List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7361042/publications.pdf Version: 2024-02-01

CAETAN LECO

#	Article	IF	CITATIONS
1	Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6. Immunity, 2003, 19, 225-234.	14.3	929
2	Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biology, 2000, 2, 645-652.	10.3	882
3	Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 2001, 3, 839-843.	10.3	790
4	Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. Journal of Clinical Investigation, 2010, 120, 457-71.	8.2	761
5	Heat Shock Proteins: Endogenous Modulators of Apoptotic Cell Death. Biochemical and Biophysical Research Communications, 2001, 286, 433-442.	2.1	685
6	Heat Shock Proteins 27 and 70: Anti-Apoptotic Proteins with Tumorigenic Properties. Cell Cycle, 2006, 5, 2592-2601.	2.6	615
7	Caspase Activation Is Required for Terminal Erythroid Differentiation. Journal of Experimental Medicine, 2001, 193, 247-254.	8.5	387
8	Targeting heat shock proteins in cancer. Cancer Letters, 2013, 332, 275-285.	7.2	368
9	Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochemical and Biophysical Research Communications, 2003, 304, 505-512.	2.1	321
10	Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood, 2002, 100, 4446-4453.	1.4	287
11	Dual Role of Heat Shock Proteins as Regulators of Apoptosis and Innate Immunity. Journal of Innate Immunity, 2010, 2, 238-247.	3.8	260
12	Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene, 2003, 22, 6669-6678.	5.9	251
13	Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature, 2007, 445, 102-105.	27.8	246
14	Tollâ€like receptors – sentries in the Bâ€cell response. Immunology, 2009, 128, 311-323.	4.4	220
15	Inhibition of HSP70: A challenging anti-cancer strategy. Cancer Letters, 2012, 325, 117-124.	7.2	211
16	Apoptosis Versus Cell Differentiation. Prion, 2007, 1, 53-60.	1.8	205
17	Tracking the evolution of circulating exosomalâ€₽D‣1 to monitor melanoma patients. Journal of Extracellular Vesicles, 2020, 9, 1710899.	12.2	175
18	The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia, 1998, 12, 1977-1982.	7.2	172

#	Article	IF	CITATIONS
19	Interleukin-6 is a growth factor for nonmalignant human plasmablasts. Blood, 2001, 97, 1817-1822.	1.4	168
20	Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer. Journal of the National Cancer Institute, 2016, 108, djv330.	6.3	159
21	The phenotype of normal, reactive and malignant plasma cells. Identification of "many and multiple myelomas" and of new targets for myeloma therapy. Haematologica, 2006, 91, 1234-40.	3.5	159
22	Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia, 2006, 20, 1130-1137.	7.2	157
23	Peptides and Aptamers Targeting HSP70: A Novel Approach for Anticancer Chemotherapy. Cancer Research, 2011, 71, 484-495.	0.9	150
24	Heat Shock Protein 70 Neutralization Exerts Potent Antitumor Effects in Animal Models of Colon Cancer and Melanoma. Cancer Research, 2006, 66, 4191-4197.	0.9	138
25	Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nature Medicine, 2011, 17, 1283-1289.	30.7	137
26	Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene, 2000, 19, 4855-4863.	5.9	135
27	Dendritic Cells Control B Cell Growth and Differentiation. , 2004, 8, 124-139.		128
28	Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology, 2016, 53, 51-59.	4.2	126
29	HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature, 2014, 514, 242-246.	27.8	124
30	The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. European Journal of Immunology, 2000, 30, 803-809.	2.9	112
31	Heat-shock proteins: chaperoning DNA repair. Oncogene, 2020, 39, 516-529.	5.9	111
32	Hsp70: Anti-apoptotic and Tumorigenic Protein. Methods in Molecular Biology, 2011, 787, 205-230.	0.9	101
33	Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood, 2008, 112, 2205-2213.	1.4	99
34	HSP27 favors ubiquitination and proteasomal degradation of p27 Kip1 and helps Sâ€phase reâ€entry in stressed cells. FASEB Journal, 2006, 20, 1179-1181.	0.5	95
35	Extracellular HSP27 mediates angiogenesis through Tollâ€like receptor 3. FASEB Journal, 2013, 27, 4169-4183.	0.5	93
36	Transactivation of the Epidermal Growth Factor Receptor by Heat Shock Protein 90 via Toll-like Receptor 4 Contributes to the Migration of Glioblastoma Cells. Journal of Biological Chemistry, 2011, 286, 3418-3428.	3.4	86

