Jacob A Moulijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7356948/publications.pdf

Version: 2024-02-01

619 papers 47,171 citations

105 h-index 186 g-index

657 all docs

657 docs citations

657 times ranked

25750 citing authors

#	Article	IF	CITATIONS
1	Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33, 1641-1653.	10.3	1,815
2	Science and technology of novel processes for deep desulfurization of oil refinery streams: a reviewa . Fuel, 2003, 82, 607-631.</td <td>6.4</td> <td>1,483</td>	6.4	1,483
3	Heterogeneous catalytic decomposition of nitrous oxide. Applied Catalysis B: Environmental, 1996, 9, 25-64.	20.2	834
4	Catalyst deactivation: is it predictable?. Applied Catalysis A: General, 2001, 212, 3-16.	4.3	668
5	Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1994, 3, 173-189.	20.2	662
6	Temperature-programmed reduction of CoO/AI2O3 catalysts. Journal of Catalysis, 1985, 93, 38-54.	6.2	616
7	Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. Journal of the American Chemical Society, 2007, 129, 355-360.	13.7	616
8	Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chemical Engineering Science, 2005, 60, 5895-5916.	3.8	540
9	Desilication: on the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16, 2121-2131.	6.7	519
10	Formation and control of N2O in nitric acid production. Applied Catalysis B: Environmental, 2003, 44, 117-151.	20.2	509
11	Science and technology of catalytic diesel particulate filters. Catalysis Reviews - Science and Engineering, 2001, 43, 489-564.	12.9	496
12	Preparation of monolithic catalysts. Catalysis Reviews - Science and Engineering, 2001, 43, 345-380.	12.9	474
13	Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chemistry - A European Journal, 2005, 11, 4983-4994.	3.3	473
14	Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. Journal of Physical Chemistry B, 2004, 108, 13062-13065.	2.6	463
15	The Production of Propene Oxide:Â Catalytic Processes and Recent Developments. Industrial & Developmen	3.7	456
16	Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. Journal of the American Chemical Society, 2005, 127, 10792-10793.	13.7	452
17	Monoliths in Heterogeneous Catalysis. Catalysis Reviews - Science and Engineering, 1994, 36, 179-270.	12.9	415
18	Alumina-Supported Manganese Oxide Catalysts. Journal of Catalysis, 1994, 150, 94-104.	6.2	403

#	Article	IF	CITATIONS
19	A review of intensification of photocatalytic processes. Chemical Engineering and Processing: Process Intensification, 2007, 46, 781-789.	3.6	387
20	Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. Journal of Catalysis, 2005, 230, 237-248.	6.2	379
21	Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AICHE Journal, 2005, 51, 2428-2440.	3.6	365
22	The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon, 1999, 37, 1143-1150.	10.3	352
23	Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Applied Catalysis B: Environmental, 1996, 8, 57-78.	20.2	336
24	On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous and Mesoporous Materials, 2004, 69, 29-34.	4.4	329
25	Diesel particulate emission control. Fuel Processing Technology, 1996, 47, 1-69.	7.2	326
26	Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis, 2006, 242, 71-81.	6.2	322
27	Potential rare earth modified CeO2 catalysts for soot oxidation. Applied Catalysis B: Environmental, 2007, 75, 189-200.	20.2	304
28	Permeation characteristics of a metal-supported silicalite-1 zeolite membrane. Journal of Membrane Science, 1996, 117, 57-78.	8.2	299
29	The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Applied Catalysis B: Environmental, 2004, 50, 185-194.	20.2	278
30	Temperature-programmed reduction of NiOWO3/Al2O3 Hydrodesulphurization catalysts. Applied Catalysis, 1989, 46, 11-30.	0.8	275
31	Direct Epoxidation of Propene Using Gold Dispersed on TS-1 and Other Titanium-Containing Supports. Industrial & Dispersed on TS-1 and Other Titanium-Containing Supports.	3.7	273
32	Temperature dependence of one-component permeation through a silicalite-1 membrane. AICHE Journal, 1997, 43, 2203-2214.	3.6	267
33	Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 2011, 35, 3199-3207.	5.7	263
34	Kinetics of the oxidation of diesel soot. Fuel, 1997, 76, 1129-1136.	6.4	258
35	Stability and Selectivity of Au/TiO2 and Au/TiO2/SiO2 Catalysts in Propene Epoxidation: An in Situ FT-IR Study. Journal of Catalysis, 2001, 201, 128-137.	6.2	244
36	Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 2008, 316, 35-45.	8.2	244

