Noam Soker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360545/publications.pdf

Version: 2024-02-01

85541 47006 9,536 357 47 71 citations h-index g-index papers 357 357 357 3236 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Faint intermediate luminosity optical transients (ILOTs) from engulfing exoplanets on the Hertzsprung gap. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1330-1335.	4.4	4
2	Common Envelope to Explosion Delay time Distribution (CEEDTD) of Type Ia Supernovae. Research in Astronomy and Astrophysics, 2022, 22, 035025.	1.7	6
3	Imprints of the Jittering Jets Explosion Mechanism in the Morphology of the Supernova Remnant SNR 0540-69.3. Research in Astronomy and Astrophysics, 2022, 22, 035019.	1.7	13
4	Common Envelope Jet Supernova r-process Yields Can Reproduce [Eu/Fe] Abundance Evolution in the Galaxy. Astrophysical Journal Letters, 2022, 926, L9.	8.3	12
5	A Common Envelope Jets Supernova (CEJSN) Impostor Scenario for Fast Blue Optical Transients. Research in Astronomy and Astrophysics, 2022, 22, 055010.	1.7	23
6	A Twin-jet Structure Rather than Jet Rotation in the Young Stellar Object OMC 2/FIR 6b. Astrophysical Journal, 2022, 928, 159.	4.5	1
7	Accretion-induced merger leading to core-collapse supernovae in old stellar populations. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4242-4248.	4.4	1
8	Remnant masses of core collapse supernovae in the jittering jets explosion mechanism. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4224-4231.	4.4	14
9	Postexplosion Positive Jet-feedback Activity in Inner Ejecta of Core Collapse Supernovae. Astrophysical Journal, 2022, 930, 59.	4.5	3
10	Three-dimensional simulations of the jet feedback mechanism in common envelope jets supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3212-3221.	4.4	15
11	Preface of "Asymmetric Planetary Nebulae 8e― Galaxies, 2022, 10, 81.	3.0	O
12	Modeling Light Curves of Bipolar Core Collapse Supernovae from the Equatorial Plane. Astrophysical Journal, 2021, 907, 120.	4.5	3
13	Possible post-kick jets in SN 1987A. New Astronomy, 2021, 84, 101548.	1.8	3
14	Shaping "Ears―in Planetary Nebulae by Early Jets. Astrophysical Journal, 2021, 913, 91.	4.5	6
15	Double common envelope jets supernovae (CEJSNe) by triple-star systems. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5967-5974.	4.4	14
16	Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering. Research in Astronomy and Astrophysics, 2021, 21, 090.	1.7	11
17	Parasite common envelope evolution by triple-star systems. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4791-4797.	4.4	5
18	The future influence of six exoplanets on the envelope properties of their parent stars on the giant branches. Monthly Notices of the Royal Astronomical Society, 2021, 506, 468-472.	4.4	7

#	Article	IF	Citations
19	Rare events of a peculiar thermonuclear supernova that precedes a core-collapse supernova. Monthly Notices of the Royal Astronomical Society, 2021, 506, 919-927.	4.4	1
20	The circumstellar matter of type II intermediate luminosity optical transients (ILOTs). Research in Astronomy and Astrophysics, 2021, 21, 112.	1.7	6
21	The X-Ray Properties of Eta Carinae During Its 2020 X-Ray Minimum. Astrophysical Journal, 2021, 914, 47.	4.5	3
22	Rapid expansion of red giant stars during core helium flash by waves propagation to the envelope and implications to exoplanets. Monthly Notices of the Royal Astronomical Society, 2021, 507, 414-420.	4.4	3
23	A Red Giant Branch Common-envelope Evolution Scenario for the Exoplanet WD 1856 b. Astrophysical Journal Letters, 2021, 915, L34.	8.3	12
24	Binary neutron star merger in common envelope jets supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2445-2452.	4.4	11
25	Common envelope jets supernovae with a black hole companion as possible high-energy neutrino sources. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1651-1661.	4.4	22
26	Supplying angular momentum to the jittering jets explosion mechanism using inner convection layers. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 508, L43-L47.	3.3	15
27	Simulating highly eccentric common envelope jet supernova impostors. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2386-2398.	4.4	18
28	Simulating the inflation of bubbles by late jets in core collapse supernova ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4053-4063.	4.4	7
29	A Pre-explosion Extended Effervescent Zone around Core-collapse Supernova Progenitors. Astrophysical Journal, 2021, 906, 1.	4.5	11
30	Simulating the Negative Jet Feedback Mechanism in Common Envelope Jet Supernovae. Astrophysical Journal, 2021, 922, 61.	4.5	13
31	Simulating the Outcome of a Binary Neutron Star Merger in a Common Envelope Jets Supernova. Astrophysical Journal, 2021, 923, 55.	4.5	3
32	Jet-driven AGN feedback in galaxy formation before black hole formation. New Astronomy, 2020, 81, 101438.	1.8	2
33	Kinematics of Filaments in Cooling Flow Clusters and Heating by Mixing. Astrophysical Journal, 2020, 896, 104.	4.5	18
34	Enhanced mass-loss rate evolution of stars with ≳18 M⊙ and missing optically observed type II core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5230-5238.	4.4	5
35	Jet-shaped geometrically modified light curves of core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5909-5916.	4.4	11
36	Low-energy core-collapse supernovae in the frame of the jittering jets explosion mechanism. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5902-5908.	4.4	7

