Scott E Belanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7357703/publications.pdf

Version: 2024-02-01

89 papers 4,786 citations

32 h-index 98798 67 g-index

94 all docs 94 docs citations

times ranked

94

5049 citing authors

#	Article	IF	CITATIONS
1	Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?. Environmental Health Perspectives, 2012, 120, 1221-1229.	6.0	1,033
2	The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquatic Toxicology, 2010, 97, 79-87.	4.0	320
3	OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and Pharmacology, 2014, 69, 496-511.	2.7	192
4	Understanding singleâ€species and model ecosystem sensitivity: Dataâ€based comparison. Environmental Toxicology and Chemistry, 1999, 18, 1329-1346.	4.3	157
5	Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environmental Toxicology and Chemistry, 2013, 32, 1768-1783.	4.3	142
6	Environmental Safety of the Use of Major Surfactant Classes in North America. Critical Reviews in Environmental Science and Technology, 2014, 44, 1893-1993.	12.8	141
7	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.	2.7	139
8	Advancing the quality of environmental microplastic research. Environmental Toxicology and Chemistry, 2017, 36, 1697-1703.	4.3	131
9	UNDERSTANDING SINGLE-SPECIES AND MODEL ECOSYSTEM SENSITIVITY: DATA-BASED COMPARISON. Environmental Toxicology and Chemistry, 1999, 18, 1329.	4.3	115
10	Predicted noâ€effect concentrations and risk characterization of four surfactants: Linear alkyl benzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environmental Toxicology and Chemistry, 1999, 18, 2653-2663.	4.3	102
11	Interspecies Correlation Estimates Predict Protective Environmental Concentrations. Environmental Science & Environmental Scie	10.0	97
12	Environmental properties and aquatic hazard assessment of anionic surfactants: Physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicology and Environmental Safety, 2011, 74, 1445-1460.	6.0	96
13	Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. Environmental Toxicology and Chemistry, 2016, 35, 2637-2646.	4.3	92
14	Investigating Alternatives to the fish earlyâ€ife stage test: A strategy for discovering and annotating adverse outcome pathways for early fish development. Environmental Toxicology and Chemistry, 2014, 33, 158-169.	4.3	90
15	Comparison of Species Sensitivity Distributions Derived from Interspecies Correlation Models to Distributions used to Derive Water Quality Criteria. Environmental Science & E	10.0	88
16	Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Integrated Environmental Assessment and Management, 2017, 13, 664-674.	2.9	88
17	Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquatic Toxicology, 2010, 97, 88-95.	4.0	82
18	Adverse Outcome Pathways during Early Fish Development: A Conceptual Framework for Identification of Chemical Screening and Prioritization Strategies. Toxicological Sciences, 2011, 123, 349-358.	3.1	79