#	Article	IF	CITATIONS
37	Kinetic Analysis of the Decomposition of Nitrous Oxide over ZSM-5 Catalysts. Journal of Catalysis, 1997, 167, 256-265.	6.2	237
38	Mass transfer characteristics of three-phase monolith reactors. Chemical Engineering Science, 2001, 56, 6015-6023.	3.8	237
39	Fermentation of Glucose to Lactic Acid Coupled with Reactive Extraction:  A Review. Industrial & Engineering Chemistry Research, 2004, 43, 5969-5982.	3.7	222
40	Catalysts for the oxidation of soot from diesel exhaust gases II. Contact between soot and catalyst under practical conditions. Applied Catalysis B: Environmental, 1997, 12, 21-31.	20.2	219
41	Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1992, 1, 297-316.	20.2	218
42	InÂsitu investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. Journal of Materials Chemistry, 2001, 11, 821-830.	6.7	218
43	Towards a unified theory of reactions of carbon with oxygen-containing molecules. Carbon, 1995, 33, 1155-1165.	10.3	216
44	The generalized Maxwell–Stefan model for diffusion in zeolites:. Chemical Engineering Science, 2000, 55, 2923-2930.	3.8	216
45	Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication–dealumination. Microporous and Mesoporous Materials, 2005, 87, 153-161.	4.4	214
46	Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions \hat{a}^{-} . Journal of Catalysis, 2007, 251, 21-27.	6.2	211
47	CeO2 catalysed soot oxidation. Applied Catalysis B: Environmental, 2004, 51, 9-19.	20.2	209
48	Temperature-programmed sulfiding of MoO3/Al2O3 catalysts. Journal of Catalysis, 1985, 92, 35-55.	6.2	206
49	Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation. Journal of Catalysis, 2002, 207, 113-126.	6.2	197
50	The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catalysis Today, 2000, 60, 93-109.	4.4	194
51	Characterization of \$gamma;-alumina-supported Molybdenum oxide and tungsten oxide; reducibility of the oxidic state versus hydrodesulfurization activity of the sulfided state. Journal of Catalysis, 1982, 76, 241-253.	6.2	193
52	The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study. Journal of Catalysis, 2005, 230, 52-65.	6.2	193
53	Modeling permeation of binary mixtures through zeolite membranes. AICHE Journal, 1999, 45, 497-511.	3.6	188
54	Process Intensification. Industrial & Engineering Chemistry Research, 2002, 41, 1920-1924.	3.7	188

#	Article	IF	Citations
55	XPS and Mössbauer Characterization of Au/TiO2Propene Epoxidation Catalysts. Journal of Physical Chemistry B, 2002, 106, 9853-9862.	2.6	187
56	High-temperature stainless steel supported zeolite (MFI) membranes: Preparation, module construction, and permeation experiments. Microporous Materials, 1993, 1, 131-147.	1.6	179
57	Realistic contact for soot with an oxidation catalyst for laboratory studies. Applied Catalysis B: Environmental, 2000, 28, 253-257.	20.2	178
58	Cracking of a rapeseed vegetable oil under realistic FCC conditions. Applied Catalysis B: Environmental, 2007, 72, 44-61.	20.2	175
59	The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel, 1995, 74, 507-516.	6.4	172
60	Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Applied Catalysis A: General, 2002, 223, 85-102.	4.3	171
61	The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. Journal of Catalysis, 2008, 260, 75-80.	6.2	169
62	Process intensification and process systems engineering: A friendly symbiosis. Computers and Chemical Engineering, 2008, 32, 3-11.	3.8	168
63	Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis, 2003, 214, 33-45.	6.2	167
64	Combustion of coal as a source of N2O emission. Fuel Processing Technology, 1993, 34, 1-71.	7.2	166
65	New non-traditional multiphase catalytic reactors based on monolithic structures. Catalysis Today, 2001, 66, 133-144.	4.4	166
66	TEOM:Â A Unique Technique for Measuring Adsorption Properties. Light Alkanes in Silicalite-1. Industrial & Description Properties and Properties are supported by the Industrial & Description of the Industrial & Description	3.7	164
67	Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1. Journal of the American Chemical Society, 1998, 120, 5599-5600.	13.7	163
68	Zeolitic coatings and their potential use in catalysis. Microporous and Mesoporous Materials, 1998, 21, 213-226.	4.4	162
69	Alkaline Posttreatment of MFI Zeolites. From Accelerated Screening to Scale-up. Industrial & Scale amp; Engineering Chemistry Research, 2007, 46, 4193-4201.	3.7	161
70	Three-phase hydrogenation of ?-glucose over a carbon supported ruthenium catalystâ€"mass transfer and kinetics. Applied Catalysis A: General, 2003, 251, 1-17.	4.3	160
71	Structured Packings for Multiphase Catalytic Reactors. Industrial & Engineering Chemistry Research, 2008, 47, 3720-3751.	3.7	160
72	NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution. Journal of Catalysis, 2002, 208, 211-223.	6.2	156

