
Carlos Enrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7363625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel therapeutic avenues for the study of chronic liver disease and regeneration: The foundation of the Iberoamerican Consortium for the study of liver Cirrhosis. GastroenterologÃa Y HepatologÃa, 2023, 46, 322-328.	0.2	0
2	Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Scientific Reports, 2022, 12, 596.	1.6	11
3	CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. Journal of Cell Biology, 2022, 221, .	2.3	30
4	Targeting cholesteryl ester accumulation in the heart improves cardiac insulin response. Biomedicine and Pharmacotherapy, 2022, 152, 113270.	2.5	5
5	Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. International Journal of Molecular Sciences, 2022, 23, 7206.	1.8	7
6	Methuosis Contributes to Jaspine-B-Induced Cell Death. International Journal of Molecular Sciences, 2022, 23, 7257.	1.8	4
7	The role of the calmodulinâ€binding and calmodulinâ€like domains of the epidermal growth factor receptor in tyrosine kinase activation. Journal of Cellular Physiology, 2021, 236, 4997-5011.	2.0	5
8	Annexin Animal Models—From Fundamental Principles to Translational Research. International Journal of Molecular Sciences, 2021, 22, 3439.	1.8	33
9	Lack of Annexin A6 Exacerbates Liver Dysfunction and Reduces Lifespan of Niemann-Pick Type C Protein–Deficient Mice. American Journal of Pathology, 2021, 191, 475-486.	1.9	3
10	Acid ceramidase improves mitochondrial function and oxidative stress in Niemann-Pick type C disease by repressing STARD1 expression and mitochondrial cholesterol accumulation. Redox Biology, 2021, 45, 102052.	3.9	20
11	Annexins Bridging the Gap: Novel Roles in Membrane Contact Site Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 797949.	1.8	10
12	Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cellular and Molecular Life Sciences, 2020, 77, 2839-2857.	2.4	54
13	Annexin A6 improves antiâ€migratory and antiâ€invasive properties of tyrosine kinase inhibitors in EGFR overexpressing human squamous epithelial cells. FEBS Journal, 2020, 287, 2961-2978.	2.2	12
14	Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370, .	6.0	245
15	Selective Degradation Permits a Feedback Loop Controlling Annexin A6 and Cholesterol Levels in Endolysosomes of NPC1 Mutant Cells. Cells, 2020, 9, 1152.	1.8	12
16	Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 3680.	1.8	9
17	Annexin A6 Is Critical to Maintain Glucose Homeostasis and Survival During Liver Regeneration in Mice. Hepatology, 2020, 72, 2149-2164.	3.6	20
18	THU-264-Transmission electron microscopy reveals dramatic hepatic zonal changes upon chronic alcohol feeding. Journal of Hepatology, 2019, 70, e278.	1.8	1

#	Article	IF	CITATIONS
19	Annexins in Adipose Tissue: Novel Players in Obesity. International Journal of Molecular Sciences, 2019, 20, 3449.	1.8	27
20	Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biology, 2019, 24, 101214.	3.9	80
21	Cholesterol Overload: Contact Sites to the Rescue!. Contact (Thousand Oaks (Ventura County, Calif) Tj ETQq1	1 0.784314 0.4	rgBT /Overld
22	Annexins—Coordinators of Cholesterol Homeostasis in Endocytic Pathways. International Journal of Molecular Sciences, 2018, 19, 1444.	1.8	48
23	GTPases Rac1 and Ras Signaling from Endosomes. Progress in Molecular and Subcellular Biology, 2018, 57, 65-105.	0.9	10
24	Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS ONE, 2018, 13, e0201310.	1.1	18
25	Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease. Redox Biology, 2017, 11, 60-72.	3.9	55
26	Annexin A6—A multifunctional scaffold in cell motility. Cell Adhesion and Migration, 2017, 11, 288-304.	1.1	53
27	Annexin A6 in the liver: From the endocytic compartment to cellular physiology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 933-946.	1.9	52
28	Annexin A6 regulates adipocyte lipid storage and adiponectin release. Molecular and Cellular Endocrinology, 2017, 439, 419-430.	1.6	20
29	Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation. Experimental Cell Research, 2017, 358, 397-410.	1.2	17