#	Article	IF	CITATIONS
19	Aquatic risk assessment of alcohol ethoxylates in North America and Europe. Ecotoxicology and Environmental Safety, 2006, 64, 85-99.	6.0	77
20	Creation of a Curated Aquatic Toxicology Database: EnviroTox. Environmental Toxicology and Chemistry, 2019, 38, 1062-1073.	4.3	73
21	Advancing the adverse outcome pathway framework—An international horizon scanning approach. Environmental Toxicology and Chemistry, 2017, 36, 1411-1421.	4.3	58
22	Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity. Toxicological Sciences, 2019, 169, 353-364.	3.1	52
23	Evaluation and comparison of the relationship between NOEC and EC10 or EC20 values in chronic <i>Daphnia</i> toxicity testing. Environmental Toxicology and Chemistry, 2015, 34, 2378-2384.	4.3	49
24	Interacting Effects of pH Acclimation, pH, and Heavy Metals on Acute and Chronic Toxicity to Ceriodaphnia dubia (Cladocera). Journal of Crustacean Biology, 1990, 10, 225.	0.8	48
25	Integration of Aquatic Fate and Ecological Responses to Linear Alkyl Benzene Sulfonate (LAS) in Model Stream Ecosystems. Ecotoxicology and Environmental Safety, 2002, 52, 150-171.	6.0	48
26	The effect of dissolved oxygen, sediment, and sewage treatment plant discharges upon growth, survival and density of Asiatic clams. Hydrobiologia, 1991, 218, 113-126.	2.0	47
27	Growth of Asiatic clams (Corbicula sp.) during and after long-term zinc exposure in field-located and laboratory artificial streams. Archives of Environmental Contamination and Toxicology, 1986, 15, 427-434.	4.1	44
28	Effects of diet, water hardness, and population source on acute and chronic copper toxicity toCeriodaphnia dubia. Archives of Environmental Contamination and Toxicology, 1989, 18, 601-611.	4.1	41
29	Human health risk assessment of long chain alcohols. Ecotoxicology and Environmental Safety, 2009, 72, 1016-1030.	6.0	38
30	Validation of Corbicula fluminea Growth Reductions Induced by Copper in Artificial Streams and River Systems. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47, 904-914.	1.4	37
31	Literature Review and Analysis of Biological Complexity in Model Stream Ecosystems: Influence of Size and Experimental Design. Ecotoxicology and Environmental Safety, 1997, 36, 1-16.	6.0	36
32	Development and use of interspecies correlation estimation models in China for potential application in water quality criteria. Chemosphere, 2020, 240, 124848.	8.2	35
33	Baseline characteristics and statistical implications for the OECD 210 fish earlyâ€ife stage chronic toxicity test. Environmental Toxicology and Chemistry, 2012, 31, 370-376.	4.3	33
34	It is time to develop ecological thresholds of toxicological concern to assist environmental hazard assessment. Environmental Toxicology and Chemistry, 2015, 34, 2864-2869.	4.3	32
35	An International Perspective on the Tools and Concepts for Effluent Toxicity Assessments in the Context of Animal Alternatives: Reduction in Vertebrate Use. Environmental Toxicology and Chemistry, 2018, 37, 2745-2757.	4.3	31
36	Responses of aquatic communities to 25-6 alcohol ethoxylate in model stream ecosystems. Aquatic Toxicology, 2000, 48, 135-150.	4.0	30

#	Article	IF	CITATIONS
37	The fish embryo toxicity test as a replacement for the larval growth and survival test: A comparison of test sensitivity and identification of alternative endpoints in zebrafish and fathead minnows. Environmental Toxicology and Chemistry, 2015, 34, 1369-1381.	4.3	30
38	Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions. Chemosphere, 2016, 155, 18-27.	8.2	29
39	Response of protistan assemblages to a model toxicant, the surfactant C12-TMAC (dodecyl trimethyl) Tj $ETQq1\ 1$	0,784314 4.0	rgBT /Over
40	Evaluation of anionic surfactant concentrations in US effluents and probabilistic determination of their combined ecological risk in mixing zones. Science of the Total Environment, 2016, 572, 434-441.	8.0	28
41	Fish embryo tests and acute fish toxicity tests are interchangeable in the application of the threshold approach. Environmental Toxicology and Chemistry, 2019, 38, 671-681.	4.3	28
42	Uptake of Chrysotile Asbestos Fibers Alters Growth and Reproduction of Asiatic Clams. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43, 43-52.	1.4	27
43	Application of cellulolytic activity of asiatic clams (<i>Corbicula</i> SP.) to inâ€stream monitoring of power plant effluents. Environmental Toxicology and Chemistry, 1988, 7, 701-713.	4.3	27
44	Assessment of the environmental risk of long-chain aliphatic alcohols. Ecotoxicology and Environmental Safety, 2009, 72, 1006-1015.	6.0	25
45	The Combined QSAR-ICE Models: Practical Application in Ecological Risk Assessment and Water Quality Criteria. Environmental Science & Echnology, 2017, 51, 8877-8878.	10.0	25
46	Cellulolytic activity as a novel approach to assess long-term zinc stress to Corbicula. Water Research, 1989, 23, 1275-1283.	11.3	23
47	Alternative methods for toxicity assessments in fish: Comparison of the fish embryo toxicity and the larval growth and survival tests in zebrafish and fathead minnows. Environmental Toxicology and Chemistry, 2014, 33, 2584-2594.	4.3	23
48	Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties. Ecotoxicology and Environmental Safety, 2009, 72, 980-995.	6.0	21
49	Sensitivity of the Asiatic Clam to Various Biocidal Control Agents. Journal - American Water Works Association, 1991, 83, 79-87.	0.3	20
50	Environmental chemistry for a surfactant ecotoxicology study supports rapid degradation of C12-alkyl sulfate in a continuous-flow stream Mesocosm. Environmental Toxicology and Chemistry, 1996, 15, 262-269.	4.3	18
51	RESPONSES OF PERIPHYTON AND INVERTEBRATES TO A TETRADECYL-PENTADECYL SULFATE MIXTURE IN STREAM MESOCOSMS. Environmental Toxicology and Chemistry, 2004, 23, 2202.	4.3	18
52	Environmental properties of long-chain alcohols, Part 2: Structure–activity relationship for chronic aquatic toxicity of long-chain alcohols. Ecotoxicology and Environmental Safety, 2009, 72, 996-1005.	6.0	18
53	Stepwise Informationâ€Filtering Tool (SIFT): A method for using risk assessment metadata in a nontraditional way. Environmental Toxicology and Chemistry, 2015, 34, 1436-1442.	4.3	18
54	Determination of the sensitivity of macroinvertebrates in stream mesocosms through fieldâ€derived assessments. Environmental Toxicology and Chemistry, 1999, 18, 2903-2907.	4.3	17