#	Article	IF	Citations
73	Monolithic catalysts as efficient three-phase reactors. Chemical Engineering Science, 2001, 56, 823-829.	3.8	155
74	Selective photo(catalytic)-oxidation of cyclohexane: Effect of wavelength and TiO2 structure on product yields. Journal of Catalysis, 2006, 238, 342-352.	6.2	153
75	Effect of Operating Conditions and Membrane Quality on the Separation Performance of Composite Silicalite-1 Membranes. Industrial & Engineering Chemistry Research, 1998, 37, 4071-4083.	3.7	152
76	In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites. Vibrational Spectroscopy, 2001, 27, 75-88.	2.2	149
77	Alumina-Supported Manganese Oxide Catalysts. Journal of Catalysis, 1994, 150, 105-116.	6.2	143
78	Active oxygen from CeO2 and its role in catalysed soot oxidation. Catalysis Letters, 2005, 99, 203-205.	2.6	140
79	A new surface oxygen complex on carbon: toward a unified mechanism for carbon gasification reactions. Industrial & Engineering Chemistry Research, 1993, 32, 2835-2840.	3.7	137
80	Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Applied Catalysis B: Environmental, 1995, 6, 339-352.	20.2	131
81	Water vapour separation from permanent gases by a zeolite-4A membrane. Journal of Membrane Science, 2005, 253, 57-66.	8.2	130
82	Effect of the support on the structure of Mo-based hydrodesulfurization catalysts: Activated carbon versus alumina*1. Journal of Catalysis, 1987, 105, 277-284.	6.2	128
83	A temperature-programmed reduction study of sulfided Co\$z.sbnd;Mo/Al2O3 hydrodesulfurization catalysts. Journal of Catalysis, 1990, 121, 31-46.	6.2	127
84	Hydrodynamic aspects of the monolith loop reactor. Chemical Engineering Science, 2001, 56, 805-812.	3.8	127
85	Eurokin. Chemical Reaction Kinetics in Practice. Cattech, 2001, 5, 36-60.	2.2	127
86	The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of ?-glucose to ?-sorbitol. Applied Catalysis A: General, 2003, 253, 437-452.	4.3	126
87	Mechanism of the potassium catalysed gasification of carbon in CO2. Fuel, 1984, 63, 1043-1047.	6.4	125
88	High surface area silicon carbide as catalyst support characterization and stability. Applied Catalysis A: General, 1998, 167, 321-330.	4.3	125
89	Stability of highly dispersed Ni/AlO catalysts: Effects of pretreatment. Journal of Catalysis, 2000, 192, 432-440.	6.2	125
90	Measuring diesel soot with a scanning mobility particle sizer and an electrical low-pressure impactor: performance assessment with a model for fractal-like agglomerates. Journal of Aerosol Science, 2004, 35, 633-655.	3.8	125

#	Article	IF	Citations
91	A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. Applied Catalysis A: General, 2008, 334, 119-128.	4.3	124
92	Methodological and operational aspects of permeation measurements on silicalite-1 membranes. Journal of Membrane Science, 1998, 144, 87-104.	8.2	121
93	Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor. Fuel, 1988, 67, 334-340.	6.4	119
94	Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene. Chemical Engineering Science, 2003, 58, 1113-1124.	3.8	118
95	Cellulose Conversion to Isosorbide in Molten Salt hydrate Media. ChemSusChem, 2010, 3, 325-328.	6.8	118
96	Comparison of the Performance of Activated Carbon-Supported Noble Metal Catalysts in the Hydrogenolysis of CCl2F2. Journal of Catalysis, 1998, 177, 29-39.	6.2	117
97	Role of Adsorption in the Permeation of CH4and CO2through a Silicalite-1 Membrane. Industrial & Engineering Chemistry Research, 2006, 45, 767-776.	3.7	117
98	How Phase Composition Influences Optoelectronic and Photocatalytic Properties of TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 2211-2217.	3.1	117
99	Structuring catalyst and reactor – an inviting avenue to process intensification. Catalysis Science and Technology, 2015, 5, 807-817.	4.1	117
100	Shape Selectivity in Adsorption on the All-Silica DD3R. Langmuir, 2000, 16, 3322-3329.	3.5	116
101	Temperature-programmed reduction of CoO\$z.sbnd;MoO3/Al2O3 catalysts. Journal of Catalysis, 1985, 96, 381-395.	6.2	115
102	Process intensification in the future production of base chemicals from biomass. Chemical Engineering and Processing: Process Intensification, 2012, 51, 117-136.	3.6	115
103	Adsorptive Separation of Light Olefin/Paraffin Mixtures. Chemical Engineering Research and Design, 2006, 84, 350-354.	5.6	113
104	Stability of Oriented Silicalite-1 Films in View of Zeolite Membrane Preparation. Zeolites, 1997, 19, 13-20.	0.5	112
105	A temperature-programmed sulfiding study of NiO\$z.sbnd;3/Al2O3 catalysts. Journal of Catalysis, 1990, 121, 18-30.	6.2	110
106	A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production. Chemical Engineering Journal, 2003, 96, 223-235.	12.7	110
107	Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition. Journal of Catalysis, 2006, 238, 250-259.	6.2	108
108	DRIFTS study of the water–gas shift reaction over Au/Fe2O3. Journal of Catalysis, 2006, 243, 171-182.	6.2	106