#	Article	IF	CITATIONS
37	Eccentric grazing envelope evolution towards TypeÂllb supernova progenitors. Monthly Notices of the Royal Astronomical Society, 2020, 497, 855-864.	4.4	3
38	On the role of reduced wind mass-loss rate in enabling exoplanets to shape planetary nebulae. Monthly Notices of the Royal Astronomical Society, 2020, 496, 612-619.	4.4	9
39	Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution. Galaxies, 2020, 8, 26.	3.0	12
40	A Companion Star Launching Jets in the Wind Acceleration Zone of a Giant Star. Astrophysical Journal, 2020, 891, 33.	4.5	4
41	Emission peaks in the light curve of core collapse supernovae by late jets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3013-3020.	4.4	17
42	Amplifying magnetic fields of a newly born neutron star by stochastic angular momentum accretion in core collapse supernovae. Research in Astronomy and Astrophysics, 2020, 20, 024.	1.7	13
43	On rare core collapse supernovae inside planetary nebulae. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2850-2858.	4.4	2
44	Efficiently Jet-powered Radiation in Intermediate-luminosity Optical Transients. Astrophysical Journal, 2020, 893, 20.	4.5	17
45	Simulating Jets from a Neutron Star Companion Hours after a Core-collapse Supernova. Astrophysical Journal, 2020, 901, 53.	4.5	8
46	Minutes-delayed Jets from a Neutron Star Companion in Core-collapse Supernovae. Astrophysical Journal, 2020, 902, 130.	4.5	3
47	Companion-launched jets and their effect on the dynamics of common envelope interaction simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5615-5632.	4.4	56
48	Common envelope to explosion delay time of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2430-2435.	4.4	11
49	Reviving the stalled shock by jittering jets in core collapse supernovae: jets from the standing accretion shock instability. Research in Astronomy and Astrophysics, 2019, 19, 095.	1.7	21
50	Pre-supernova outbursts of massive stars in the presence of a neutron star companion. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2277-2283.	4.4	9
51	The class of supernova progenitors that result from fatal common envelope evolution. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	9
52	The Common Envelope Jet Supernova (CEJSN) r-process Scenario. Astrophysical Journal, 2019, 878, 24.	4.5	42
53	Storing magnetic fields in pre-collapse cores of massive stars. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1652-1657.	4.4	5
54	Explaining the Early Excess Emission of the Type Ia Supernova 2018oh by the Interaction of the Ejecta with Disk-originated Matter. Astrophysical Journal Letters, 2019, 872, L7.	8.3	23

#	Article	IF	Citations
55	Constraining Type Ia supernova asymmetry with the gamma-ray escape time-scale. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5528-5534.	4.4	4
56	Common envelope jets supernova (CEJSN) impostors resulting from a neutron star companion. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4233-4242.	4.4	39
57	Diversity of common envelope jets supernovae and the fast transient AT2018cow. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4972-4979.	4.4	63
58	The requirement for mixing-heating to utilize bubble cosmic rays to heat the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1883-1888.	4.4	4
59	Type IIb supernovae by the grazing envelope evolution. Monthly Notices of the Royal Astronomical Society, $2019, \dots$	4.4	8
60	Supernovae Ia in 2019 (review): A rising demand for spherical explosions. New Astronomy Reviews, 2019, 87, 101535.	12.8	52
61	Variable jets at the termination of the common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5020-5025.	4.4	5
62	Intermediate Luminosity Optical Transients (ILOTs) from Merging Giants. Astrophysical Journal, 2019, 884, 58.	4.5	10
63	Evaporating Planets in SNe Ia. Research Notes of the AAS, 2019, 3, 153.	0.7	3
64	Accounting for planet-shaped planetary nebulae. Monthly Notices of the Royal Astronomical Society, 2018, 473, 286-294.	4.4	38
65	Supernovae la in 2017: a long time delay from merger/accretion to explosion. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	26
66	Neutron Star Natal Kick and Jets in Core Collapse Supernovae. Astrophysical Journal, 2018, 855, 82.	4.5	15
67	Uplifted cool gas and heating by mixing in cooling flows. Research in Astronomy and Astrophysics, 2018, 18, 081.	1.7	9
68	The Orientation of Eta Carinae and the Powering Mechanism of Intermediate-luminosity Optical Transients (ILOTS). Astrophysical Journal, 2018, 858, 117.	4.5	2
69	The limited role of recombination energy in common envelope removal. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1818-1824.	4.4	46
70	Oxygen-neon-rich merger during common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4519-4525.	4.4	14
71	Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs). Galaxies, 2018, 6, 58.	3.0	7
72	The class of Jsolated stars and luminous planetary nebulae in old stellar populations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2249-2255.	4.4	9

#	Article	IF	Citations
73	The formation of †columns crowns†by jets interacting with a circumstellar dense shell. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2754-2765.	4.4	13
74	Possible white dwarf progenitors of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3702-3705.	4.4	4
75	Radiating the Hydrogen Recombination Energy during Common Envelope Evolution. Astrophysical Journal Letters, 2018, 863, L14.	8.3	28
76	The rotational shear in pre-collapse cores of massive stars. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1194-1205.	4.4	3
77	Explaining iPTF14hls as a common-envelope jets supernova. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1198-1202.	4.4	59
78	Forming H-shaped and barrel-shaped nebulae with interacting jets. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4794-4808.	4.4	19
79	Simulating a binary system that experiences the grazing envelope evolution. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2584-2598.	4.4	38
80	A mixed helium–oxygen shell in some core-collapse supernova progenitors. Monthly Notices of the Royal Astronomical Society, 2018, 478, 703-710.	4.4	2
81	Orbital Radius during the Grazing Envelope Evolution. Astrophysical Journal, 2018, 861, 136.	4.5	7
82	Jittering Jets in Cooling Flow Clusters. Research Notes of the AAS, 2018, 2, 48.	0.7	4
83	Hitomi observations of Perseus support heating by mixing. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L39-L42.	3.3	28
84	Planetary Nebulae that Cannot Be Explained by Binary Systems. Astrophysical Journal Letters, 2017, 837, L10.	8.3	28
85	Simulating the onset of grazing envelope evolution of binary stars. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 465, L54-L58.	3.3	39
86	The imprints of the last jets in core collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1770-1777.	4.4	30
87	Gentle Heating by Mixing in Cooling Flow Clusters. Astrophysical Journal, 2017, 845, 91.	4.5	27
88	Early UV emission from disc-originated matter (DOM) in Type Ia supernovae in the double-degenerate scenario. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2510-2516.	4.4	23
89	An outburst powered by the merging of two stars inside the envelope of a giant. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3456-3464.	4.4	16
90	The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism. Astrophysical Journal Letters, 2017, 839, L6.	8.3	13