30	ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrin-independent endocytosis. Scientific Reports, 2017, 7, 6866.	1.6	22
31	Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Frontiers in Physiology, 2017, 8, 982.	1.3	62
32	Annexins: Ca2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. Advances in Experimental Medicine and Biology, 2017, 981, 351-385.	0.8	19
33	ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nature Communications, 2016, 7, 13588.	5.8	334
34	Annexins $\hat{a} \in $ insights from knockout mice. Biological Chemistry, 2016, 397, 1031-1053.	1.2	64
35	Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease. American Journal of Pathology, 2016, 186, 517-523.	1.9	9
36	Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. Journal of Biological Chemistry, 2016, 291, 1320-1335.	1.6	43

#	Article	IF	CITATIONS
37	Annexin A6 regulates interleukinâ€2â€mediated Tâ€cell proliferation. Immunology and Cell Biology, 2016, 94, 543-553.	1.0	26
38	Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS ONE, 2016, 11, e0151556.	1.1	25
39	AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications, 2015, 6, 7176.	5.8	215
40	Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. Journal of Cell Science, 2015, 128, 1071-81.	1.2	53
41	The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. Journal of Cell Science, 2015, 128, 2261-2270.	1.2	19
42	The cross-talk of LDL-cholesterol with cell motility: Insights from the Niemann Pick Type C1 mutation and altered integrin trafficking. Cell Adhesion and Migration, 2015, 9, 384-391.	1.1	17
43	Evidence for annexin <scp>A</scp> 6â€dependent plasma membrane remodelling of lipid domains. British Journal of Pharmacology, 2015, 172, 1677-1690.	2.7	38
44	Annexins and Endosomal Signaling. Methods in Enzymology, 2014, 535, 55-74.	0.4	8
45	The biliary epithelium gives rise to liver progenitor cells. Hepatology, 2014, 60, 1367-1377.	3.6	158
46	Annexins — Scaffolds modulating PKC localization and signaling. Cellular Signalling, 2014, 26, 1213-1225.	1.7	49
47	Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries. Cell Reports, 2014, 7, 883-897.	2.9	104
48	Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. FASEB Journal, 2014, 28, 3023-3037.	0.2	17
49	Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Current Biology, 2013, 23, 1489-1496.	1.8	152
50	Annexin A6 is a scaffold for PKCα to promote EGFR inactivation. Oncogene, 2013, 32, 2858-2872.	2.6	64
51	Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. Journal of Cell Biology, 2013, 203, 985-1001.	2.3	257
52	Inhibition of Mitogen-Activated Protein Kinase Erk1/2 Promotes Protein Degradation of ATP Binding Cassette Transporters A1 and G1 in CHO and HuH7 Cells. PLoS ONE, 2013, 8, e62667.	1.1	35
53	Signal Transduction Pathways Provide Opportunities to Enhance HDL and apoAl-Dependent Reverse Cholesterol Transport. Current Pharmaceutical Biotechnology, 2012, 13, 352-364.	0.9	21
54	Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO Journal, 2012, 31, 4535-4546.	3.5	74

#	Article	IF	CITATIONS
55	A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO Journal, 2012, 31, 534-551.	3.5	150
56	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	3.6	82
57	Differential Regulation of RasGAPs in Cancer. Genes and Cancer, 2011, 2, 288-297.	0.6	48
58	Rac1 and Calmodulin Interactions Modulate Dynamics of ARF6â€Dependent Endocytosis. Traffic, 2011, 12, 1879-1896.	1.3	26
59	Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility. Current Biology, 2011, 21, 681-686.	1.8	175
60	Annexin A6—Linking Ca2+ signaling with cholesterol transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 935-947.	1.9	77
61	Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life, 2011, 63, 1009-1017.	1.5	58
62	MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Molecular Biology of the Cell, 2011, 22, 1252-1262.	0.9	46
63	Ras/Mitogen-activated Protein Kinase (MAPK) Signaling Modulates Protein Stability and Cell Surface Expression of Scavenger Receptor SR-BI. Journal of Biological Chemistry, 2011, 286, 23077-23092.	1.6	19
64	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	0.9	59
