Xiaodong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360963/publications.pdf

Version: 2024-02-01

157	7,656	52	79
papers	citations	h-index	g-index
159	159	159	5801 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Research, 2022, 15, 186-194.	10.4	94
2	N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Research, 2022, 15, 304-309.	10.4	90
3	Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery. Journal of Colloid and Interface Science, 2022, 606, 666-676.	9.4	33
4	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 2022, 7, 97-107.	17.4	91
5	Revisiting the Preparation Progress of Nanoâ€Structured Si Anodes toward Industrial Application from the Perspective of Cost and Scalability. Advanced Energy Materials, 2022, 12, 2102181.	19.5	65
6	A Janus Separator for Inhibiting Shuttle Effect and Lithium Dendrite in Lithiumâ [^] Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	4.7	17
7	Highly Oriented {010} Crystal Plane Induced by Boron in Cobalt-Free Li- and Mn-Rich Layered Oxide. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2711-2719.	8.0	11
8	TiO ₂ @Chlorella-Based Biomass Carbon Modified Separator for High-Rate Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 1761-1772.	3.7	11
9	Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2022, 10, 3869-3888.	10.3	36
10	Integrating Multiâ€Heterointerfaces in a 1D@2D@1D Hierarchical Structure via Autocatalytic Pyrolysis for Ultraâ€Efficient Microwave Absorption Performance. Small, 2022, 18, e2105411.	10.0	47
11	Structural Reconstruction Driven by Oxygen Vacancies in Layered Niâ€Rich Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	53
12	A Janus Separator for Inhibiting Shuttle Effect and Lithium Dendrite in Lithiumâ^'Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	4.7	1
13	Understanding of the Irreversible Phase Transition and Zr-Doped Modification Strategy for a Nickel-Rich Cathode under a High Voltage. ACS Sustainable Chemistry and Engineering, 2022, 10, 3651-3660.	6.7	14
14	A Unique Structure of Highly Stable Interphase and Selfâ€Consistent Stress Distribution Radialâ€Gradient Porous for Silicon Anode. Advanced Functional Materials, 2022, 32, .	14.9	34
15	New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the Reaction Pathways by Low-Temperature Intermediates. Industrial & Engineering Chemistry Research, 2022, 61, 453-463.	3.7	4
16	Revisit the Progress of Binders for a Silicon-Based Anode from the Perspective of Designed Binder Structure and Special Sized Silicon Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 6246-6268.	3.7	13
17	Tuning the Delithiation State of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Enabling the Electronic Structure Modification to Enhance the Conversion of Polysulfides in a Lithium–Sulfur Battery. Industrial & Description of Polysulfides in 2022, 61, 6521-6530.	3.7	3
18	Enhancing Electrocatalytic NO Reduction to NH ₃ by the CoS Nanosheet with Sulfur Vacancies. Inorganic Chemistry, 2022, 61, 8096-8102.	4.0	26

#	Article	IF	CITATIONS
19	N-Doped C/ZnO-Modified Cu Foil Current Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Description of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of the Collector for a Stable Anode of Lithium of Collector for a Stable Anode of Collector for	3.7	4
20	Controlled synthesis of mesoporous Si/C composites anode via confining carbon coating and Mg gas reduction. Journal of Colloid and Interface Science, 2022, 627, 151-159.	9.4	6
21	Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage. Carbon, 2021, 173, 253-261.	10.3	34
22	Rapid in-situ fabrication of Fe $3O4$ /Fe $7S8@C$ composite as anode materials for lithium-ion batteries. Materials Research Bulletin, 2021 , 133 , 111021 .	5.2	15
23	Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability. Chemical Engineering Journal, 2021, 403, 126314.	12.7	75
24	The structural origin of enhanced stability of Na3.32Fe2.11Ca0.23(P2O7)2 cathode for Na-ion batteries. Nano Energy, 2021, 79, 105417.	16.0	23