#	Article	IF	Citations
91	Shaping planetary nebulae with jets in inclined triple stellar systems. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3296-3306.	4.4	13
92	What planetary nebulae can tell us about jets in core collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 140-146.	4.4	18
93	Energy transport by convection in the common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4361-4367.	4.4	42
94	Grazing envelope evolution towards Type IIb supernovae. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L102-L106.	3.3	18
95	Energizing the last phase of common-envelope removal. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4839-4843.	4.4	29
96	A minority view on the majority: A personal meeting summary on the explosion mechanism of supernovae. Proceedings of the International Astronomical Union, 2017, 12, 131-140.	0.0	0
97	Magnetar-powered Superluminous Supernovae Must First Be Exploded by Jets. Astrophysical Journal, 2017, 851, 95.	4.5	50
98	The two promising scenarios to explode core collapse supernovae. Research in Astronomy and Astrophysics, 2017, 17, 113.	1.7	23
99	Pre-explosion dynamo in the cores of massive stars. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3249-3255.	4.4	14
100	An intermediate luminosity optical transient (ILOTs) model for the young stellar object ASASSN-15qi. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4938-4943.	4.4	10
101	Core collapse supernova remnants with ears. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1226-1235.	4.4	40
102	EXPLAINING THE MOST ENERGETIC SUPERNOVAE WITH AN INEFFICIENT JET-FEEDBACK MECHANISM. Astrophysical Journal, 2016, 826, 178.	4.5	67
103	ANGULAR MOMENTUM FLUCTUATIONS IN THE CONVECTIVE HELIUM SHELL OF MASSIVE STARS. Astrophysical Journal, 2016, 827, 40.	4.5	26
104	Binary interactions with high accretion rates onto main sequence stars. Research in Astronomy and Astrophysics, 2016, 16, 017.	1.7	30
105	Operation of the jet feedback mechanism (JFM) in intermediate luminosity optical transients (ILOTs). Research in Astronomy and Astrophysics, 2016, 16, 014.	1.7	32
106	Rescuing the intracluster medium of NGC 5813. Research in Astronomy and Astrophysics, 2016, 16, 015.	1.7	4
107	Using Intermediate-Luminosity Optical Transients (ILOTs) to reveal extended extra-solar Kuiper belt objects. Research in Astronomy and Astrophysics, 2016, 16, 014.	1.7	1
108	ORBITAL PARAMETERS FOR THE 250 M _⊙ ETA CARINAE BINARY SYSTEM. Astrophysical Journal, 2016, 825, 105.	4.5	11

#	Article	IF	Citations
109	Jets launched at magnetar birth cannot be ignored. New Astronomy, 2016, 47, 88-90.	1.8	33
110	The jet feedback mechanism (JFM) in stars, galaxies and clusters. New Astronomy Reviews, 2016, 75, 1-23.	12.8	120
111	The influence of mergers and ram-pressure stripping on black hole–bulge correlations. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3533-3541.	4.4	5
112	Shaping planetary nebulae with jets in inclined triple stellar systems. Proceedings of the International Astronomical Union, 2016, 12, 227-230.	0.0	0
113	Bipolar rings from jet-inflated bubbles around evolved binary stars. Monthly Notices of the Royal Astronomical Society, 2016, 462, 206-216.	4.4	10
114	Explaining two recent intermediate-luminosity optical transients (ILOTs) by a binary interaction and jets. Monthly Notices of the Royal Astronomical Society, 2016, 462, 217-222.	4.4	27
115	Planetary nebula progenitors that swallow binary systems. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1584-1593.	4.4	26
116	Heating the intracluster medium by jet-inflated bubbles. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2139-2148.	4.4	57
117	Intermediate luminosity optical transients during the grazing envelope evolution (GEE). New Astronomy, 2016, 47, 16-18.	1.8	26
118	Launching jets from accretion belts. Research in Astronomy and Astrophysics, 2016, 16, 001.	1.7	22
119	Is the central binary system of the planetary nebula Henize 2–428 a type Ia supernova progenitor?. New Astronomy, 2016, 45, 7-13.	1.8	9
120	Ejecting the envelope of red supergiant stars with jets launched by an inspiralling neutron star. Monthly Notices of the Royal Astronomical Society, 2015, 449, 288-295.	4.4	44
121	Modelling SNR G1.9+0.3 as a Supernova inside a Planetary Nebula. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1399-1408.	4.4	19
122	A call for a paradigm shift from neutrino-driven to jet-driven core-collapse supernova mechanisms. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2362-2367.	4.4	42
123	Type Ia supernova remnants: shaping by iron bullets. Monthly Notices of the Royal Astronomical Society, 2015, 453, 166-171.	4.4	14
124	Forming equatorial rings around dying stars. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2115-2125.	4.4	21
125	Planetary systems and real planetary nebulae from planet destruction near white dwarfs. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4233-4239.	4.4	39
126	The circumstellar matter of supernova 2014J and the core-degenerate scenario. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1333-1337.	4.4	28

#	Article	IF	Citations
127	A formation scenario for the triple pulsar PSR J0337+1715: breaking a binary system inside a common envelope. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1716-1723.	4.4	29
128	THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE. Astrophysical Journal, 2015, 800, 8.	4.5	48
129	CLOSE STELLAR BINARY SYSTEMS BY GRAZING ENVELOPE EVOLUTION. Astrophysical Journal, 2015, 800, 114.	4.5	69
130	Constraining the double-degenerate scenario for Type Ia supernovae from merger ejected matter. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2803-2809.	4.4	41
131	The response of a helium white dwarf to an exploding Type Ia supernova. Monthly Notices of the Royal Astronomical Society, 2015, 449, 942-954.	4.4	22
132	IMPLICATIONS OF TURBULENCE FOR JETS IN CORE-COLLAPSE SUPERNOVA EXPLOSIONS. Astrophysical Journal, 2015, 806, 28.	4.5	36
133	BINARY SYSTEMS OF CORE-COLLAPSE SUPERNOVAE POLLUTING A GIANT COMPANION. Astrophysical Journal, 2015, 806, 73.	4.5	3
134	The fraction of type Ia supernovae exploding inside planetary nebulae (SNIPs). Monthly Notices of the Royal Astronomical Society, 2015, 447, 2568-2574.	4.4	56
135	A pre-explosion optical transient event from a white dwarf merger with a giant supernova progenitor. Monthly Notices of the Royal Astronomical Society, 2014, 439, 954-967.	4.4	12
136	Planetary influences on photometric variations of the extreme helium subdwarf KIC 10449976. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1400-1403.	4.4	8
137	A planar jittering-jets pattern in core collapse supernova explosions. Monthly Notices of the Royal Astronomical Society, 2014, 443, 664-670.	4.4	33
138	Heating cold clumps by jet-inflated bubbles in cooling flow clusters. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4161-4174.	4.4	23
139	Limits on core-driven ILOT outbursts of asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 2014, 440, 582-587.	4.4	11
140	Wave-driven stellar expansion and binary interaction in pre-supernova outbursts. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2492-2499.	4.4	47
141	First- versus second-generation planet formation in post-common envelope binary (PCEB) planetary systems. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1698-1704.	4.4	60
142	Triggering jet-driven explosions of core-collapse supernovae by accretion from convective regions. Monthly Notices of the Royal Astronomical Society, 2014, 439, 4011-4017.	4.4	51
143	THE <i>CHANDRA</i> PLANETARY NEBULA SURVEY (CHANPLANS). II. X-RAY EMISSION FROM COMPACT PLANETARY NEBULAE. Astrophysical Journal, 2014, 794, 99.	4.5	40
144	Exploding core-collapse supernovae by jets-driven feedback mechanism. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1027-1037.	4.4	31