65	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	0.9	36
66	Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology, 2010, 51, 1744-1753.	3.6	24
67	Annexin A6-regulator of the EGFR/Ras signalling pathway and cholesterol homeostasis. International Journal of Biochemistry and Cell Biology, 2010, 42, 580-584.	1.2	66
68	GD3 Synthase Overexpression Sensitizes Hepatocarcinoma Cells to Hypoxia and Reduces Tumor Growth by Suppressing the cSrc/NF-κB Survival Pathway. PLoS ONE, 2009, 4, e8059.	1.1	25
69	Annexin A6 is highly abundant in monocytes of obese and type 2 diabetic individuals and is downregulated by adiponectin in vitro. Experimental and Molecular Medicine, 2009, 41, 501.	3.2	11
70	A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. Journal of Cell Biology, 2009, 184, 863-879.	2.3	115
71	Annexins — Modulators of EGF receptor signalling and trafficking. Cellular Signalling, 2009, 21, 847-858.	1.7	126
72	Differential involvement of H- and K-Ras in Raf-1 activation determines the role of calmodulin in MAPK signaling. Cellular Signalling, 2009, 21, 1827-1836.	1.7	9

#	Article	IF	CITATIONS
73	Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene, 2009, 28, 363-377.	2.6	65
74	Hydrophobic and Basic Domains Target Proteins to Lipid Droplets. Traffic, 2009, 10, 1785-1801.	1.3	67
75	Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane. Biochemical Journal, 2009, 420, 373-381.	1.7	24
76	Calmodulin modulates H-Ras mediated Raf-1 activation. Cellular Signalling, 2008, 20, 1092-1103.	1.7	16
77	Uptake of postprandial lipoproteins into bone in vivo: Impact on osteoblast function. Bone, 2008, 43, 230-237.	1.4	77
78	Annexin A6-induced Inhibition of Cytoplasmic Phospholipase A2 Is Linked to Caveolin-1 Export from the Golgi. Journal of Biological Chemistry, 2008, 283, 10174-10183.	1.6	43
79	Protein Kinase Cδ and Calmodulin Regulate Epidermal Growth Factor Receptor Recycling from Early Endosomes through Arp2/3 Complex and Cortactin. Molecular Biology of the Cell, 2008, 19, 17-29.	0.9	41
80	Membrane-permeable Calmodulin Inhibitors (e.g. W-7/W-13) Bind to Membranes, Changing the Electrostatic Surface Potential. Journal of Biological Chemistry, 2007, 282, 8474-8486.	1.6	52
81	Annexin A6â€Induced Alterations in Cholesterol Transport and Caveolin Export from the Golgi Complex. Traffic, 2007, 8, 1568-1589.	1.3	95
82	Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism, 2006, 4, 185-198.	7.2	537
83	Lipid Rafts and Caveolae. Future Lipidology, 2006, 1, 385-387.	0.5	4
84	Involvement of Targeting and Scaffolding Proteins in the Regulation of the EGFR/Ras/MAPK Pathway in Oncogenesis. Current Signal Transduction Therapy, 2006, 1, 147-167.	0.3	9
85	Identification and Characterization of Associated with Lipid Droplet Protein 1: A Novel Membrane-Associated Protein That Resides on Hepatic Lipid Droplets. Traffic, 2006, 7, 1254-1269.	1.3	179
86	Inhibition of H-Ras and MAPK is compensated by PKC-dependent pathways in annexin A6 expressing cells. Cellular Signalling, 2006, 18, 1006-1016.	1.7	35
87	Molecular mechanisms involved in Ras inactivation: the annexin A6–p120GAP complex. BioEssays, 2006, 28, 1211-1220.	1.2	52
88	Caveolin-1 Is Essential for Liver Regeneration. Science, 2006, 313, 1628-1632.	6.0	235
89	Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene, 2005, 24, 5809-5820.	2.6	84
90	Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid Bodies. Molecular Biology of the Cell, 2005, 16, 2091-2105.	0.9	184

#	Article	IF	CITATIONS
91	Protein KinaseCδ-Calmodulin Crosstalk Regulates Epidermal Growth Factor Receptor Exit from Early Endosomes. Molecular Biology of the Cell, 2004, 15, 4877-4891.	0.9	35
92	Dynamic and Regulated Association of Caveolin with Lipid Bodies: Modulation of Lipid Body Motility and Function by a Dominant Negative Mutant. Molecular Biology of the Cell, 2004, 15, 99-110.	0.9	185
93	Relevance of CD6-Mediated Interactions in T Cell Activation and Proliferation. Journal of Immunology, 2004, 173, 2262-2270.	0.4	130
94	Intracellular trafficking during liver regeneration. Journal of Hepatology, 2004, 40, 132-139.	1.8	7
95	Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology, 2003, 38, 919-929.	3.6	186