25	Suppressing capacity fading and voltage decay of Ni-rich cathode material by dual-ion doping for lithium-ion batteries. Journal of Materials Science, 2021, 56, 2347-2359.	3.7	14
26	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	18.0	130
27	Synthesis of N-doped straw sheaf–like porous MnO@C composite as anode of advanced lithium-/sodium-ion batteries. Ionics, 2021, 27, 551-559.	2.4	4
28	N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. Journal of Colloid and Interface Science, 2021, 585, 43-50.	9.4	81
29	A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries. Journal of Power Sources, 2021, 485, 229331.	7.8	69
30	The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for Li–S batteries. Green Chemistry, 2021, 23, 942-950.	9.0	43
31	Inhibition of the shuttle effect of lithium–sulfur batteries via a tannic acid-metal one-step in situ chemical film-forming modified separator. Nanoscale, 2021, 13, 5058-5068.	5.6	15
32	Silicon/graphite composite anode with constrained swelling and a stable solid electrolyte interphase enabled by spent graphite. Green Chemistry, 2021, 23, 4531-4539.	9.0	40
33	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	10.3	29
34	Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy and Environmental Science, 2021, 14, 2244-2262.	30.8	177
35	Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 13151-13160.	10.3	26
36	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	10.3	102

#	Article	IF	CITATIONS
37	New Insights into the Mechanism of Enhanced Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ with a Polyacrylic Acid-Modified Binder. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10064-10070.	8.0	5
38	Coreâ€"Shell MOF@COF Motif Hybridization: Selectively Functionalized Precursors for Titanium Dioxide Nanoparticle-Embedded Nitrogen-Rich Carbon Architectures with Superior Capacitive Deionization Performance. Chemistry of Materials, 2021, 33, 1657-1666.	6.7	121
39	A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries. lonics, 2021, 27, 1829-1836.	2.4	8
40	A Ge/Carbon Atomicâ€Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie - International Edition, 2021, 60, 12539-12546.	13.8	41
41	Exposing microstructure evolution of Ni-Rich Ni-Co-Al hydroxide precursor. Chemical Engineering Science, 2021, 233, 116337.	3.8	13
42	A Novel NASICONâ€Typed Na ₄ VMn _{0.5} Fe _{0.5} (PO ₄) ₃ Cathode for Highâ€Performance Naâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100729.	19.5	108
43	A Ge/Carbon Atomicâ€Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie, 2021, 133, 12647-12654.	2.0	4
44	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30693-30702.	8.0	25
45	Solid Electrolyte Interphase Composition Regulation via Coating AlF ₃ for a High-Performance Hard Carbon Anode in Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 8242-8251.	5.1	6
46	Microstructure-Controlled Li-Rich Mn-Based Cathodes by a Gas–Solid Interface Reaction for Tackling the Continuous Activation of Li ₂ MnO ₃ . ACS Applied Materials & amp; Interfaces, 2021, 13, 40995-41003.	8.0	20
47	Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High lonic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2021, 13, 44497-44508.	8.0	20
48	Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag. Journal of Alloys and Compounds, 2021, 876, 160125.	5.5	20
49	A novel Si/TiSi2/G@C composite as anode material with excellent lithium storage performances. Materials Letters, 2021, 299, 130078.	2.6	5
50	A Simple Gas–Solid Treatment for Surface Modification of Liâ€Rich Oxides Cathodes. Angewandte Chemie - International Edition, 2021, 60, 23248-23255.	13.8	66
51	A Simple Gas–Solid Treatment for Surface Modification of Liâ€Rich Oxides Cathodes. Angewandte Chemie, 2021, 133, 23436-23443.	2.0	8
52	SiO <i>_x</i> Anode: From Fundamental Mechanism toward Industrial Application. Small, 2021, 17, e2102641.	10.0	57