#	Article	IF	CITATIONS
37	HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle, 2003, 2, 579-84.	2.6	86
38	The biofilm mode of life boosts the anti-inflammatory properties of <i>Lactobacillus</i> . Cellular Microbiology, 2014, 16, 1836-1853.	2.1	85
39	Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Research, 2003, 63, 8233-40.	0.9	81
40	Inconstant Association between 27-kDa Heat-Shock Protein (Hsp27) Content and Doxorubicin Resistance in Human Colon Cancer Cells. The Doxorubicin-Protecting Effect of Hsp27. FEBS Journal, 1996, 237, 653-659.	0.2	80
41	Cohen syndrome is associated with major glycosylation defects. Human Molecular Genetics, 2014, 23, 2391-2399.	2.9	79
42	Heat shock proteins in fibrosis and wound healing: Good or evil?. , 2014, 143, 119-132.		78
43	Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene, 2001, 20, 7478-7485.	5.9	77
44	HSPBs: Small proteins with big implications in human disease. International Journal of Biochemistry and Cell Biology, 2012, 44, 1706-1710.	2.8	77
45	Monitoring HSP70 exosomes in cancer patients' follow up: a clinical prospective pilot study. Journal of Extracellular Vesicles, 2020, 9, 1766192.	12.2	71
46	HSP90 and HSP70: Implication in Inflammation Processes and Therapeutic Approaches for Myeloproliferative Neoplasms. Mediators of Inflammation, 2015, 2015, 1-8.	3.0	69
47	HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood, 2010, 116, 85-96.	1.4	66
48	Gap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis. Oncotarget, 2016, 7, 28160-28168.	1.8	66
49	The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Molecular and Cellular Proteomics, 2014, 13, 3585-3601.	3.8	65
50	Patients With Colorectal Tumors With Microsatellite Instability andÂLarge Deletions in HSP110 T17 Have Improved Response to 5-Fluorouracil–Based Chemotherapy. Gastroenterology, 2014, 146, 401-411.e1.	1.3	62
51	Hsp70: A Cancer Target Inside and Outside the Cell. Methods in Molecular Biology, 2018, 1709, 371-396.	0.9	62
52	Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood, 2012, 119, 1532-1542.	1.4	61
53	Reactive Plasmacytoses Are Expansions of Plasmablasts Retaining the Capacity to Differentiate Into Plasma Cells. Blood, 1999, 94, 701-712.	1.4	60
54	TLR3 Ligand Induces NF-κB Activation and Various Fates of Multiple Myeloma Cells Depending on IFN-α Production. Journal of Immunology, 2009, 182, 4471-4478.	0.8	59