96	Metabotropic glutamate type $1\hat{l}\pm$ receptor localizes in low-density caveolin-rich plasma membrane fractions. Journal of Neurochemistry, 2003, 86, 785-791.	2.1	31
97	Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Experimental Cell Research, 2003, 285, 72-90.	1.2	65
98	Recycling of Apoprotein E Is Associated with Cholesterol Efflux and High Density Lipoprotein Internalization. Journal of Biological Chemistry, 2003, 278, 14370-14378.	1.6	75
99	High Density Lipoprotein-induced Signaling of the MAPK Pathway Involves Scavenger Receptor Type Bl-mediated Activation of Ras. Journal of Biological Chemistry, 2003, 278, 16478-16481.	1.6	70
100	The Accessory Molecules CD5 and CD6 Associate on the Membrane of Lymphoid T Cells. Journal of Biological Chemistry, 2003, 278, 8564-8571.	1.6	65
101	Role of Annexin 6 in Receptor-Mediated Endocytosis, Membrane Trafficking and Signal Transduction. Molecular Biology Intelligence Unit, 2003, , 157-171.	0.2	1
102	Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology, 2003, 38, 919-929.	3.6	88
103	Defective TNF-α–mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. Journal of Clinical Investigation, 2003, 111, 197-208.	3.9	200
104	Calmodulin Regulates Intracellular Trafficking of Epidermal Growth Factor Receptor and the MAPK Signaling Pathway. Molecular Biology of the Cell, 2002, 13, 2057-2068.	0.9	73
105	Trafficking of Ganglioside CD3 to Mitochondria by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2002, 277, 36443-36448.	1.6	133
106	Concentrative Nucleoside Transporter (rCNT1) Is Targeted to the Apical Membrane through the Hepatic Transcytotic Pathway. Experimental Cell Research, 2002, 281, 77-85.	1.2	42
107	Role of calmodulin in the modulation of the MAPK signalling pathway and the transactivation of epidermal growth factor receptor mediated by PKC. FEBS Letters, 2002, 517, 206-210.	1.3	36
108	Cholesterol Modulates the Membrane Binding and Intracellular Distribution of Annexin 6. Journal of Biological Chemistry, 2002, 277, 32187-32194.	1.6	97

#	Article	IF	CITATIONS
109	Evidence for the Involvement of Annexin 6 in the Trafficking between the Endocytic Compartment and Lysosomes. Experimental Cell Research, 2001, 269, 13-22.	1.2	47
110	Activation of Raf-1 is defective in annexin 6 overexpressing Chinese hamster ovary cells. FEBS Letters, 2001, 501, 69-73.	1.3	20
111	Morphologic and functional characterization of caveolae in rat liver hepatocytes. Hepatology, 2001, 33, 1259-1269.	3.6	54
112	Biochemical analysis of a caveolae-enriched plasma membrane fraction from rat liver. Electrophoresis, 2000, 21, 3386-3395.	1.3	29
113	EGF triggers caveolin redistribution from the plasma membrane to the early/sorting endocytic compartment of hepatocytes. Cellular Signalling, 2000, 12, 537-540.	1.7	13
114	Epidermal Growth Factor-mediated Caveolin Recruitment to Early Endosomes and MAPK Activation. Journal of Biological Chemistry, 2000, 275, 30566-30572.	1.6	47
115	PC12 Cells Have Caveolae That Contain TrkA. Journal of Biological Chemistry, 2000, 275, 37846-37852.	1.6	83
116	Annexin VI Stimulates Endocytosis and Is Involved in the Trafficking of Low Density Lipoprotein to the Prelysosomal Compartment. Journal of Biological Chemistry, 2000, 275, 33806-33813.	1.6	93
117	Cellubrevin Is Present in the Basolateral Endocytic Compartment of Hepatocytes and Follows the Transcytotic Pathway after IgA Internalization. Journal of Biological Chemistry, 2000, 275, 7910-7917.	1.6	19
118	Late Endocytic Compartments Are Major Sites of Annexin VI Localization in NRK Fibroblasts and Polarized WIF-B Hepatoma Cells. Experimental Cell Research, 2000, 257, 33-47.	1.2	42
119	The ?early-sorting? endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology, 1999, 29, 1848-1857.	3.6	62
120	Dissection of the multifunctional "receptor-recycling―endocytic compartment of hepatocytes. Hepatology, 1999, 30, 1115-1120.	3.6	18
121	Isolated endosomes from quiescent rat liver contain the signal transduction machinery. FEBS Letters, 1998, 441, 34-38.	1.3	92
