
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7361137/publications.pdf Version: 2024-02-01

LUM LIN

#	Article	IF	CITATIONS
1	Survival of Escherichia coli in Airborne and Settled Poultry Litter Particles. Animals, 2022, 12, 284.	2.3	12
2	Isolation and characterization of Escherichia albertii originated from the broiler farms in Mississippi and Alabama. Veterinary Microbiology, 2022, 267, 109379.	1.9	7
3	Riboflavin and Bacillus subtilis effects on growth performance and woody-breast of Ross 708 broilers with or without Eimeria spp. challenge. Journal of Animal Science and Technology, 2022, 64, 443-461.	2.5	8
4	Monoclonal antibody-based indirect competitive ELISA for quantitative detection of Enterobacteriaceae siderophore enterobactin. Food Chemistry, 2022, 391, 133241.	8.2	7
5	Longitudinal surveillance and comparative characterization of Escherichia albertii in wild raccoons in the United States. Microbiological Research, 2022, 262, 127109.	5.3	3
6	Spray-coating as a novel strategy to supplement broiler feed pellets with probiotic Lactobacillus salivarius NRRL B-30514. LWT - Food Science and Technology, 2021, 137, 110419.	5.2	1
7	Isolation and characterization of <i>Escherichia albertii</i> in poultry at the preâ€harvest level. Zoonoses and Public Health, 2021, 68, 213-225.	2.2	15
8	Critical Role of 3â€2-Downstream Region of pmrB in Polymyxin Resistance in Escherichia coli BL21(DE3). Microorganisms, 2021, 9, 655.	3.6	3
9	Effects of riboflavin and Bacillus subtilis on internal organ development and intestinal health of Ross 708 male broilers with or without coccidial challenge. Poultry Science, 2021, 100, 100973.	3.4	12
10	Evaluation of the Immunogenic Response of a Novel Enterobactin Conjugate Vaccine in Chickens for the Production of Enterobactin-Specific Egg Yolk Antibodies. Frontiers in Immunology, 2021, 12, 629480.	4.8	13
11	Passive Immunization of Chickens with Anti-Enterobactin Egg Yolk Powder for Campylobacter Control. Vaccines, 2021, 9, 569.	4.4	7
12	Ex Vivo Evaluation of Egg Yolk IgY Degradation in Chicken Gastrointestinal Tract. Frontiers in Immunology, 2021, 12, 746831.	4.8	4
13	Within-host heterogeneity and flexibility of mcr-1 transmission in chicken gut. International Journal of Antimicrobial Agents, 2020, 55, 105806.	2.5	33
14	Probiotic powders prepared by mixing suspension of Lactobacillus salivarius NRRL B-30514 and spray-dried lactose: Physical and microbiological properties. Food Research International, 2020, 127, 108706.	6.2	9
15	Oral Immunization of Chickens with Lactococcus lactis Expressing cjaA Temporarily Reduces Campylobacter jejuni Colonization. Foodborne Pathogens and Disease, 2020, 17, 366-372.	1.8	12
16	Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine. Vaccines, 2020, 8, 747.	4.4	15
17	Caffeic Acid Phenethyl Ester Loaded in Skim Milk Microcapsules: Physicochemical Properties and Enhanced <i>In Vitro</i> Bioaccessibility and Bioactivity against Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 14978-14987.	5.2	13
18	Enterobactin-specific antibodies inhibit in vitro growth of different gram-negative bacterial pathogens. Vaccine, 2020, 38, 7764-7773.	3.8	11

#	Article	IF	CITATIONS
19	Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Scientific Reports, 2020, 10, 4941.	3.3	10
20	The complex structure of bile salt hydrolase from Lactobacillus salivarius reveals the structural basis of substrate specificity. Scientific Reports, 2019, 9, 12438.	3.3	17
21	Evaluation of in ovo vaccination of DNA vaccines for Campylobacter control in broiler chickens. Vaccine, 2019, 37, 3785-3792.	3.8	13
22	Enterobactin-Specific Antibodies Induced by a Novel Enterobactin Conjugate Vaccine. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
23	Development and Evaluation of Two Live <i>Salmonella</i> -Vectored Vaccines for <i>Campylobacter</i> Control in Broiler Chickens. Foodborne Pathogens and Disease, 2019, 16, 399-410.	1.8	8
24	Characterization of the emerging multidrug-resistant <i>Salmonella enterica</i> serovar Indiana strains in China. Emerging Microbes and Infections, 2019, 8, 29-39.	6.5	23
25	The ISApl12 Dimer Circular Intermediate Participates in mcr-1 Transposition. Frontiers in Microbiology, 2019, 10, 15.	3.5	28
26	A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni. Applied and Environmental Microbiology, 2018, 84, .	3.1	2
27	MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic. MSphere, 2018, 3, .	2.9	27
28	Characterization of High Affinity Iron Acquisition Systems in Campylobacter jejuni. Methods in Molecular Biology, 2017, 1512, 65-78.	0.9	8
29	Plasmid-mediated colistin resistance in animals: current status and future directions. Animal Health Research Reviews, 2017, 18, 136-152.	3.1	34
30	Factors influencing horizontal gene transfer in the intestine. Animal Health Research Reviews, 2017, 18, 153-159.	3.1	32
31	Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Animal Health Research Reviews, 2016, 17, 148-158.	3.1	33
32	Crystal structure of bile salt hydrolase from <i>Lactobacillus salivarius</i> . Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 376-381.	0.8	26
33	Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT - Food Science and Technology, 2016, 74, 441-447.	5.2	35
34	Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine. Frontiers in Microbiology, 2015, 6, 452.	3.5	29
35	Important Role of a Putative Lytic Transglycosylase Cj0843c in β-Lactam Resistance in Campylobacter jejuni. Frontiers in Microbiology, 2015, 6, 1292.	3.5	7
36	The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Research International, 2015, 71, 9-15.	6.2	96