GAETAN JEGO

#	Article	IF	CITATIONS
55	Heat Shock Proteins as Danger Signals for Cancer Detection. Frontiers in Oncology, 2011, 1, 37.	2.8	58
56	Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Letters, 2020, 469, 134-141.	7.2	56
57	HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene, 2017, 36, 2328-2336.	5.9	53
58	Lack of CD27 in myeloma delineates different presentation and outcome. British Journal of Haematology, 2006, 132, 168-170.	2.5	49
59	Heat shock proteins in hematopoietic malignancies. Experimental Cell Research, 2012, 318, 1946-1958.	2.6	49
60	Immunotherapy Via Dendritic Cells. , 2005, 560, 105-114.		47
61	<i>HSP110</i> T17 simplifies and improves the microsatellite instability testing in patients with colorectal cancer. Journal of Medical Genetics, 2016, 53, 377-384.	3.2	46
62	Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions. Oncotarget, 2016, 7, 73925-73934.	1.8	42
63	Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells. Oncotarget, 2017, 8, 37681-37693.	1.8	41
64	Fine-tuning nucleophosmin in macrophage differentiation and activation. Blood, 2011, 118, 4694-4704.	1.4	39
65	Osteoclasts support the survival of human plasma cells in vitro. International Immunology, 2008, 20, 775-782.	4.0	36
66	Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells. Oncotarget, 2015, 6, 28800-28815.	1.8	36
67	Extracellular HSP110 skews macrophage polarization in colorectal cancer. Oncolmmunology, 2016, 5, e1170264.	4.6	33
68	Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers, 2020, 12, 21.	3.7	32
69	Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death and Differentiation, 2020, 27, 117-129.	11.2	31
70	Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia, 2014, 28, 1676-1686.	7.2	30
71	Toll-like receptors: Expression and involvement in Multiple Myeloma. Leukemia Research, 2010, 34, 1545-1550.	0.8	29
72	Lactobacillus stress protein GroEL prevents colonic inflammation. Journal of Gastroenterology, 2021, 56, 442-455.	5.1	29

#	Article	IF	CITATIONS
73	Insulin response dysregulation explains abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome. Human Molecular Genetics, 2015, 24, 6603-6613.	2.9	26
74	The Hsp70 inhibiting peptide aptamer A17 potentiates radiosensitization of tumor cells by Hsp90 inhibition. Cancer Letters, 2017, 390, 146-152.	7.2	26
75	HSP110 translocates to the nucleus upon genotoxic chemotherapy and promotes DNA repair in colorectal cancer cells. Oncogene, 2019, 38, 2767-2777.	5.9	26
76	The HSP GRP94 interacts with macrophage intracellular complement C3 and impacts M2 profile during ER stress. Cell Death and Disease, 2021, 12, 114.	6.3	26
77	Phosphorothioate-Modified TLR9 Ligands Protect Cancer Cells against TRAIL-Induced Apoptosis. Journal of Immunology, 2009, 183, 4371-4377.	0.8	25
78	TLR9 Ligand Induces the Generation of CD20+ Plasmablasts and Plasma Cells from CD27+ Memory B-Cells. Frontiers in Immunology, 2011, 2, 83.	4.8	25
79	HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. Blood, 2018, 132, 510-520.	1.4	25
80	Endoplasmic Reticulum Chaperones in Viral Infection: Therapeutic Perspectives. Microbiology and Molecular Biology Reviews, 2021, 85, e0003521.	6.6	25
81	Circumvention of confluence-dependent resistance in a human multi-drug-resistant colon-cancer cell line. International Journal of Cancer, 1995, 61, 873-879.	5.1	24
82	Heat shock proteins and exosomes in cancer theranostics. Seminars in Cancer Biology, 2022, 86, 46-57.	9.6	24
83	Glycosaminoglycans inhibit the adherence and the spreading of osteoclasts and their precursors: Role in osteoclastogenesis and bone resorption. European Journal of Cell Biology, 2011, 90, 49-57.	3.6	23
84	HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nature Communications, 2018, 9, 1431.	12.8	21
85	The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene, 2016, 35, 2842-2851.	5.9	20
86	Reactive plasmacytoses can mimick plasma cell leukemia: Therapeutical implications. Leukemia and Lymphoma, 2007, 48, 207-208.	1.3	19
87	Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell Death and Disease, 2014, 5, e1016-e1016.	6.3	19
88	Antifibrotic Role of αB-Crystallin Inhibition in Pleural and Subpleural Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 244-252.	2.9	19
89	XPO1 regulates erythroid differentiation and is a new target for the treatment of β-thalassemia. Haematologica, 2020, 105, 2240-2249.	3.5	19
90	Reactive plasmacytoses, a model for studying the biology of human plasma cell progenitors and precursors. The Hematology Journal, 2000, 1, 362-366.	1.4	18

