V Faye Mcneill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7362392/publications.pdf Version: 2024-02-01

V FAVE MONEUL

#	Article	IF	CITATIONS
1	Room-level ventilation in schools and universities. Atmospheric Environment: X, 2022, 13, 100152.	1.4	21
2	Airborne Transmission of SARS-CoV-2: Evidence and Implications for Engineering Controls. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 123-140.	6.8	11
3	Kinetics of alkaline hydrolysis of synthetic organic esters. International Journal of Chemical Kinetics, 2022, 54, 218-222.	1.6	1
4	Mario Molina Memorial Special Issue. ACS Earth and Space Chemistry, 2022, 6, 1640-1643.	2.7	0
5	Organosulfates from Dark Aqueous Reactions of Isoprene-Derived Epoxydiols Under Cloud and Fog Conditions: Kinetics, Mechanism, and Effect of Reaction Environment on Regioselectivity of Sulfate Addition. ACS Earth and Space Chemistry, 2021, 5, 474-486.	2.7	5
6	Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms ( ≥  C _{4Atmospheric Chemistry and Physics, 2021, 21, 4797-4808.}	anap 9 gt;).	30
7	High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. Environmental Science & Technology, 2021, 55, 7786-7793.	10.0	12
8	Heterogeneous Reactivity of HCl on CaCO ₃ Aerosols at Stratospheric Temperature. ACS Earth and Space Chemistry, 2021, 5, 1896-1901.	2.7	3
9	Particulate Matter Air Pollution in Kolkata, India: Trends and application of Low Cost Sensors. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
10	Opinion: The germicidal effect of ambient air (open-air factor) revisited. Atmospheric Chemistry and Physics, 2021, 21, 13011-13018.	4.9	11
11	Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. Atmospheric Chemistry and Physics, 2021, 21, 13483-13536.	4.9	59
12	Box Model Intercomparison of Cloud Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	7
13	Virtual Issue in Atmospheric Chemistry Research. Journal of Physical Chemistry A, 2020, 124, 5697-5699.	2.5	3
14	Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.	11.7	70
15	Virtual Issue in Atmospheric Chemistry Research. ACS Earth and Space Chemistry, 2020, 4, 958-960.	2.7	0
16	The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 2020, 20, 4809-4888.	4.9	327
17	Heterogeneous Chemistry of CaCO ₃ Aerosols with HNO ₃ and HCl. Journal of Physical Chemistry A, 2020, 124, 3886-3895.	2.5	6
18	Virtual Special Issue: New Advances in Organic Aerosol Chemistry. ACS Earth and Space Chemistry, 2020, 4, 491-494.	2.7	0

V FAYE MCNEILL

#	Article	IF	CITATIONS
19	Impact of Environmental Conditions on Secondary Organic Aerosol Production from Photosensitized Humic Acid. Environmental Science & Technology, 2020, 54, 5385-5390.	10.0	10
20	COVID-19 and the Air We Breathe. ACS Earth and Space Chemistry, 2020, 4, 674-675.	2.7	9
21	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates. Atmospheric Chemistry and Physics, 2020, 20, 13497-13519.	4.9	55
22	Mario Molina, 1943–2020. Journal of Physical Chemistry A, 2020, 124, 10921-10922.	2.5	1
23	Organic Peroxides and Sulfur Dioxide in Aerosol: Source of Particulate Sulfate. Environmental Science & Technology, 2019, 53, 10695-10704.	10.0	53
24	Constraining the Impact of Bacteria on the Aqueous Atmospheric Chemistry of Small Organic Compounds. ACS Earth and Space Chemistry, 2019, 3, 1485-1491.	2.7	11
25	Addressing the Global Air Pollution Crisis: Chemistry's Role. Trends in Chemistry, 2019, 1, 5-8.	8.5	18
26	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
27	Impact of Aerosol-Cloud Cycling on Aqueous Secondary Organic Aerosol Formation. Atmosphere, 2019, 10, 666.	2.3	17
28	Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system. Elementa, 2019, 7, .	3.2	6
29	Aerosol Brown Carbon from Dark Reactions of Syringol in Aqueous Aerosol Mimics. ACS Earth and Space Chemistry, 2018, 2, 608-617.	2.7	24
30	Modeling Secondary Organic Aerosol Production from Photosensitized Humic-like Substances (HULIS). Environmental Science and Technology Letters, 2018, 5, 255-259.	8.7	24
31	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	4.9	36
32	Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai. Environmental Pollution, 2018, 233, 1177-1187.	7.5	35
33	IUPAC in the (real) clouds. Chemistry International, 2018, 40, 10-13.	0.3	1
34	Technical note: Updated parameterization of the reactive uptake of glyoxal and methylglyoxal by atmospheric aerosols and cloud droplets. Atmospheric Chemistry and Physics, 2018, 18, 9823-9830.	4.9	17
35	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	10.0	75
36	Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS). Environmental Science & amp; Technology, 2017, 51, 5026-5034.	10.0	86