#	Article	IF	CITATIONS
55	An overview of hazard and risk assessment of the OECD high production volume chemical categoryâ€"Long chain alcohols [C6â€"C22] (LCOH),. Ecotoxicology and Environmental Safety, 2009, 72, 973-979.	6.0	17
56	Development of a hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidence. Environmental Modelling and Software, 2020, 126, 104655.	4.5	17
57	Effects of chrysotile asbestos on coho salmon and green sunfish: Evidence of behavioral and pathological stress. Environmental Research, 1986, 39, 74-85.	7.5	16
58	Seasonal, behavioral and growth changes of juvenile Corbicula fluminea exposed to chrysotile asbestos. Water Research, 1986, 20, 1243-1250.	11.3	16
59	Human and environmental health challenges for the next decade (2010–2020). Critical Reviews in Toxicology, 2010, 40, 893-911.	3.9	15
60	Aquatic toxicity structure-activity relationships for the zwitterionic surfactant alkyl dimethyl amine oxide to several aquatic species and a resulting species sensitivity distribution. Ecotoxicology and Environmental Safety, 2016, 134, 95-105.	6.0	15
61	New approach to weightâ€ofâ€evidence assessment of ecotoxicological effects in regulatory decisionâ€making. Integrated Environmental Assessment and Management, 2017, 13, 573-579.	2.9	14
62	Oryzias sinensis, a new model organism in the application of eco-toxicity and water quality criteria (WQC). Chemosphere, 2020, 261, 127813.	8.2	14
63	Development of algal interspecies correlation estimation models for chemical hazard assessment. Environmental Toxicology and Chemistry, 2016, 35, 2368-2378.	4.3	13
64	APPLICATION OF CELLULOLYTIC ACTIVITY OF ASIATIC CLAMS (CORBICULA SP.) TO IN-STREAM MONITORING OF POWER PLANT EFFLUENTS. Environmental Toxicology and Chemistry, 1988, 7, 701.	4.3	13
65	Using Asiatic Clams as a Biomonitor for Chrysotile Asbestos in Public Water Supplies. Journal - American Water Works Association, 1987, 79, 69-74.	0.3	12
66	Stream Periphytic Biodegradation of the Anionic Surfactant C12-Alkyl Sulfate at Environmentally Relevant Concentrations. Ecotoxicology and Environmental Safety, 1997, 36, 288-296.	6.0	11
67	Environmental fate of amine oxide: Using measured and predicted values to determine aquatic exposure. Science of the Total Environment, 2018, 616-617, 164-171.	8.0	11
68	<i>Daphnia magna</i> and <i>Ceriodaphnia dubia</i> Have Similar Sensitivity in Standard Acute and Chronic Toxicity Tests. Environmental Toxicology and Chemistry, 2022, 41, 134-147.	4.3	11
69	Testing single-species predictions for a cationic surfactant in a stream mesocosm. Science of the Total Environment, 1993, 134, 1011-1023.	8.0	9
70	Seasonal temperature declines do not decrease periphytic surfactant biodegradation or increase algal species sensitivity. Chemosphere, 1997, 35, 1143-1160.	8.2	9
71	"Quantifying the precision of ecological risk: Misunderstandings and errors in the methods for assessment factors versus species sensitivity distributions― Ecotoxicology and Environmental Safety, 2020, 198, 110684.	6.0	9
72	Evaluation of a Bayesian Network for Strengthening the Weight of Evidence to Predict Acute Fish Toxicity from Fish Embryo Toxicity Data. Integrated Environmental Assessment and Management, 2020, 16, 452-460.	2.9	8