53	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie - International Edition, 2021, 60, 25263-25268.	13.8	180
54	Recent advance in structure regulation of highâ€capacity Niâ€rich layered oxide cathodes. EcoMat, 2021, 3, e12141.	11.9	38

#	Article	IF	CITATIONS
55	Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries. Chemical Engineering Journal, 2021, 423, 130127.	12.7	32
56	Unveiling the abnormal capacity rising mechanism of MoS ₂ anode during long-term cycling for sodium-ion batteries. RSC Advances, 2021, 11, 28488-28495.	3.6	11
57	MoO ₂ @C modified separator as an interlayer for high performance lithium–sulfur batteries. Nanotechnology, 2021, 32, 105206.	2.6	9
58	A MnS/FeS ₂ heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 24024-24035.	10.3	38
59	Synergistic Effect of Microstructure Engineering and Local Crystal Structure Tuning to Improve the Cycling Stability of Ni-Rich Cathodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48720-48729.	8.0	17
60	Cu nanowires modified with carbon-rich conjugated framework PTEB for stabilizing lithium metal anodes. Chemical Communications, 2021, 57, 13606-13609.	4.1	5
61	An integrated cathode and solid electrolyte <i>via in situ</i> polymerization with significantly reduced interface resistance. Chemical Communications, 2021, 57, 13004-13007.	4.1	2
62	Synthesis Strategies and Structural Design of Porous Carbonâ€Incorporated Anodes for Sodiumâ€Ion Batteries. Small Methods, 2020, 4, 1900163.	8.6	49
63	Deciphering an Abnormal Layeredâ€Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie, 2020, 132, 1507-1511.	2.0	17
64	Deciphering an Abnormal Layeredâ€Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 1491-1495.	13.8	78
65	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 2470-2477.	2.0	26
66	Stabilizing the Structure of Nickelâ€Rich Lithiated Oxides via Cr Doping as Cathode with Boosted Highâ€Voltage/Temperature Cycling Performance for Liâ€Ion Battery. Energy Technology, 2020, 8, 1900498.	3.8	20
67	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456.	13.8	101
68	Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping. Chemical Engineering Journal, 2020, 386, 123953.	12.7	59
69	Poly(ethylene oxide)/Poly(vinylidene ï¬,uoride)/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries. Journal of Power Sources, 2020, 472, 228461.	7.8	37
70	Suppressing the Shuttling of Polysulfide by a Self-Assembled FeOOH Separator in Li–S Batteries. Industrial & Department of the Company of the Shuttling of Polysulfide by a Self-Assembled FeOOH Separator in Li–S Batteries.	3.7	8
71	Self-supported cobalt phosphate nanoarray with pseudocapacitive behavior: An efficient 3D anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 848, 156285.	5.5	13
72	Review of the application of biomass-derived porous carbon in lithium-sulfur batteries. Ionics, 2020, 26, 4765-4781.	2.4	34

#	Article	IF	CITATIONS
73	Enabling electrochemical conversion of N ₂ to NH ₃ under ambient conditions by a CoP ₃ nanoneedle array. Journal of Materials Chemistry A, 2020, 8, 17956-17959.	10.3	53
74	Rational synthesis of a ZIF-67@Co–Ni LDH heterostructure and derived heterogeneous carbon-based framework as a highly efficient multifunctional sulfur host. Dalton Transactions, 2020, 49, 12686-12694.	3.3	28
75	Threeâ€Dimensional SnS ₂ Nanoarrays with Enhanced Lithiumâ€Ion Storage Properties. ChemElectroChem, 2020, 7, 4484-4491.	3.4	8
76	Enabling Superior Electrochemical Performance of Lithium-Rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Materials by Surface Integration. Industrial & Demistry Research, 2020, 59, 19312-19321.	3.7	15
77	Na ₂ S Treatment and Coherent Interface Modification of the Li-Rich Cathode to Address Capacity and Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 42660-42668.	8.0	26
78	Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni–Co–Al Cathode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 22549-22558.	3.7	11