#	Article	IF	Citations
109	Potential rare-earth modified CeO2 catalysts for soot oxidation part II: Characterisation and catalytic activity with NO+O2. Applied Catalysis B: Environmental, 2007, 75, 201-209.	20.2	106
110	Efficient green methanol synthesis from glycerol. Nature Chemistry, 2015, 7, 1028-1032.	13.6	106
111	Ex-framework FeZSM-5 for control of N2O in tail-gases. Catalysis Today, 2002, 76, 55-74.	4.4	104
112	Permeation and separation behaviour of a silicalite-1 membrane. Catalysis Today, 1995, 25, 213-218.	4.4	102
113	Optimization of zeolite Beta by steaming and acid leaching for the acylation of anisole with octanoic acid: a structure–activity relation. Journal of Catalysis, 2003, 218, 239-248.	6.2	101
114	Fischer–Tropsch synthesis using monolithic catalysts. Catalysis Today, 2005, 105, 350-356.	4.4	100
115	Potential rare-earth modified CeO2 catalysts for soot oxidation. Applied Catalysis B: Environmental, 2007, 75, 210-220.	20.2	100
116	In Situ ATR-FTIR Study on the Selective Photo-oxidation of Cyclohexane over Anatase TiO ₂ . Journal of Physical Chemistry C, 2008, 112, 1552-1561.	3.1	100
117	Raman spectroscopic investigation of the effect of H2O on the molybdenum surface species in MoO3/Al2O3 catalysts*1. Journal of Catalysis, 1984, 90, 314-322.	6.2	99
118	Temperature-Programmed Reduction and HDS Activity of Sulfided Transition Metal Catalysts: Formation of Nonstoichiometric Sulfur. Journal of Catalysis, 1995, 151, 178-191.	6.2	99
119	Dynamic methods for catalytic kinetics. Applied Catalysis A: General, 2008, 342, 3-28.	4.3	99
120	CO2 gasification of carbon catalysed by alkali metals. Fuel, 1984, 63, 1036-1042.	6.4	98
121	Catalytic oxidation of model soot by metal chlorides. Applied Catalysis B: Environmental, 1997, 12, 33-47.	20.2	98
122	The formation of carbon surface oxygen complexes by oxygen and ozone. The effect of transition metal oxides. Carbon, 1998, 36, 1269-1276.	10.3	98
123	Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection. Journal of Physical Chemistry Letters, 2017, 8, 975-983.	4.6	98
124	NO Adsorption on Ex-Framework [Fe,X]MFI Catalysts: Novel IR Bands and Evaluation of Assignments. Catalysis Letters, 2002, 80, 129-138.	2.6	97
125	Shouldn't catalysts shape up?. Catalysis Today, 2006, 111, 111-118.	4.4	97
126	On the mechanism of the potassium carbonate catalysed gasification of activated carbon: the influence of the catalyst concentration on the reactivity and selectivity at low steam pressures. Carbon, 1983, 21, 1-12.	10.3	96