#	Article	IF	CITATIONS
145	What sodium absorption lines tell us about Type Ia supernovae. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 444, L73-L77.	3.3	15
146	Merger by migration at the final phase of common envelope evolution. New Astronomy, 2013, 18, 18-22.	1.8	25
147	Accretion of dense clumps in the periastron passage of η Carinae. New Astronomy, 2013, 18, 23-30.	1.8	14
148	Transient outburst events from tidally disrupted asteroids near white dwarfs. New Astronomy, 2013, 19, 56-61.	1.8	49
149	Type la supernovae inside planetary nebulae: shaping by jets. Monthly Notices of the Royal Astronomical Society, 2013, 435, 320-328.	4.4	45
150	Numerical simulations of wind–equatorial gas interaction in η Carinae. Monthly Notices of the Royal Astronomical Society, 2013, 429, 294-301.	4.4	3
151	Suppressing hot gas accretion to supermassive black holes by stellar winds. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1970-1975.	4.4	8
152	Explaining the Type Ia supernova PTF 11kx with a violent prompt merger scenario. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1541-1546.	4.4	74
153	ACCELERATING VERY FAST GAS IN THE SUPERNOVA IMPOSTOR SN 2009ip WITH JETS FROM A STELLAR COMPANION. Astrophysical Journal Letters, 2013, 777, L35.	8.3	16
154	STEADY TWIN-JETS ORIENTATION: IMPLICATIONS FOR THEIR FORMATION MECHANISM. Astrophysical Journal Letters, 2013, 772, L22.	8.3	10
155	Impulsive ejection of gas in bipolar planetary nebulae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1961-1967.	4.4	22
156	The number of progenitors in the core-degenerate scenario for Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 428, 579-586.	4.4	47
157	Powering the second 2012 outburst of SN 2009ip by repeating binary interaction. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2484-2491.	4.4	31
158	EXPLAINING THE SUPERNOVA IMPOSTOR SN 2009ip AS MERGERBURST. Astrophysical Journal Letters, 2013, 764, L6.	8.3	59
159	Echoes from an old outburst. Nature, 2012, 482, 317-318.	27.8	3
160	Heating the intra-cluster medium perpendicular to the jets axis. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1482-1489.	4.4	22
161	INFLATING A CHAIN OF X-RAY-DEFICIENT BUBBLES BY A SINGLE JET ACTIVITY EPISODE. Astrophysical Journal Letters, 2012, 755, L3.	8.3	8
162	FORMATION OF BIPOLAR PLANETARY NEBULAE BY INTERMEDIATE-LUMINOSITY OPTICAL TRANSIENTS. Astrophysical Journal, 2012, 746, 100.	4.5	54

#	Article	IF	CITATIONS
163	A TIDALLY DESTRUCTED MASSIVE PLANET AS THE PROGENITOR OF THE TWO LIGHT PLANETS AROUND THE sdB STAR KIC 05807616. Astrophysical Journal Letters, 2012, 749, L14.	8.3	46
164	Type Ia supernovae from very long delayed explosion of core-white dwarf merger. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1695-1700.	4.4	101
165	The interaction of the eta carinae primary wind with a century old slow equatorial ejecta. New Astronomy, 2012, 17, 616-623.	1.8	3
166	Nucleosynthesis of r-process elements by jittering jets in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2763-2768.	4.4	14
167	The Role of Planets in Shaping Planetary Nebulae. Publications of the Astronomical Society of the Pacific, 2011, 123, 402-411.	3.1	56
168	POSSIBLE IMPLICATIONS OF THE PLANET ORBITING THE RED HORIZONTAL BRANCH STAR HIP 13044. Astrophysical Journal Letters, 2011, 733, L44.	8.3	41
169	Exploding SNe with jets: time-scales. Proceedings of the International Astronomical Union, 2011, 7, 377-379.	0.0	0
170	The Core-Degenerate Scenario for Type la Supernovae. Proceedings of the International Astronomical Union, 2011, 7, 72-75.	0.0	3
171	Planets around Extreme Horizontal Branch Stars. , 2011, , .		1
172	Connecting planets around horizontal branch stars with known exoplanets. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1792-1802.	4.4	45
173	Correlation of black hole and bulge masses: driven by energy but correlated with momentum. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1803-1808.	4.4	28
174	Explaining the transient fast blue absorption lines in the massive binary system ηâ€f Carinae. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2658-2664.	4.4	5
175	Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1788-1792.	4.4	48
176	Exploding core collapse supernovae with jittering jets. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1697-1702.	4.4	65
177	A circumbinary disc in the final stages of common envelope and the core-degenerate scenario for Type la supernovae. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1466-1479.	4.4	211
178	Mergerburst transients of brown dwarfs with exoplanets. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1965-1970.	4.4	48
179	The outcome of the protoplanetary disk of very massive stars. New Astronomy, 2011, 16, 27-32.	1.8	0
180	COMPARING SHOCKS IN PLANETARY NEBULAE WITH THE SOLAR WIND TERMINATION SHOCK. Astrophysical Journal, 2010, 725, 1910-1917.	4.5	9