122	Identification and distribution of proteins in isolated endosomal fractions of rat liver: involvement in endocytosis, recycling and transcytosis. Biochemical Journal, 1997, 323, 435-443.	1.7	42
123	Identification of cytoskeleton-associated proteins in isolated rat liver endosomes. Biochemical Journal, 1997, 327, 741-746.	1.7	70
124	Cyclin A Is Present in the Endocytic Compartment of Rat Liver Cells and Increases during Liver Regeneration. Biochemical and Biophysical Research Communications, 1997, 230, 49-53.	1.0	18
125	Membrane transport in rat liver endocytic pathways: Preparation, biochemical properties and functional roles of hepatic endosomes. Electrophoresis, 1997, 18, 2548-2557.	1.3	20
126	Calmodulin Binds to the Basolateral Targeting Signal of the Polymeric Immunoglobulin Receptor. Journal of Biological Chemistry, 1996, 271, 1336-1342.	1.6	39

#	Article	IF	CITATIONS
127	Functional Identification of Three Major Phosphoproteins in Endocytic Fractions from Rat Liver. A Comparative in vivo and in vitro Study. FEBS Journal, 1995, 231, 802-808.	0.2	7
128	Differential expression of A and B laminin chains during rat liver regeneration. Hepatology, 1995, 22, 1259-1262.	3.6	11
129	Early induction of Na+-dependent uridine uptake in the regenerating rat liver. FEBS Letters, 1993, 316, 85-88.	1.3	29
130	Changes in the endocytic compartment in regenerating liver. Biochemical Society Transactions, 1993, 21, 722-726.	1.6	0
131	The Endocytic Compartments of Normal and Regenerating Liver. Sub-Cellular Biochemistry, 1993, 19, 195-222.	1.0	7
132	Reorganization of the endocytic compartment in regenerating liver. Experimental Cell Research, 1992, 201, 399-407.	1.2	7
133	Differential expression of asialoglycoprotein receptor subunits in the endocytic compartment during liver regeneration. Journal of Cellular Physiology, 1992, 150, 344-352.	2.0	16
134	Echinococcus granulosus: Antigen characterization by chemical treatment and enzymatic deglycosylation. Experimental Parasitology, 1991, 73, 433-439.	0.5	14
135	Membrane compartmentation and trafficking in hepatocytes. Biochemical Society Transactions, 1990, 18, 137-139.	1.6	1
136	Increase in a 55-kDa keratin-like protein in the nuclear matrix of rat liver cells during proliferative activation. Experimental Cell Research, 1990, 186, 346-353.	1.2	20
137	Decrease of calmodulin and actin in the plasma membrane of rat liver cells during proliferative activation. Biochemical and Biophysical Research Communications, 1990, 173, 1287-1291.	1.0	2
138	Liver plasma membrane domains and endocytic trafficking. Biochemical Society Transactions, 1989, 17, 619-622.	1.6	13
139	Modulation of asialoglycoprotein receptor expression in liver by the endocytic compartment. Biochemical Society Transactions, 1989, 17, 1005-1006.	1.6	0
140	The Hepatocyte's Plasma Membrane Domains. Interrelations with the Endocytic Compartment. Proceedings in Life Sciences, 1989, , 35-44.	0.5	1
141	Reduced levels of sialic acid in the plasma membrane during hepatocellular proliferation. Biochimica Et Biophysica Acta - Biomembranes, 1988, 938, 121-124.	1.4	0
142	Fibronectin isoforms in plasma membrane domains of normal and regenerating rat liver. FEBS Letters, 1988, 228, 135-138.	1.3	16
143	Evidence for a role of the hepatic endocytic compartment in the modulation of the extracellular matrix. Experimental Cell Research, 1987, 173, 99-108.	1.2	8
144	Calcium transport from blood into the bile in normal and regenerating rat liver. Cell Biochemistry and Function, 1987, 5, 37-46.	1.4	3

#	Article	IF	CITATIONS
145	Changes in sinusoidal plasma membrane enzyme activities during the pre-replicative phase of liver regeneration. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 381-384.	1.4	8
146	Calmodulin may decrease cell surface sialic acid and be involved in the expression of fibronectin during liver regeneration. FEBS Letters, 1986, 208, 418-422.	1.3	8
147	Effect of Trifluoperazine On Dna Synthesis During Liver Regeneration. Cell Proliferation, 1985, 18, 475-481.	2.4	4
148	Pre-replicative changes of the rat sinusoidal plasma membrane glycoproteins during hepatic regeneration. FEBS Letters, 1985, 181, 12-16.	1.3	11