#	Article	IF	CITATIONS
127	Highly active SO2-resistant ex-framework FeMFI catalysts for direct N2O decomposition. Applied Catalysis B: Environmental, 2002, 35, 227-234.	20.2	96
128	Study of Methane Dehydroaromatization on Impregnated Mo/ZSM-5 Catalysts and Characterization of Nanostructured Molybdenum Phases and Carbonaceous Deposits. Industrial & Deposits amp; Engineering Chemistry Research, 2007, 46, 4063-4074.	3.7	96
129	Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica, and carbon. Journal of Catalysis, 1988, 112, 516-527.	6.2	95
130	Transition Metal Oxide Catalyzed Carbon Black Oxidation: A Study with 1802 . Journal of Catalysis, 1998 , 179 , 258 - 266 .	6.2	95
131	Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures. Applied Catalysis B: Environmental, 1999, 21, 35-49.	20.2	95
132	Monolithic catalysts $\hat{a} \in \text{``non-uniform active phase distribution by impregnation. Applied Catalysis A: General, 2001, 213, 179-187.}$	4.3	94
133	Catalytic oxidation of carbon blackI. Activity of catalysts and classification of oxidation profiles. Fuel, 1998, 77, 111-119.	6.4	93
134	An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design. Applied Catalysis B: Environmental, 2003, 42, 35-45.	20.2	93
135	Effect of Reaction Conditions on the Direct Synthesis of Hydrogen Peroxide with a AuPd/TiO ₂ Catalyst in a Flow Reactor. ACS Catalysis, 2013, 3, 487-501.	11.2	93
136	Selective oxidation of CO in the presence of H2, H2O and CO2utilising Au/l±-Fe2O3catalysts for use in fuel cells. Journal of Materials Chemistry, 2006, 16, 199-208.	6.7	92
137	NO and N2O decomposition over coal char at fluidized-bed combustion conditions. Combustion and Flame, 1994, 99, 499-507.	5.2	91
138	Modified activated carbons for the selective catalytic reduction of NO with NH3. Carbon, 1993, 31, 213-222.	10.3	90
139	Rank dependence of N2O emission in fluidized-bed combustion of coal. Fuel, 1993, 72, 373-379.	6.4	89
140	Gas–liquid mass transfer of aqueous Taylor flow in monoliths. Catalysis Today, 2001, 69, 51-55.	4.4	89
141	The influence of NOx on soot oxidation rate: molten salt versus platinum. Applied Catalysis B: Environmental, 2002, 35, 159-166.	20.2	89
142	The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry, 2008, 10, 1162.	9.0	89
143	High temperature hydrogen sulfide and carbonyl sulfide removal with manganese oxide (MnO) and iron oxide (FeO) on .gammaalumina acceptors. Industrial & Engineering Chemistry Research, 1993, 32, 139-149.	3.7	88
144	Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds. Applied Catalysis B: Environmental, 1999, 23, 59-72.	20.2	88

#	Article	IF	Citations
145	Temperature-Programmed Reduction of Oxidic and Sulfidic Alumina-Supported NiO, WO3, and NiO-WO3 Catalysts. Journal of Catalysis, 1994, 146, 437-448.	6.2	87
146	The effects of heat and mass transfer in thermogravimetrical analysis. A case study towards the catalytic oxidation of soot. Thermochimica Acta, 1996, 287, 261-278.	2.7	87
147	The influence of NOx on the oxidation of metal activated diesel soot. Catalysis Today, 1999, 53, 623-630.	4.4	87
148	Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes. Catalysis Letters, 2008, 123, 186-192.	2.6	85
149	Palladium black as model catalyst in the hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Applied Catalysis A: General, 1997, 155, 59-73.	4.3	82
150	Binary permeation through a silicalite-1 membrane. AICHE Journal, 1999, 45, 976-985.	3.6	81
151	Structure/metathesis activity relations of silica supported molybdenum and tungsten oxide. Journal of Molecular Catalysis, 1980, 8, 161-174.	1.2	80
152	On the mechanism of model diesel soot-O2 reaction catalysed by Pt-containing La3+-doped CeO2A TAP study with isotopic O2. Catalysis Today, 2007, 121, 237-245.	4.4	80
153	CARBON-BASED MONOLITHIC STRUCTURES. Catalysis Reviews - Science and Engineering, 2001, 43, 291-314.	12.9	79
154	Synthesis of tailored bimodal mesoporous materials with independent control of the dual pore size distribution. Chemical Communications, 2001, , 2670-2671.	4.1	78
155	Structure of phosphorus containing CoO—MoO3/Al2O3 catalysts. Applied Catalysis, 1990, 61, 99-122.	0.8	77
156	Mechanism of Laccase–TEMPO atalyzed Oxidation of Benzyl Alcohol. ChemCatChem, 2010, 2, 827-833.	3.7	77
157	Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor. Fuel, 1988, 67, 327-333.	6.4	76
158	Selective catalytic reduction of NO with NH3 over carbon supported copper catalysts Catalysis Today, 1990, 7, 157-165.	4.4	76
159	Toward a Physically Sound Structureâ°'Activity Relationship of TiO ₂ -Based Photocatalysts. Journal of Physical Chemistry C, 2010, 114, 327-332.	3.1	76
160	BEA coating of structured supportsâ€"performance in acylation. Applied Catalysis A: General, 2003, 243, 237-250.	4.3	75
161	Kinetics of the potassium carbonate-catalysed CO2 gasification of activated carbon. Fuel, 1983, 62, 221-225.	6.4	74
162	Raman spectra of chromium oxide species in CrO3/Al2O3 catalysts. Journal of Molecular Catalysis, 1990, 60, 83-98.	1.2	74