#	Article	IF	CITATIONS
91	Nanofitins targeting heat shock protein 110: An innovative immunotherapeutic modality in cancer. International Journal of Cancer, 2021, 148, 3019-3031.	5.1	16
92	C-terminal amino acids are essential for human heat shock protein 70 dimerization. Cell Stress and Chaperones, 2015, 20, 61-72.	2.9	15
93	Exosomal HSP70 for Monitoring of Frontotemporal Dementia and Alzheimer's Disease: Clinical and FDG-PET Correlation. Journal of Alzheimer's Disease, 2019, 71, 1263-1269.	2.6	15
94	Serpin B1 defect and increased apoptosis of neutrophils in Cohen syndrome neutropenia. Journal of Molecular Medicine, 2019, 97, 633-645.	3.9	15
95	HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer Journal, 2021, 11, 61.	6.2	14
96	Oncogenic extracellular HSP70 disrupts the gap-junctional coupling between capillary cells. Oncotarget, 2015, 6, 10267-10283.	1.8	14
97	The vesicular transfer of CLIC1 from glioblastoma to microvascular endothelial cells requires TRPM7. Oncotarget, 2018, 9, 33302-33311.	1.8	13
98	Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?. FASEB Journal, 2019, 33, 11629-11639.	0.5	12
99	XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-Cell Lymphoma. Cancers, 2020, 12, 2829.	3.7	12
100	Extracellular Heat Shock Proteins as Therapeutic Targets and Biomarkers in Fibrosing Interstitial Lung Diseases. International Journal of Molecular Sciences, 2021, 22, 9316.	4.1	11
101	Serum Gp96 is a chaperone of complement-C3 during graft-versus-host disease. JCI Insight, 2017, 2, e90531.	5.0	11
102	Microsatellite Instability in Colorectal Cancer: Time to Stop Hiding!. Oncotarget, 2011, 2, 826-827.	1.8	11
103	Heat shock protein-90 toward theranostics: a breath of fresh air in idiopathic pulmonary fibrosis. European Respiratory Journal, 2018, 51, 1702612.	6.7	10
104	Reactive plasmacytoses in multiple myeloma during hematopoietic recovery with G- or GM-CSF. Leukemia Research, 2000, 24, 627-630.	0.8	9
105	The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment. Frontiers in Molecular Neuroscience, 2017, 10, 246.	2.9	8
106	Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers, 2020, 12, 2592.	3.7	8
107	Various functions of caspases in hematopoiesis. Frontiers in Bioscience - Landmark, 2009, Volume, 2358.	3.0	6
108	Do not stress, just differentiate: role of stress proteins in hematopoiesis. Cell Death and Disease, 2015, 6, e1628-e1628.	6.3	5

GAETAN JEGO

#	Article	IF	CITATIONS
109	Neutralization of HSF1 in cells from PIK3CA-related overgrowth spectrum patients blocks abnormal proliferation. Biochemical and Biophysical Research Communications, 2020, 530, 520-526.	2.1	5
110	XPO1 (Exportin-1) ls a Major Regulator of Human Erythroid Differentiation. Potential Clinical Applications to Decrease Ineffective Erythropoiesis of Beta-Thalassemia. Blood, 2015, 126, 2368-2368.	1.4	4
111	Modulation of normal and malignant plasma cells function by toll-like receptors. Frontiers in Bioscience - Elite, 2012, E4, 2289-2301.	1.8	4
112	Modulation of normal and malignant plasma cells function by toll-like receptors. Frontiers in Bioscience - Elite, 2012, E4, 2289.	1.8	1
113	Small Heat Shock Proteins and Fibrosis. Heat Shock Proteins, 2015, , 315-334.	0.2	1
114	Osteoclasts but Not Macrophages or Dendritic Cells Support Long-Term Plasma Cell Survival Blood, 2006, 108, 931-931.	1.4	0
115	Fas-Dependent Apoptosis in Early MDS Erythroid Precursors Involves Endoplasmic Reticulum Blood, 2007, 110, 3346-3346.	1.4	0
116	HSP70, the Key to Account for Erythroid Tropism of Diamond-Blackfan Anemia?. Blood, 2015, 126, 671-671.	1.4	0

8