79	Novel Bifunctional Separator with a Self-Assembled FeOOH/Coated g-C ₃ N ₄ /KB Bilayer in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 57859-57869.	8.0	23
80	Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2020, 8, 11493-11510.	10.3	113
81	Relieving capacity decay and voltage fading of Li1.2Ni0.13Co0.13Mn0.54O2 by Mg2+ and PO43- dual doping. Materials Research Bulletin, 2020, 130, 110923.	5.2	16
82	Chemical and Structural Evolution during the Synthesis of Layered Li(Ni,Co,Mn)O ₂ Oxides. Chemistry of Materials, 2020, 32, 4984-4997.	6.7	58
83	Synergistic effect of uniform lattice cation/anion doping to improve structural and electrochemical performance stability for Li-rich cathode materials. Nanotechnology, 2020, 31, 455704.	2.6	14
84	Novel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 7538-7545.	3.7	16
85	Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. Chemical Communications, 2020, 56, 4886-4889.	4.1	34
86	3D hierarchical rose-like Ni ₂ P@rGO assembled from interconnected nanoflakes as anode for lithium ion batteries. RSC Advances, 2020, 10, 3936-3945.	3.6	19
87	Synthesis of hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres as anode materials for lithium/sodium ion batteries. RSC Advances, 2020, 10, 6035-6042.	3.6	19
88	Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10240-10251.	8.0	80
89	A novel Mn-based P2/tunnel/O3′ tri-phase composite cathode with enhanced sodium storage properties. Chemical Communications, 2020, 56, 2921-2924.	4.1	20
90	General Synthesis of M _{<i>x</i>} S (M = Co, Cu) Hollow Spheres with Enhanced Sodium-Ion Storage Property in Ether-Based Electrolyte. Industrial & Engineering Chemistry Research, 2020, 59, 1568-1577.	3.7	11

#	Article	IF	Citations
91	A fundamental understanding of the Fe/Ti doping induced structure formation process to realize controlled synthesis of layer-tunnel Na0.6MnO2 cathode. Nano Energy, 2020, 70, 104539.	16.0	26
92	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001334.	14.9	142
93	Mo ₂ C-Embedded Carambola-like N,S-Rich Carbon Framework as the Interlayer Material for High-Rate Lithium–Sulfur Batteries in a Wide Temperature Range. ACS Applied Materials & Materials & Interfaces, 2020, 12, 22971-22980.	8.0	56
94	Hydrangeaâ€Like CuS with Irreversible Amorphization Transition for Highâ€Performance Sodiumâ€lon Storage. Advanced Science, 2020, 7, 1903279.	11.2	57
95	Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. Journal of Materials Chemistry A, 2020, 8, 8049-8057.	10.3	38
96	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 20979-21000.	3.7	13
97	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. Research, 2020, 2020, 1469301.	5.7	33
98	Nanowire of WP as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2019, 25, 971-975.	3.3	15
99	Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer–Tunnel Na⟨sub⟩0.6⟨ sub⟩MnO⟨sub⟩2⟨ sub⟩ with Mg⟨sup⟩2+⟨ sup⟩ Doping at Na Mn Site. ACS Applied Materials & Doping at Na Mn Site. ACS Applied Materials & Doping at Na Mn Site. ACS Applied Materials & Doping Action (Naterials & Dopi	8.0	28
100	Lithiumâ€lon Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode (Adv. Sci. 13/2019). Advanced Science, 2019, 6, 1970076.	11.2	14
101	Enhanced constraint and catalysed conversion of lithium polysulfides <i>via</i> composite oxides from spent layered cathodes. Journal of Materials Chemistry A, 2019, 7, 17867-17875.	10.3	28
102	Simultaneous Component Ratio and Particle Size Optimization for Highâ€Performance and High Tap Density P2/P3 Composite Cathode of Sodiumâ€ion Batteries. ChemElectroChem, 2019, 6, 5155-5161.	3.4	20
103	TiS ₂ nanosheets for efficient electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Inorganic Chemistry Frontiers, 2019, 6, 1986-1989.	6.0	19
104	Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. Nano Energy, 2019, 63, 103818.	16.0	164
105	Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16629-16638.	8.0	142
106	Ni ₂ P Nanosheets on Carbon Cloth: An Efficient Flexible Electrode for Sodium-Ion Batteries. Inorganic Chemistry, 2019, 58, 6579-6583.	4.0	35