#	Article	IF	Citations
163	Kinetics of the selective catalytic reduction of nitrogen oxide (NO) with ammonia over manganese oxide (Mn2O3)-tungsten oxide (WO3)/.gammaalumina. Industrial & Engineering Chemistry Research, 1993, 32, 445-452.	3.7	74
164	Permeation of weakly adsorbing components through a silicalite-1 membrane. Chemical Engineering Science, 1999, 54, 1081-1092.	3.8	74
165	Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Applied Catalysis B: Environmental, 2001, 30, 399-408.	20.2	74
166	Temperature-Programmed Reduction of Al2O3-, SiO2-, and carbon-supported Re2O7 catalysts. Journal of Catalysis, 1985, 93, 231-245.	6.2	73
167	Structure and activity of fluorinated alumina. 1. Determination of the number of protonic sites by an infrared study of adsorbed pyridines. Journal of Colloid and Interface Science, 1980, 77, 110-119.	9.4	72
168	Alternatives to Noble Metal Catalysts for Automotive Exhaust Purification. Catalysis Today, 1993, 16, 273-287.	4.4	72
169	Transport and separation properties of a silicalite-1 membraneâ€"I. Operating conditions. Chemical Engineering Science, 1999, 54, 245-258.	3.8	72
170	Adsorption of light alkanes on silicalite-1: Reconciliation of experimental data and molecular simulations. Physical Chemistry Chemical Physics, 2000, 2, 1989-1995.	2.8	72
171	Scaling-up Multiphase Monolith Reactors:Â Linking Residence Time Distribution and Feed Maldistribution. Industrial & Engineering Chemistry Research, 2005, 44, 4898-4913.	3.7	72
172	The XPS spectra of the metathesis catalyst tungsten oxide on silica gel. Journal of Electron Spectroscopy and Related Phenomena, 1978, 14, 453-466.	1.7	71
173	Temperature- and occupancy-dependent diffusion of n-butane through a silicalite-1 membrane. Microporous Materials, 1994, 3, 227-234.	1.6	71
174	Analysis of mass and heat transfer in transient experiments over heterogeneous catalysts. Chemical Engineering Science, 1995, 50, 3573-3580.	3.8	71
175	Catalysts for second-stage deep hydrodesulfurisation of gas oils. Fuel Processing Technology, 1999, 61, 133-147.	7.2	71
176	Equilibrium adsorption of linear and branched C6 alkanes on silicalite-1 studied by the tapered element oscillating microbalance. Physical Chemistry Chemical Physics, 2001, 3, 1755-1761.	2.8	71
177	Monolithic catalysts as more efficient three-phase reactors. Catalysis Today, 2001, 66, 157-165.	4.4	71
178	Optimized palladium catalyst systems for the selective liquid-phase hydrogenation of functionalyzed alkynes. Applied Catalysis A: General, 2003, 238, 259-271.	4.3	71
179	CO2 gasification of activated carbon catalyzed by earth alkaline elements. AICHE Journal, 1986, 32, 691-695.	3.6	70
180	Production of clean transportation fuels and lower olefins from Fischer-Tropsch Synthesis waxes under fluid catalytic cracking conditions. Applied Catalysis B: Environmental, 2006, 63, 277-295.	20.2	70

