Max Schnurr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/735935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood, 2005, 105, 2465-2472.	1.4	175
2	Therapeutic Efficacy of Bifunctional siRNA Combining TGF-β1 Silencing with RIG-I Activation in Pancreatic Cancer. Cancer Research, 2013, 73, 1709-1720.	0.9	130
3	Cancer cells induce interleukin-22 production from memory CD4 ⁺ T cells via interleukin-1 to promote tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12994-12999.	7.1	115
4	Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Research, 2002, 62, 2347-52.	0.9	109
5	ISCOMATRIX Adjuvant Combines Immune Activation with Antigen Delivery to Dendritic Cells In Vivo Leading to Effective Cross-Priming of CD8+ T Cells. Journal of Immunology, 2011, 187, 55-63.	0.8	105
6	Impact of a New Fusion Receptor on PD-1–Mediated Immunosuppression in Adoptive T Cell Therapy. Journal of the National Cancer Institute, 2015, 107, .	6.3	96
7	ISCOMATRIX Adjuvant Induces Efficient Cross-Presentation of Tumor Antigen by Dendritic Cells via Rapid Cytosolic Antigen Delivery and Processing via Tripeptidyl Peptidase II. Journal of Immunology, 2009, 182, 1253-1259.	0.8	91
8	NY-ESO-1 Protein Formulated in ISCOMATRIX Adjuvant Is a Potent Anticancer Vaccine Inducing Both Humoral and CD8+ T-Cell-Mediated Immunity and Protection against NY-ESO-1+ Tumors. Clinical Cancer Research, 2004, 10, 2879-2890.	7.0	84
9	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	22.5	80
10	An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. International Journal of Cancer, 2011, 128, 897-907.	5.1	72
11	Inflammasome-Dependent and -Independent IL-18 Production Mediates Immunity to the ISCOMATRIX Adjuvant. Journal of Immunology, 2014, 192, 3259-3268.	0.8	69
12	Development of prophylactic and therapeutic vaccines using the ISCOMATRIX adjuvant. Immunology and Cell Biology, 2009, 87, 371-376.	2.3	64
13	Mitochondrial adaptation in steatotic mice. Mitochondrion, 2018, 40, 1-12.	3.4	54
14	Presentation of tumour antigens by dendritic cells and challenges faced. Current Opinion in Immunology, 2010, 22, 137-144.	5.5	42
15	Targeted activation of melanoma differentiation-associated protein 5 (MDA5) for immunotherapy of pancreatic carcinoma. Oncolmmunology, 2015, 4, e1029698.	4.6	36
16	Blocking inflammation on the way: Rationale for CXCR2 antagonists for the treatment of COVID-19. Journal of Experimental Medicine, 2020, 217, .	8.5	35
17	Multifunctional antitumor molecule 5′-triphosphate siRNA combining glutaminase silencing and RIG-I activation. International Journal of Cancer, 2014, 134, 1958-1971.	5.1	34
18	Selective Bispecific T Cell Recruiting Antibody and Antitumor Activity of Adoptive T Cell Transfer. Journal of the National Cancer Institute, 2015, 107, 364.	6.3	34

Max Schnurr

#	Article	IF	CITATIONS
19	RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia, 2020, 34, 1017-1026.	7.2	33
20	Concomitant gemcitabine therapy negatively affects DC vaccine-induced CD8+ T-cell and B-cell responses but improves clinical efficacy in a murine pancreatic carcinoma model. Cancer Immunology, Immunotherapy, 2014, 63, 321-333.	4.2	32
21	Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery. Blood, 2010, 116, 218-225.	1.4	31
22	Strategies to relieve immunosuppression in pancreatic cancer. Immunotherapy, 2015, 7, 363-376.	2.0	30
23	Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Letters, 2016, 381, 259-268.	7.2	30
24	Volcanic Ash Activates the NLRP3 Inflammasome in Murine and Human Macrophages. Frontiers in Immunology, 2017, 8, 2000.	4.8	25
25	Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. , 2019, 7, 288.		22
26	Nlrp3-dependent IL-1 \hat{l}^2 inhibits CD103+ dendritic cell differentiation in the gut. JCI Insight, 2018, 3, .	5.0	22
27	Breaking tumor-induced immunosuppression with 5′-triphosphate siRNA silencing TGFβ and activating RIC-I. OncoImmunology, 2013, 2, e24170.	4.6	20
28	OAS1/RNase L executes RIG-I ligand–dependent tumor cell apoptosis. Science Immunology, 2021, 6, .	11.9	19
29	IFN Regulatory Factor 4 Controls Post-ischemic Inflammation and Prevents Chronic Kidney Disease. Frontiers in Immunology, 2019, 10, 2162.	4.8	16
30	Defective Interfering Genomes and the Full-Length Viral Genome Trigger RIG-I After Infection With Vesicular Stomatitis Virus in a Replication Dependent Manner. Frontiers in Immunology, 2021, 12, 595390.	4.8	16
31	IL-18 But Not IL-1 Signaling Is Pivotal for the Initiation of Liver Injury in Murine Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2020, 21, 8602.	4.1	14
32	Dying cells expose a nuclear antigen cross-reacting with anti-PD-1 monoclonal antibodies. Scientific Reports, 2018, 8, 8810.	3.3	13
33	Induction of immunogenic cell death by targeting RIG-I-like helicases in pancreatic cancer. Oncolmmunology, 2014, 3, e955687.	4.6	12
34	Systemic but not MDSC-specific IRF4 deficiency promotes an immunosuppressed tumor microenvironment in a murine pancreatic cancer model. Cancer Immunology, Immunotherapy, 2020, 69, 2101-2112.	4.2	12
35	Data on chow, liver tissue and mitochondrial fatty acid compositions as well as mitochondrial proteome changes after feeding mice a western diet for 6–24 weeks. Data in Brief, 2017, 15, 163-169.	1.0	9
36	Ischemic Postconditioning (IPostC) Protects Fibrotic and Cirrhotic Rat Livers after Warm Ischemia. Canadian Journal of Gastroenterology and Hepatology, 2019, 2019, 1-11.	1.9	2

#	Article	IF	CITATIONS
37	To Protect Fatty Livers from Ischemia Reperfusion Injury: Role of Ischemic Postconditioning. Digestive Diseases and Sciences, 2021, 66, 1349-1359.	2.3	Ο