.	12.6	288
303	Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. Journal of Neuroscience, 1982, 2, 815-828.	3.6	138
304	Entrainment of the circadian system of the house sparrow: A population of oscillators in pinealectomized birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 146, 245-253.	1.6	32
305	Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 2319-2322.	7.1	226
306	The Physiology of Circadian Pacemakers. Annual Review of Physiology, 1978, 40, 501-526.	13.1	139

#	Article	IF	CITATIONS
307	Genetic control of the circadian pacemaker. , 0, , 119-126.		0
308	Molecular genetics of circadian clocks in mammals. , 0, 2003, .		0
309	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. SSRN Electronic Journal, O, , .	0.4	0