107	A rational design of the coupling mechanism of physical adsorption and chemical charge effect for high-performance lithium–sulfur batteries. RSC Advances, 2019, 9, 12710-12717.	3.6	12
108	Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. Journal of Power Sources, 2019, 423, 144-151.	7.8	106

#	Article	IF	CITATIONS
109	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€lon Battery. Advanced Energy Materials, 2019, 9, 1803978.	19.5	191
110	Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2-F cathode. Electrochimica Acta, 2019, 308, 64-73.	5.2	37
111	Highâ€Abundance and Lowâ€Cost Metalâ€Based Cathode Materials for Sodiumâ€Ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials, 2019, 9, 1803609.	19.5	176
112	Structure and electrochemical performance modulation of a LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ cathode material by anion and cation co-doping for lithium ion batteries. RSC Advances, 2019, 9, 36849-36857.	3.6	26
113	Boron-Doped TiO ₂ for Efficient Electrocatalytic N ₂ Fixation to NH ₃ at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 117-122.	6.7	131
114	Interpreting Abnormal Charge–Discharge Plateau Migration in CuxS during Long-Term Cycling. ACS Applied Materials & Discharge 11, 3961-3970.	8.0	31
115	Organic Crossâ€Linker Enabling a 3D Porous Skeleton–Supported Na ₃ V ₂ (PO ₄) ₃ /Carbon Composite for High Power Sodiumâ€ion Battery Cathode. Small Methods, 2019, 3, 1800169.	8.6	87
116	Enabling the electrocatalytic fixation of N ₂ to NH ₃ by C-doped TiO ₂ nanoparticles under ambient conditions. Nanoscale Advances, 2019, 1, 961-964.	4.6	44
117	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Oxides. Advanced Energy Materials, 2019, 9, 1803094.	19.5	78
118	Cu ²⁺ Dual-Doped Layer-Tunnel Hybrid Na _{0.6} Mn _{1â€"<i>x</i>} Cu _{<i>x</i>} O ₂ as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. ACS Applied Materials & Diterfaces, 2018, 10, 10147-10156.	8.0	98
119	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni ₂ P–CeO ₂ . Inorganic Chemistry, 2018, 57, 548-552.	4.0	78
120	Co(OH) ₂ Nanoparticleâ€Encapsulating Conductive Nanowires Array: Roomâ€Temperature Electrochemical Preparation for Highâ€Performance Water Oxidation Electrocatalysis. Advanced Materials, 2018, 30, 1705366.	21.0	294
121	Synthesis and electrochemical performance of Li3V2(PO4)3/C by organic solvent replacement drying method. Ionics, 2018, 24, 385-391.	2.4	2
122	Effect of Na2S treatment on the structural and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Journal of Solid State Electrochemistry, 2018, 22, 547-554.	2.5	5
123	Synthesis and lithium-ion storage performances of LiFe0.5Co0.5PO4/C nanoplatelets and nanorods. lonics, 2018, 24, 2275-2285.	2.4	3
124	In Operando Investigation of the Structural Evolution during Calcination and Corresponding Enhanced Performance of Three-Dimensional Na ₂ Ti ₆ O ₁₃ @C–N Hierarchical Microflowers. Industrial & Engineering Chemistry Research, 2018, 57, 17430-17436.	3.7	5
125	Three-Dimensional Chestnut-Like Architecture Assembled from NaTi ₃ O ₆ (OH)·2H ₂ O@N-Doped Carbon Nanosheets with Enhanced Sodium Storage Properties. ACS Applied Materials & Interfaces, 2018, 10, 43740-43748.	8.0	9
126	Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochimica Acta, 2018, 291, 84-94.	5.2	163

#	Article	IF	Citations
127	Insight into the Multirole of Graphene in Preparation of High Performance Na _{2+2<i>x</i>} Fe _{2–<i>x</i>} (SO ₄) ₃ Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 16105-16112.	6.7	24
128	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€Ion Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	19.5	116
129	Design and Synthesis of Layered Na ₂ Ti ₃ O ₇ and Tunnel Na ₂ Ti _{Hybrid Structures with Enhanced Electrochemical Behavior for Sodiumâ€ion Batteries. Advanced Science, 2018, 5, 1800519.}	11.2	102
130	FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chemical Communications, 2018, 54, 9341-9344.	4.1	106