#	Article	IF	CITATIONS
37	Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains. Applied and Environmental Microbiology, 2015, 81, 4546-4552.	3.1	30
38	<i>Campylobacter</i> in Poultry: Ecology and Potential Interventions. Avian Diseases, 2015, 59, 185-200.	1.0	171
39	Discovery of Bile Salt Hydrolase Inhibitors Using an Efficient High-Throughput Screening System. PLoS ONE, 2014, 9, e85344.	2.5	39
40	Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers. Frontiers in Microbiology, 2014, 5, 33.	3.5	82
41	Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus. Pathogens, 2014, 3, 947-956.	2.8	17
42	A single nucleotide in the promoter region modulates the expression of the Â-lactamase OXA-61 in Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 2014, 69, 1215-1223.	3.0	57
43	Response of Intestinal Microbiota to Antibiotic Growth Promoters in Chickens. Foodborne Pathogens and Disease, 2013, 10, 331-337.	1.8	83
44	Identification and characterization of a periplasmic trilactone esterase, <scp>Cee</scp> , revealed unique features of ferric enterobactin acquisition in <i><scp>C</scp>ampylobacter</i> . Molecular Microbiology, 2013, 87, 594-608.	2.5	42
45	Specific TonB-ExbB-ExbD energy transduction systems required for ferric enterobactin acquisition in <i>Campylobacter </i> . FEMS Microbiology Letters, 2013, 347, 83-91.	1.8	21
46	Functional Cloning and Characterization of Antibiotic Resistance Genes from the Chicken Gut Microbiome. Applied and Environmental Microbiology, 2012, 78, 3028-3032.	3.1	40
47	Identification and Characterization of a Bile Salt Hydrolase from Lactobacillus salivarius for Development of Novel Alternatives to Antibiotic Growth Promoters. Applied and Environmental Microbiology, 2012, 78, 8795-8802.	3.1	80
48	Identification of genetic loci that contribute to Campylobacter resistance to fowlicidin-1, a chicken host defense peptide. Frontiers in Cellular and Infection Microbiology, 2012, 2, 32.	3.9	10
49	Prevalence, Development, and Molecular Mechanisms of Bacteriocin Resistance in <i>Campylobacter</i> . Applied and Environmental Microbiology, 2011, 77, 2309-2316.	3.1	36
50	Development and Evaluation of CmeC Subunit Vaccine against Campylobacter jejuni. Journal of Vaccines & Vaccination, 2010, 01, .	0.3	15
51	Identification and Characterization of a New Ferric Enterobactin Receptor, CfrB, in <i>Campylobacter</i> . Journal of Bacteriology, 2010, 192, 4425-4435.	2.2	50
52	Systematic Identification of Genetic Loci Required for Polymyxin Resistance in <i>Campylobacter jejuni</i> Using an Efficient <i>In Vivo</i> Transposon Mutagenesis System. Foodborne Pathogens and Disease, 2009, 6, 173-185.	1.8	21
53	Molecular, Antigenic, and Functional Characteristics of Ferric Enterobactin Receptor CfrA in <i>Campylobacter jejuni</i> . Infection and Immunity, 2009, 77, 5437-5448.	2.2	47
54	Novel Approaches for <i>Campylobacter</i> Control in Poultry. Foodborne Pathogens and Disease, 2009, 6, 755-765.	1.8	178

#	Article	IF	CITATIONS
55	Effect of Macrolide Usage on Emergence of Erythromycin-Resistant Campylobacter Isolates in Chickens. Antimicrobial Agents and Chemotherapy, 2007, 51, 1678-1686.	3.2	93
56	Effect of an Efflux Pump Inhibitor on the Function of the Multidrug Efflux Pump CmeABC and Antimicrobial Resistance inCampylobacter. Foodborne Pathogens and Disease, 2006, 3, 393-402.	1.8	34
57	Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 2006, 58, 966-972.	3.0	46
58	Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 2006, 57, 52-60.	3.0	132
59	CmeR Functions as a Transcriptional Repressor for the Multidrug Efflux Pump CmeABC in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 2005, 49, 1067-1075.	3.2	172
60	Bile Salts Modulate Expression of the CmeABC Multidrug Efflux Pump in Campylobacter jejuni. Journal of Bacteriology, 2005, 187, 7417-7424.	2.2	167
61	Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 541-546.	7.1	326
62	Critical Role of Multidrug Efflux Pump CmeABC in Bile Resistance and In Vivo Colonization of Campylobacter jejuni. Infection and Immunity, 2003, 71, 4250-4259.	2.2	270
63	In Vivo Selection of Campylobacter Isolates with High Levels of Fluoroquinolone Resistance Associated with gyrA Mutations and the Function of the CmeABC Efflux Pump. Antimicrobial Agents and Chemotherapy, 2003, 47, 390-394.	3.2	218
64	CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 2002, 46, 2124-2131.	3.2	473
65	Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes and Infection, 2002, 4, 325-331.	1.9	231