#	Article	IF	CITATIONS
181	<i>XMM-NEWTON</i> DETECTION OF A TRANSIENT X-RAY SOURCE IN THE VICINITY OF V838 MONOCEROTIS. Astrophysical Journal, 2010, 717, 795-802.	4.5	9
182	NGC 300 OT2008-1 AS A SCALED-DOWN VERSION OF THE ETA CARINAE GREAT ERUPTION. Astrophysical Journal Letters, 2010, 709, L11-L15.	8.3	46
183	PERIASTRON PASSAGE TRIGGERING OF THE 19TH CENTURY ERUPTIONS OF ETA CARINAE. Astrophysical Journal, 2010, 723, 602-611.	4.5	73
184	WAS AN OUTBURST OF AQUILA X-1 A MAGNETIC FLARE?. Astrophysical Journal Letters, 2010, 721, L189-L192.	8.3	4
185	Galactic vs. extragalactic origin of the peculiar transient SCP 06F6. New Astronomy, 2010, 15, 189-197.	1.8	10
186	Spinning-up the envelope before entering a common envelope phase. New Astronomy, 2010, 15, 483-490.	1.8	23
187	Solving the angular momentum problem in the cold feedback mechanism of cooling flows. Monthly Notices of the Royal Astronomical Society, 2010, 408, 961-974.	4.4	66
188	Applying the jet feedback mechanism to core-collapse supernova explosions. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2793-2798.	4.4	32
189	COMPARING SYMBIOTIC NEBULAE AND PLANETARY NEBULAE LUMINOSITY FUNCTIONS. Astrophysical Journal, 2009, 703, L95-L98.	4.5	8
190	EXPLAINING THE EARLY EXIT OF ETA CARINAE FROM ITS 2009 X-RAY MINIMUM WITH THE ACCRETION MODEL. Astrophysical Journal, 2009, 701, L59-L62.	4.5	19
191	NARROW RADIATIVE RECOMBINATION CONTINUA: A SIGNATURE OF IONS CROSSING THE CONTACT DISCONTINUITY OF ASTROPHYSICAL SHOCKS. Astrophysical Journal, 2009, 695, 834-843.	4.5	12
192	Prediction for the Heâ \in fil̂»10830 Ã absorption wing in the coming event of l̂· Carinae. Monthly Notices of the Royal Astronomical Society, 2009, 394, 923-928.	4.4	8
193	Sound waves excitation by jet-inflated bubbles in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2009, 395, 228-233.	4.4	28
194	Using X-ray observations to explore the binary interaction in Eta Carinae. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1426-1434.	4.4	23
195	Explaining the energetic AGN outburst of MS \hat{a} \in f0735+7421 with massive slow jets. Monthly Notices of the Royal Astronomical Society, 2009, 398, 422-428.	4.4	11
196	Correlation of black hole–bulge masses by AGN jets. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 398, L41-L43.	3.3	17
197	Very late thermal pulses influenced by accretion in planetary nebulae. New Astronomy, 2009, 14, 654-658.	1.8	7
198	Possible implications of mass accretion in Eta Carinae. New Astronomy, 2009, 14, 11-24.	1.8	47

#	Article	IF	CITATIONS
199	Triggering eruptive mass ejection in luminous blue variables. New Astronomy, 2009, 14, 539-544.	1.8	14
200	Are jets rotating at the launching?. Proceedings of the International Astronomical Union, 2009, 5, 249-250.	0.0	0
201	The formation of slow-massive-wide jets. New Astronomy, 2008, 13, 296-303.	1.8	8
202	A phenomenological model for the extended zone above AGB stars. New Astronomy, 2008, 13, 491-497.	1.8	12
203	X-ray emission from jet–wind interaction in planetary nebulae. New Astronomy, 2008, 13, 563-568.	1.8	20
204	A model for the formation of large circumbinary disks around post AGB stars. New Astronomy, 2008, 13, 157-162.	1.8	20
205	Accretion onto the companion of Eta Carinae during the spectroscopic event. V: The infrared decline. New Astronomy, 2008, 13, 569-580.	1.8	12
206	Rising jet-inflated bubbles in clusters of galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 389, L13-L17.	3.3	26
207	Inflating fat bubbles in clusters of galaxies by precessing massive slow jets. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1327-1336.	4.4	27
208	The orientation of the $\hat{\textbf{l}}\cdot$ Carinae binary system. Monthly Notices of the Royal Astronomical Society, 2008, , .	4.4	7
209	Shaping planetary nebulae by light jets. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1063-1074.	4.4	38
210	Defining the Termination of the Asymptotic Giant Branch. Astrophysical Journal, 2008, 674, L49-L52.	4.5	11
211	Entropy Limit and the Cold Feedback Mechanism in Cooling Flow Clusters. Astrophysical Journal, 2008, 684, L5-L8.	4.5	9
212	ASTRONOMY: Nebulae Around Evolved Stars. Science, 2007, 315, 1086-1087.	12.6	0
213	Inflating Fat Bubbles in Clusters of Galaxies by Wide Jets. Astrophysical Journal, 2007, 656, L5-L8.	4.5	51
214	Overluminous Blue Horizontalâ€Branch Stars Formed by Lowâ€Mass Companions. Astrophysical Journal, 2007, 660, 699-703.	4.5	12
215	Comparing η Carinae with the Red Rectangle. Astrophysical Journal, 2007, 661, 490-495.	4.5	26
216	Accretion onto the Companion of η Carinae during the Spectroscopic Event. IV. The Disappearance of Highly Ionized Lines. Astrophysical Journal, 2007, 661, 482-489.	4.5	15