#	Article	IF	Citations
181	SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants. Applied Catalysis B: Environmental, 2004, 53, 265-274.	20.2	69
182	Reactant-Selective Hydrogenation over Composite Silicalite-1-Coated Pt/TiO2Particles. Industrial & Engineering Chemistry Research, 2004, 43, 1211-1215.	3.7	68
183	Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold–Palladium Catalysts. ChemSusChem, 2009, 2, 575-580.	6.8	68
184	The influence of potassium carbonate on surface area development and reactivity during gasification of activated carbon by carbon dioxide. Carbon, 1983, 21, 13-22.	10.3	67
185	Characterization of the Active Phase in NiW/ \hat{l}^3 -Al2O3 Catalysts in Various Stages of Sulfidation with FTIR(NO) and XPS. Journal of Catalysis, 2000, 196, 315-329.	6.2	67
186	Process for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Catalysis Today, 1996, 27, 257-264.	4.4	66
187	The Evolution of Surface Species in NiW/Al2O3Catalysts in Various Stages of Sulfidation: A Quasiin-SituHigh Resolution Transmission Electron Microscopic Investigation. Journal of Catalysis, 1998, 179, 443-450.	6.2	66
188	Zeolite coated structures for the acylation of aromatics. Microporous and Mesoporous Materials, 2001, 48, 279-284.	4.4	66
189	Real-time in situ ATR-FTIR analysis of the liquid phase hydrogenation of \hat{l}^3 -butyrolactone over Cu-ZnO catalysts: A mechanistic study by varying lactone ring size. Chemical Engineering Science, 2004, 59, 5479-5485.	3.8	66
190	Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Applied Catalysis B: Environmental, 2009, 89, 411-419.	20.2	66
191	A comparative study of \hat{I}^3 -alumina supported molybdenum and tungsten oxide: relation between metathesis activity and reducibility. Journal of Molecular Catalysis, 1982, 15, 157-172.	1.2	65
192	Measurement and modeling of the transient adsorption, desorption and diffusion processes in microporous materials. Chemical Engineering Science, 1999, 54, 4423-4436.	3.8	65
193	Catalyst performance testing: bed dilution revisited. Chemical Engineering Science, 2002, 57, 4921-4932.	3.8	65
194	Trends in Fischer–Tropsch Reactor Technology—Opportunities for Structured Reactors. Topics in Catalysis, 2003, 26, 29-39.	2.8	65
195	Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catalysis Today, 1999, 53, 613-621.	4.4	64
196	The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catalysis Letters, 2005, 100, 39-47.	2.6	64
197	How Gold Deposition Affects Anatase Performance in the Photo-catalytic Oxidation of Cyclohexane. Catalysis Letters, 2009, 129, 12-19.	2.6	64
198	Sorbitol dehydration into isosorbide in a molten salt hydrate medium. Catalysis Science and Technology, 2013, 3, 1540.	4.1	64

#	Article	IF	Citations
199	Mathematical treatment of transient kinetic data: Combination of parameter estimation with solving the related partial differential equations. Applied Catalysis A: General, 1997, 151, 27-57.	4.3	63
200	The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry, 2010, 12, 915.	9.0	63
201	Characterization of silica-supported molybdenum oxide and tungsten oxide. Reducibility of the oxidic state versus hydrodesulfurization activity of the sulfided state*1. Journal of Catalysis, 1983, 84, 275-287.	6.2	62
202	Propylene/propane mixture adsorption on faujasite sorbents. Adsorption, 2008, 14, 309-321.	3.0	62
203	Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts. Applied Catalysis B: Environmental, 1993, 2, 257-275.	20.2	61
204	Transport and separation properties of a silicalite-1 membraneâ€"II. Variable separation factor. Chemical Engineering Science, 1999, 54, 259-269.	3.8	61
205	Preparation of carbon-coated monolithic supports. Carbon, 2002, 40, 1891-1902.	10.3	61
206	Optimal conditions in fluid catalytic cracking: A mechanistic approach. Applied Catalysis A: General, 2006, 297, 198-219.	4.3	61
207	Title is missing!. Catalysis Letters, 1999, 60, 133-138.	2.6	60
208	The potential of supported molten salts in the removal of soot from diesel exhaust gas. Applied Catalysis B: Environmental, 1999, 21, 51-61.	20.2	60
209	NO-Assisted N2O Decomposition over ex-Framework FeZSM-5: Mechanistic Aspects. Catalysis Letters, 2001, 77, 7-13.	2.6	60
210	Is a monolithic loop reactor a viable option for Fischer–Tropsch synthesis?. Chemical Engineering Science, 2003, 58, 583-591.	3.8	60
211	Structured catalysts and reactors – Perspectives for demanding applications. Catalysis Today, 2022, 383, 5-14.	4.4	60
212	Diffusion of linear and branched C6 alkanes in silicalite-1 studied by the tapered element oscillating microbalance. Microporous and Mesoporous Materials, 2001, 47, 157-171.	4.4	59
213	Monolithic Catalysts as an Alternative to Slurry Systems:Â Hydrogenation of Edible Oil. Industrial & Lamp; Engineering Chemistry Research, 2004, 43, 2337-2344.	3.7	59
214	XPS studies of MoO3/Al2O3 and MoO3/SiO2 systems. Applied Surface Science, 1997, 119, 11-18.	6.1	58
215	Monolithic Reactors for Fine Chemicals Industries: A Comparative Analysis of a Monolithic Reactor and a Mechanically Agitated Slurry Reactor. Chemical Engineering Science, 1999, 54, 2351-2358.	3.8	58
216	High performance monolithic catalysts for hydrogenation reactions. Catalysis Today, 2005, 105, 623-628.	4.4	58