131	Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating. Journal of Alloys and Compounds, 2018, 766, 546-555.	5.5	57
132	Enabling Effective Electrocatalytic N ₂ Conversion to NH ₃ by the TiO ₂ Nanosheets Array under Ambient Conditions. ACS Applied Materials & Diterfaces, 2018, 10, 28251-28255.	8.0	222
133	Exposing {010} Active Facets by Multipleâ€Layer Oriented Stacking Nanosheets for Highâ€Performance Capacitive Sodiumâ€lon Oxide Cathode. Advanced Materials, 2018, 30, e1803765.	21.0	142
134	Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232, 123-131.	5.2	60
135	Construction of 3D pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /conducting carbon composites for high-power sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9833-9841.	10.3	101
136	Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Electrochemical Performance Ion	8.0	60
137	Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries. Electrochimica Acta, 2017, 246, 931-940.	5.2	49
138	Carbonâ€Coated Na _{3.32} Fe _{2.34} (P ₂ O ₇) ₂ Cathode Material for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605535.	. 21.0	161
139	Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceramics International, 2017, 43, 3866-3872.	4.8	76
140	Insight into the Origin of Capacity Fluctuation of Na ₂ Ti ₆ O ₁₃ Anode in Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43596-43602.	8.0	34
141	Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. Journal of Materials Chemistry A, 2017, 5, 25391-25400.	10.3	67
142	LiNi0.5Mn1.5O4 hollow nano-micro hierarchical microspheres as advanced cathode for lithium ion batteries. Ionics, 2017, 23, 27-34.	2.4	13
143	Understanding Performance Differences from Various Synthesis Methods: A Case Study of Spinel LiCr _{0.2} Ni _{0.4} Mn _{1.4} O ₄ Cathode Material. ACS Applied Materials &	8.0	12
144	Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. Journal of Alloys and Compounds, 2016, 688, 790-797.	5.5	67

#	Article	IF	CITATIONS
145	P2-type Na 0.67 Mn 0.72 Ni 0.14 Co 0.14 O 2 with K + doping as new high rate performance cathode material for sodium-ion batteries. Electrochimica Acta, 2016, 216, 51-57.	5.2	59
146	Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for Li-ion batteries. RSC Advances, 2016, 6, 70091-70098.	3.6	15
147	Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method. lonics, 2016, 22, 1361-1368.	2.4	15
148	An Approach towards Synthesis of Nanoarchitectured LiNi $<$ sub $>1/3sub>1/31/$	4.9	27
149	Synthesis of hierarchical worm-like SnO2@C aggregates and their enhanced lithium storage properties. Journal of Alloys and Compounds, 2015, 620, 407-412.	5.5	14
150	Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries. RSC Advances, 2015, 5, 2947-2951.	3.6	11
151	Synthesis of Core–Shell Structured LiFe _{0.5} Mn _{0.3} Co _{0.2} PO ₄ @C with Remarkable Electrochemical Performance as the Cathode of a Lithiumâ€lon Battery. ChemElectroChem, 2015, 2, 896-902.	3.4	16
152	Subunits controlled synthesis of α-Fe ₂ O ₃ multi-shelled core–shell microspheres and their effects on lithium/sodium ion battery performances. Journal of Materials Chemistry A, 2015, 3, 10092-10099.	10.3	92
153	Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. Journal of Power Sources, 2015, 275, 200-206.	7.8	84
154	Facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. Journal of Solid State Electrochemistry, 2014, 18, 215-221.	2.5	22
155	Influence of vanadium compound coating on lithium-rich layered oxide cathode for lithium-ion batteries. RSC Advances, 2014, 4, 56273-56278.	3.6	14
156	Facile Combustion Synthesis and Electrochemical Performance of the Cathode Material Li _{1.231} Mn _{0.615} Ni _{0.154} O ₂ . European Journal of Inorganic Chemistry, 2013, 2013, 5436-5442.	2.0	7
157	Constructing a Sheet-Stacked Si/C Composite by Recycling Photovoltaic Si Waste for Li-Ion Batteries. Industrial & Damp; Engineering Chemistry Research, 0, , .	3.7	10