#	Article	IF	CITATIONS
217	A High-Velocity Transient Outflow in η Carinae. Astrophysical Journal, 2007, 666, L97-L100.	4.5	13
218	The role of thermal pressure in jet launching. Proceedings of the International Astronomical Union, 2007, 3, 195-202.	0.0	2
219	The source of the helium visible lines in η Carinae. New Astronomy, 2007, 12, 590-596.	1.8	23
220	Modelling the radio light curve of $\hat{\mathbf{l}}\cdot$ Carinae. Monthly Notices of the Royal Astronomical Society, 2007, 378, 1609-1618.	4.4	13
221	Expected planets in globular clusters. Monthly Notices of the Royal Astronomical Society, 2007, 381, 334-340.	4.4	30
222	Why Magnetic Fields Cannot Be the Main Agent Shaping Planetary Nebulae. Publications of the Astronomical Society of the Pacific, 2006, 118, 260-269.	3.1	71
223	Accreting White Dwarfs among the Planetary Nebulae Most Luminous in [Oiii] λ5007 Emission. Astrophysical Journal, 2006, 640, 966-970.	4.5	21
224	Observed Planetary Nebulae as Descendants of Interacting Binary Systems. Astrophysical Journal, 2006, 645, L57-L60.	4.5	31
225	High-resolution X-ray Spectroscopy of BD +30°3639. Proceedings of the International Astronomical Union, 2006, 2, 169.	0.0	3
226	Accretion onto the Companion of î· Carinae during the Spectroscopic Event. III. The Heiil® 4686 Line. Astrophysical Journal, 2006, 652, 1563-1571.	4.5	21
227	Accretion onto the Companion of η Carinae during the Spectroscopic Event. II. Xâ€Ray Emission Cycle. Astrophysical Journal, 2006, 644, 451-463.	4.5	33
228	Photospheric opacity and over-expanded envelopes of asymptotic giant branch stars. New Astronomy, 2006, 11, 396-403.	1.8	4
229	The source of mass accreted by the central black hole in cooling flow clusters. New Astronomy, 2006, 12, 38-46.	1.8	23
230	The Shaping of the Red Rectangle Proto-Planetary Nebula. Astronomical Journal, 2005, 129, 947-953.	4.7	19
231	Xâ∈Ray Imaging of Planetary Nebulae with Wolfâ∈Rayet–type Central Stars: Detection of the Hot Bubble in NGC 40. Astrophysical Journal, 2005, 635, 381-385.	4.5	28
232	Feedback Heating with Slow Jets in Cooling Flow Clusters. Astrophysical Journal, 2005, 622, 847-852.	4.5	36
233	A Possible Hidden Population of Spherical Planetary Nebulae. Astronomical Journal, 2005, 130, 2717-2724.	4.7	22
234	Binary black holes at the core of galaxy clusters. Advances in Space Research, 2005, 36, 762-766.	2.6	9

#	Article	IF	Citations
235	A Coaccelerated Observer. Foundations of Physics, 2005, 35, 1521-1531.	1.3	O
236	Accretion by the Secondary in î· Carinae During the Spectroscopic Event. I. Flow Parameters. Astrophysical Journal, 2005, 635, 540-546.	4.5	35
237	AN ELECTRIC CHARGE IN A GRAVITATIONAL FIELD. International Journal of Modern Physics A, 2005, 20, 2309-2315.	1.5	4
238	The Binarity of η Carinae and Its Similarity to Related Astrophysical Objects. Astrophysical Journal, 2005, 619, 1064-1071.	4.5	21
239	On the Nature of Feedback Heating in Cooling Flow Clusters. Astrophysical Journal, 2005, 632, 821-830.	4.5	174
240	Influence of Planets on Parent Stars: Angular Momentum. Symposium - International Astronomical Union, 2004, 219, 323-332.	0.1	0
241	Energy and Angular Momentum Deposition During Common Envelope Evolution. International Astronomical Union Colloquium, 2004, 194, 30-32.	0.1	0
242	Cooling by heat conduction inside magnetic flux loops and the moderate cluster cooling-flow model. Monthly Notices of the Royal Astronomical Society, 2004, 350, 1015-1021.	4.4	8
243	Wind accretion by a binary stellar system and disc formation. Monthly Notices of the Royal Astronomical Society, 2004, 350, 1366-1372.	4.4	23
244	Radiation from a Charge Supported in a Gravitational Field. General Relativity and Gravitation, 2004, 36, 315-330.	2.0	3
245	Bubbles in planetary nebulae and clusters of galaxies: instabilities at bubble' fronts. New Astronomy, 2004, 9, 285-290.	1.8	2
246	Energy and angular momentum deposition during common envelope evolution. New Astronomy, 2004, 9, 399-408.	1.8	62
247	Xâ€Rays from the Mira AB Binary System. Astrophysical Journal, 2004, 616, 1188-1192.	4.5	12
248	Constraining the Xâ€Ray Luminosities of Asymptotic Giant Branch Stars: TX Camelopardalis and T Cassiopeia. Astrophysical Journal, 2004, 608, 978-982.	4.5	13
249	Why a Singleâ€Star Model Cannot Explain the Bipolar Nebula of η Carinae. Astrophysical Journal, 2004, 612, 1060-1064.	4.5	36
250	Equation of Motion of an Electric Charge. Foundations of Physics, 2003, 33, 1207-1221.	1.3	12
251	Problems in suppressing cooling flows in clusters of galaxies by global heat conduction. Monthly Notices of the Royal Astronomical Society, 2003, 342, 463-466.	4.4	24
252	Criticism of recent calculations of common envelope ejection. Monthly Notices of the Royal Astronomical Society, 2003, 343, 456-458.	4.4	29

#	Article	IF	Citations
253	The mystery companion. Nature, 2003, 426, 236-237.	27.8	3
254	Pairs of Bubbles in Planetary Nebulae and Clusters of Galaxies. Publications of the Astronomical Society of the Pacific, 2003, 115, 1296-1300.	3.1	9
255	On the Luminosities and Temperatures of Extended Xâ€Ray Emission from Planetary Nebulae. Astrophysical Journal, 2003, 583, 368-373.	4.5	35
256	A Compact X-Ray Source and Possible X-Ray Jets within the Planetary Nebula Menzel 3. Astrophysical Journal, 2003, 591, L37-L40.	4.5	55
257	Abundance Anomalies in the Xâ€Ray Spectra of Planetary Nebulae NGC 7027 and BD +30o3639. Astrophysical Journal, 2003, 589, 439-443.	4.5	21
258	Accretionâ€Induced Collimated Fast Wind Model for η Carinae. Astrophysical Journal, 2003, 597, 513-517.	4.5	19
259	Observed Non–Steady State Cooling and the Moderate Cluster Cooling Flow Model. Astrophysical Journal, 2003, 589, 770-773.	4.5	9
260	Main-Sequence Stellar Eruption Model for V838 Monocerotis. Astrophysical Journal, 2003, 582, L105-L108.	4.5	137
261	Planetary Nebulae in the Scheme of Binary Evolution. Symposium - International Astronomical Union, 2003, 209, 223-230.	0.1	1
262	Magnetic Flares on Asymptotic Giant Branch Stars. Astrophysical Journal, 2003, 592, 498-503.	4.5	25
263	Formation of Bipolar Lobes by Jets. Astrophysical Journal, 2002, 568, 726-732.	4.5	43
264	On the Formation of Multiple Arcs around Asymptotic Giant Branch Stars. Astrophysical Journal, 2002, 570, 369-372.	4.5	13
265	The Effects of Planets and Brown Dwarfs on Stellar Rotation and Mass Loss. Astrophysical Journal, 2002, 571, L161-L164.	4.5	32
266	Hot Bubbles in Cooling Flow Clusters. Astrophysical Journal, 2002, 573, 533-541.	4.5	38
267	A New Look at the Evolution of Wolfâ€Rayet Central Stars of Planetary Nebulae. Publications of the Astronomical Society of the Pacific, 2002, 114, 602-611.	3.1	42
268	Turbulent dynamo in asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 2002, 329, 204-208.	4.4	37
269	Why every bipolar planetary nebula is unique. Monthly Notices of the Royal Astronomical Society, 2002, 330, 481-486.	4.4	16
270	Classification of planetary nebulae by their departure from axisymmetry. Monthly Notices of the Royal Astronomical Society, 2002, 331, 731-735.	4.4	18