V FAYE MCNEILL

#	Article	IF	CITATIONS
37	Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 427-444.	6.8	76
38	Modeling Photosensitized Secondary Organic Aerosol Formation in Laboratory and Ambient Aerosols. Environmental Science & Technology, 2017, 51, 7496-7501.	10.0	31
39	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.	3.3	48
40	Photoactivated Production of Secondary Organic Species from Isoprene in Aqueous Systems. Journal of Physical Chemistry A, 2016, 120, 9042-9048.	2.5	23
41	Observation of Organic Molecules at the Aerosol Surface. Journal of Physical Chemistry Letters, 2016, 7, 2294-2297.	4.6	21
42	Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation. Atmospheric Environment, 2016, 130, 145-152.	4.1	21
43	simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA). Geoscientific Model Development, 2015, 8, 1821-1829.	3.6	35
44	Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols. Environmental Science & amp; Technology, 2015, 49, 1237-1244.	10.0	323
45	A Tribute to Mario Molina. Journal of Physical Chemistry A, 2015, 119, 4277-4278.	2.5	2
46	Surface Disordering and Film Formation on Ice Induced by Formaldehyde and Acetaldehyde. Journal of Physical Chemistry C, 2014, 118, 29108-29116.	3.1	5
47	Effect of Inorganic Salts on the Volatility of Organic Acids. Environmental Science & Technology, 2014, 48, 13718-13726.	10.0	38
48	Model Analysis of Secondary Organic Aerosol Formation by Glyoxal in Laboratory Studies: The Case for Photoenhanced Chemistry. Environmental Science & Technology, 2014, 48, 11919-11925.	10.0	32
49	Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution. Environmental Sciences: Processes and Impacts, 2014, 16, 741-747.	3.5	28
50	Ammonium Addition (and Aerosol pH) Has a Dramatic Impact on the Volatility and Yield of Glyoxal Secondary Organic Aerosol. Environmental Science & Technology, 2014, 48, 255-262.	10.0	66
51	Nitric acid-induced surface disordering on ice. Physical Chemistry Chemical Physics, 2013, 15, 10989.	2.8	12
52	Aqueous aerosol SOA formation: impact on aerosol physical properties. Faraday Discussions, 2013, 165, 357.	3.2	49
53	Photochemical Aging of Light-Absorbing Secondary Organic Aerosol Material. Journal of Physical Chemistry A, 2013, 117, 2987-2996.	2.5	95
54	Surfactants from the gas phase may promote cloud droplet formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2723-2728	7.1	102

V FAYE MCNEILL

#	Article	IF	CITATIONS
55	Surface-Active Organics in Atmospheric Aerosols. Topics in Current Chemistry, 2013, 339, 201-259.	4.0	64
56	Modeling the surface tension of complex, reactive organic–inorganic mixtures. Atmospheric Chemistry and Physics, 2013, 13, 10721-10732.	4.9	10
57	Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid–liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides. Atmospheric Chemistry and Physics, 2013, 13, 8255-8263.	4.9	31
58	Aqueous-Phase Secondary Organic Aerosol and Organosulfate Formation in Atmospheric Aerosols: A Modeling Study. Environmental Science & Technology, 2012, 46, 8075-8081.	10.0	205
59	Surface tension depression by low-solubility organic material in aqueous aerosol mimics. Atmospheric Environment, 2012, 54, 490-495.	4.1	25
60	Competitive Adsorption at the Air–Water Interface: A Second Harmonic Generation Study. Journal of Physical Chemistry C, 2011, 115, 9701-9705.	3.1	16
61	Ozone Oxidation of Surface-Adsorbed Polycyclic Aromatic Hydrocarbons: Role of PAHâ^'Surface Interaction. Journal of the American Chemical Society, 2010, 132, 15968-15975.	13.7	62
62	Glyoxal-Methylglyoxal Cross-Reactions in Secondary Organic Aerosol Formation. Environmental Science & Technology, 2010, 44, 6174-6182.	10.0	104
63	Effect of Salt on the Adsorption Affinity of an Aromatic Carbonyl Molecule to the Airâ^'Aqueous Interface: Insight for Aqueous Environmental Interfaces. Journal of Physical Chemistry C, 2010, 114, 18258-18262.	3.1	14
64	Interaction of Hydrogen Chloride with Ice Surfaces:  The Effects of Grain Size, Surface Roughness, and Surface Disorder. Journal of Physical Chemistry A, 2007, 111, 6274-6284.	2.5	53
65	The Oxidation of Oleate in Submicron Aqueous Salt Aerosols:Â Evidence of a Surface Process. Journal of Physical Chemistry A, 2007, 111, 1073-1083.	2.5	124
66	Hydrogen chloride-induced surface disordering on ice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9422-9427.	7.1	88
67	Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements. Aerosol Science and Technology, 2002, 36, 678-689.	3.1	75