#	Article	IF	Citations
73	Environmental Toxicity (Q)SARs for Polymers as an Emerging Class of Materials in Regulatory Frameworks, with a Focus on Challenges and Possibilities Regarding Cationic Polymers. Methods in Pharmacology and Toxicology, 2020, , 681-705.	0.2	8
74	On the impact of sample size on median lethal concentration estimation in acute fish toxicity testing: Is n $\hat{a} \in \infty$ 7/group enough?. Environmental Toxicology and Chemistry, 2018, 37, 1565-1578.	4.3	7
75	Derivation of algal acute to chronic ratios for use in chemical toxicity extrapolations. Chemosphere, 2021, 263, 127804.	8.2	7
76	Title is missing!. Ecotoxicology, 1997, 6, 67-85.	2.4	6
77	Advances in understanding the response of fish to linear alcohols in the environment. Chemosphere, 2018, 206, 539-548.	8.2	6
78	Understanding Ecotoxicological Responses of Fish Embryos and Gill Cells to Cationic Polymers. Environmental Toxicology and Chemistry, 2022, 41, 2259-2272.	4.3	6
79	Comprehensive assessment of aquatic community responses to a new anionic surfactant, high-solubility alkyl sulfate. Ecotoxicology and Environmental Safety, 2005, 62, 75-92.	6.0	5
80	Environmental hazard of cationic polymers relevant in personal and consumer care products: A critical review. Integrated Environmental Assessment and Management, 2023, 19, 312-325.	2.9	5
81	Functional and pathological impairment of Japanese Medaka (Oryzias latipes) by long-term asbestos exposure. Aquatic Toxicology, 1990, 17, 133-154.	4.0	3
82	Utility of stable isotopes (13C and 15N) to demonstrate comparability between natural and experimental streams for environmental risk assessment. Ecotoxicology and Environmental Safety, 2006, 65, 22-35.	6.0	3
83	Weight of evidence tools in the prediction of acute fish toxicity. Integrated Environmental Assessment and Management, 2023, 19, 1220-1234.	2.9	3
84	Reduction in organic effluent static acute toxicity to fathead minnows by various aeration techniques. Environmental Pollution, 1988, 50, 189-210.	7.5	2
85	Probabilistic Environmental Risk Assessment for Linear Alkyl Benzene Sulfonate (LAS) in Japan Reduces Assessment Uncertainty. Journal of Water and Environment Technology, 2020, 18, 80-94.	0.7	2
86	ENVIRONMENTAL CHEMISTRY FOR A SURFACTANT ECOTOXICOLOGY STUDY SUPPORTS RAPID DEGRADATION OF C12-ALKYL SULFATE IN A CONTINUOUS-FLOW STREAM MESOCOSM. Environmental Toxicology and Chemistry, 1996, 15, 262.	4. 3	2
87	Correcting deficiencies to risk assessment of surfactants by Freeling et al. (2019). Science of the Total Environment, 2020, 721, 135847.	8.0	1
88	Comment on Plugge et al. 2021 "Toward a Universal Acute Fish Threshold of Toxicological Concern― Environmental Toxicology and Chemistry, 2021, 40, 2379-2381.	4.3	1
89	Understanding the Environmental Safety of Surfactants: A Historical Perspective. , 2007, , 625-653.		0