#	Article	lF	CITATIONS
271	Magnetic activity of the cool component in symbiotic systems. Monthly Notices of the Royal Astronomical Society, 2002, 337, 1038-1042.	4.4	20
272	Xâ€Ray Emission from Central Binary Systems of Planetary Nebulae. Astrophysical Journal, 2002, 570, 245-251.	4.5	23
273	Formation of Double Rings around Evolved Stars. Astrophysical Journal, 2002, 577, 839-844.	4.5	9
274	On the Asymmetries of Extended Xâ€Ray Emission from Planetary Nebulae. Astrophysical Journal, 2002, 581, 1225-1235.	4.5	27
275	Discovery of Extended X-Ray Emission from the Planetary Nebula NGC 7027 by the [ITAL]Chandra X-Ray Observatory [/ITAL]. Astrophysical Journal, 2001, 550, L189-L192.	4.5	80
276	A Moderate Cluster Cooling Flow Model. Astrophysical Journal, 2001, 549, 832-839.	4.5	63
277	The "Twin Jet―Planetary Nebula M2â€9. Astrophysical Journal, 2001, 552, 685-691.	4.5	35
278	The 'second parameter': a memory from the globular cluster formation epoch. Monthly Notices of the Royal Astronomical Society, 2001, 324, 213-217.	4.4	14
279	Extrasolar planets and the rotation and axisymmetric mass-loss of evolved stars. Monthly Notices of the Royal Astronomical Society, 2001, 324, 699-704.	4.4	34
280	Backflow in post-asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 2001, 328, 1081-1084.	4.4	14
281	Radiation From an Electric Charge. Foundations of Physics, 2001, 31, 935-949.	1.3	12
282	Departure from Axisymmetry in Planetary Nebulae. Astrophysical Journal, 2001, 557, 256-265.	4.5	42
283	Collimated Fast Winds in Wide Binary Progenitors of Planetary Nebulae. Astrophysical Journal, 2001, 558, 157-164.	4.5	47
284	Planets and Axisymmetric Mass Loss. Astrophysics and Space Science Library, 2001, , 181-188.	2.7	0
285	A Solarâ€ike Cycle in Asymptotic Giant Branch Stars. Astrophysical Journal, 2000, 540, 436-441.	4.5	61
286	[ITAL]Chandra[/ITAL] X-Ray Observatory Detection of Extended X-Ray Emission from the Planetary Nebula BD +30°3639. Astrophysical Journal, 2000, 545, L57-L59.	4.5	74
287	Dust formation and inhomogeneous mass-loss from asymptotic giant branch stars. Monthly Notices of the Royal Astronomical Society, 2000, 312, 217-224.	4.4	33
288	Origin of Radiation Reaction. International Journal of Theoretical Physics, 2000, 39, 2867-2874.	1.2	2

#	Article	IF	CITATIONS
289	The Formation of Very Narrow Waist Bipolar Planetary Nebulae. Astrophysical Journal, 2000, 538, 241-259.	4.5	147
290	Dust formation above cool magnetic spots in evolved stars. Monthly Notices of the Royal Astronomical Society, 1999, 307, 993-1000.	4.4	41
291	Stellar structure and mass loss on the upper asymptotic giant branch. Monthly Notices of the Royal Astronomical Society, 1999, 310, 1158-1164.	4.4	24
292	Axisymmetrical structures of planetary nebulae and SN 1987A. Physics Reports, 1999, 311, 307-316.	25.6	1
293	Visual Wide Binaries and the Structure of Planetary Nebulae. Astronomical Journal, 1999, 118, 2424-2429.	4.7	9
294	Radiation from a Uniformly Accelerated Charge. General Relativity and Gravitation, 1998, 30, 1217-1227.	2.0	17
295	Dynamics of magnetic flux loops in cooling-flow clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 1998, 296, 579-584.	4.4	3
296	Amplification of Magnetic Fields in the Centers of Cluster Cooling Flows. Astronomical Journal, 1998, 116, 37-43.	4.7	11
297	Binary Progenitor Models for Bipolar Planetary Nebulae. Astrophysical Journal, 1998, 496, 833-841.	4.5	97
298	Can Planets Influence the Horizontal Branch Morphology?. Astronomical Journal, 1998, 116, 1308-1313.	4.7	166
299	Eccentric Binary Model for Offâ€Center Planetary Nebula Nuclei. Astrophysical Journal, 1998, 496, 842-848.	4.5	35
300	Disturbed FLIER[CLC]s[/CLC] in Planetary Nebulae. Astronomical Journal, 1998, 116, 2462-2465.	4.7	10
301	Instabilities in Moving Planetary Nebulae. Astrophysical Journal, 1998, 495, 337-345.	4.5	35
302	Nonthermal Radio Emission from Planetary Nebulae. Astrophysical Journal, 1998, 499, L83-L86.	4.5	11
303	Interaction of Planetary Nebulae with a Magnetized ISM. Astrophysical Journal, 1997, 484, 277-285.	4.5	34
304	Properties that Cannot Be Explained by the Progenitors of Planetary Nebulae. Astrophysical Journal, Supplement Series, 1997, 112, 487-505.	7.7	166
305	The Rings around the Egg Nebula. Astrophysical Journal, 1997, 487, 809-817.	4.5	36
306	Interaction of Radio Jets with Magnetic Fields in Clusters of Galaxies. Astrophysical Journal, 1997, 488, 572-578.	4.5	11

#	Article	IF	CITATIONS
307	What Planetary Nebulae Can Tell Us about Planetary Systems. Astrophysical Journal, 1996, 460, .	4.5	76
308	H-Function Evolution during Violent Relaxation. Astrophysical Journal, 1996, 457, 287.	4.5	18
309	Magnetically Uplifted Clumps in Cooling Flow Clusters. Astrophysical Journal, 1996, 460, 244.	4.5	4
310	Destruction of Brown Dwarfs and Jet Formation in Planetary Nebulae. Astrophysical Journal, 1996, 468, 774.	4.5	39
311	Comments on the Formation of Elliptical Planetary Nebulae. Astrophysical Journal, 1996, 469, 734.	4.5	8
312	Tidal spin-up and the asymmetry degree of planetary nebulae. Monthly Notices of the Royal Astronomical Society, 1995, 274, 147-152.	4.4	11
313	The Colliding Winds Overstability. Astronomical Journal, 1995, 110, 1894.	4.7	2
314	Evaporation of brown dwarfs in AGB envelopes. Monthly Notices of the Royal Astronomical Society, 1994, 270, 734-742.	4.4	30
315	Heat conduction fronts in planetary nebulae. Astronomical Journal, 1994, 107, 276.	4.7	40
316	Optical filaments and global flow in cluster cooling flows. Astronomical Journal, 1994, 108, 2009.	4.7	6
317	Disks and jets in planetary nebulae. Astrophysical Journal, 1994, 421, 219.	4.5	167
318	Effects of inclination angle on the spectra of X-ray binaries. Astrophysical Journal, 1993, 404, 696.	4.5	14
319	The morphology and interaction with the interstellar medium of the planetary nebula IC 4593. Astrophysical Journal, 1993, 408, 579.	4.5	10
320	Effects of Convection on Pressure Wave Excitation in Common Envelopes. Astrophysical Journal, 1993, 417, 347.	4.5	15
321	The density profile of the elliptical planetary nebula NGC 3242. Astronomical Journal, 1992, 104, 2151.	4.7	12
322	Can a single AGB star form an axially symmetric planetary nebula? Publications of the Astronomical Society of the Pacific, 1992, 104, 923.	3.1	47
323	Excitation of pressure modes in common envelopes. Astrophysical Journal, 1992, 386, 190.	4.5	25
324	Jet formation in the transition from the asymptotic giant branch to planetary nebulae. Astrophysical Journal, 1992, 389, 628.	4.5	57

#	Article	IF	CITATIONS
325	Excitation of gravity waves in common envelopes. Astrophysical Journal, 1992, 399, 185.	4.5	5
326	Model for R Coronae Borealis stars. Astronomical Journal, 1991, 102, 284.	4.7	5
327	Interaction of planetary nebulae with the interstellar medium - Theory. Astronomical Journal, 1991, 102, 1381.	4.7	35
328	Resonant interaction in common envelopes. Astrophysical Journal, 1991, 367, 593.	4.5	9
329	Stripped interstellar gas in cluster cooling flows. Astrophysical Journal, 1991, 368, 341.	4.5	15
330	Nonlinear instability of the accretion line. Astrophysical Journal, 1991, 376, 750.	4. 5	11
331	Thermal Instability in a Hot Plasma. International Astronomical Union Colloquium, 1990, 115, 44-48.	0.1	0
332	On the formation of ansae in planetary nebulae. Astronomical Journal, 1990, 99, 1869.	4.7	51
333	The evolution of the planetary nebula NGC 6826. Astronomical Journal, 1990, 99, 1883.	4.7	27
334	H-function evolution of collisionless self-gravitating systems. Publications of the Astronomical Society of the Pacific, 1990, 102, 639.	3.1	5
335	The role of magnetic fields in cluster cooling flows. Astrophysical Journal, 1990, 348, 73.	4.5	73
336	Resonant excitation of internal gravity waves in cluster cooling flows. Astrophysical Journal, 1990, 357, 353.	4.5	33
337	Stability analysis of the accretion line. Astrophysical Journal, 1990, 358, 545.	4.5	38
338	Interaction of planetary nebulae with the interstellar medium. Astrophysical Journal, 1990, 360, 173.	4.5	50
339	On the stream-accretion disk interaction - Response to increased mass transfer rate. Astrophysical Journal, 1989, 336, 350.	4.5	3
340	Interacting winds and the shaping of planetary nebulae. Astrophysical Journal, 1989, 339, 268.	4.5	78
341	Early shaping of asymmetrical planetary nebulae. Astrophysical Journal, 1989, 340, 927.	4. 5	7
342	Theory of local thermal instability in spherical systems. Astrophysical Journal, 1989, 341, 611.	4.5	121

#	Article	IF	Citations
343	Asymmetric envelope expansion of supernova 1987A. Astrophysical Journal, 1989, 341, 867.	4.5	153
344	Cooling flows and the stability of radio jets. Astrophysical Journal, 1988, 327, 66.	4.5	17
345	Numerical simulations of the bending of narrow-angle-tail radio jets by Ram pressure or pressure gradients. Astrophysical Journal, 1988, 327, 627.	4.5	5
346	The common envelope phase in the evolution of binary stars. Astrophysical Journal, 1988, 329, 764.	4.5	265
347	Massive disk formation resulting from the collision of a main-sequence star with a white dwarf in a globular cluster core. Astrophysical Journal, 1987, 318, 760.	4.5	12
348	Star-planet systems as possible progenitors of cataclysmic binaries. Monthly Notices of the Royal Astronomical Society, 1984, 208, 763-781.	4.4	100
349	On accretion from a medium containing a density gradient. Monthly Notices of the Royal Astronomical Society, 1984, 211, 927-932.	4.4	9
350	A moderate cooling flow phase at galaxy formation. Monthly Notices of the Royal Astronomical Society, 0, 407, 2355-2361.	4.4	17
351	Type II intermediate-luminosity optical transients (ILOTs). Monthly Notices of the Royal Astronomical Society, 0, , stx240.	4.4	10
352	Counteracting tidal circularization with the grazing envelope evolution. Monthly Notices of the Royal Astronomical Society, 0 , , .	4.4	11
353	Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	11
354	The strongly interacting binary scenarios of the enigmatic supernova iPTF14hls. Monthly Notices of the Royal Astronomical Society, 0 , , .	4.4	8
355	Type IIb supernova progenitors by fatal common envelope evolution. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	13
356	Inclined jets inside a common envelope of a triple stellar system. Monthly Notices of the Royal Astronomical Society, $0, \dots$	4.4	22
357	Spin-orbit misalignment from triple-star common envelope evolution. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1