#	Article	IF	CITATIONS
217	Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy. Fuel, 2007, 86, 1122-1129.	6.4	58
218	Effect of the reaction conditions on the performance of Au–Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics, 2010, 12, 2488.	2.8	58
219	Structure and activity of rhenium-based metathesis catalysts. Journal of Molecular Catalysis, 1988, 46, 1-14.	1.2	57
220	Correlation between Raman spectroscopic data and the temperature-programmed oxidation reactivity of coals and carbons. Fuel Processing Technology, 1990, 24, 407-413.	7.2	57
221	On the stability of the thermally decomposed Co-Al hydrotalcite against retrotopotactic transformation. Materials Research Bulletin, 2001, 36, 1767-1775.	5.2	57
222	Catalyst development for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Catalysis Today, 1997, 35, 163-170.	4.4	56
223	Selection of activated carbon for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32) over palladium-supported catalysts. Applied Catalysis A: General, 1998, 173, 161-173.	4.3	56
224	Selective adsorption of unsaturated linear C4 molecules on the all-silica DD3R. Physical Chemistry Chemical Physics, 2000, 2, 1773-1779.	2.8	56
225	Aromatic gas oil cracking under realistic FCC conditions in a microriser reactorâ ⁺ . Fuel, 2003, 82, 1559-1569.	6.4	56
226	A novel structured bioreactor: Development of a monolithic stirrer reactor with immobilized lipase. Catalysis Today, 2005, 105, 443-447.	4.4	56
227	Characterization of hydroprocessing catalysts by resolved temperature-programmed desorption, reduction and sulfiding. Journal of Catalysis, 1980, 66, 162-170.	6.2	55
228	Kinetics of the alkali carbonate catalysed gasification of carbon. Fuel, 1986, 65, 1371-1376.	6.4	55
229	Bridging the gap between macroscopic and NMR diffusivities. Chemical Engineering Science, 1997, 52, 3401-3404.	3.8	55
230	Gas and liquid phase distribution and their effect on reactor performance in the monolith film flow reactor. Chemical Engineering Science, 2001, 56, 5935-5944.	3.8	55
231	Increasing the low propene epoxidation product yield of gold/titania-based catalysts. Applied Catalysis A: General, 2004, 270, 49-56.	4.3	55
232	Catalyst performance changes induced by palladium phase transformation in the hydrogenation of benzonitrile. Journal of Catalysis, 2010, 274, 176-191.	6.2	55
233	Nature, activity and stability of active sites during alkali metal carbonate-catalysed gasification reactions of coal char. Fuel, 1983, 62, 185-189.	6.4	54
234	Investigation of MoS2 on \hat{I}^3 -Al2O3 by HREM with atomic resolution. Journal of Molecular Catalysis A, 1995, 102, 147-161.	4.8	54

#	Article	IF	CITATIONS
235	Using monolithic catalysts for highly selective Fischer–Tropsch synthesis. Catalysis Today, 2003, 79-80, 495-501.	4.4	54
236	Photocatalytic oxidation of cyclohexane by titanium dioxide: Catalyst deactivation and regeneration. Journal of Catalysis, 2010, 273, 199-210.	6.2	54
237	Photocatalytic Oxidation of Cyclohexane over TiO ₂ : Evidence for a Marsâ^'van Krevelen Mechanism. Journal of Physical Chemistry C, 2011, 115, 1330-1338.	3.1	54
238	Shape selective methanol to olefins over highly thermostable DDR catalysts. Applied Catalysis A: General, 2011, 391, 234-243.	4.3	54
239	Temperature-Programmed Sulfiding and Reduction of CoO/Al2O3 catalysts. Journal of Catalysis, 1985, 96, 122-138.	6.2	53
240	Sulfidability and HDS activity of Co-Mo/Al2O3 catalysts. Applied Catalysis, 1986, 25, 303-311.	0.8	53
241	Catalyst performance testing. Applied Catalysis A: General, 2002, 227, 321-333.	4.3	53
242	Novel monolithic stirred reactor. AICHE Journal, 1998, 44, 2459-2464.	3.6	52
243	Water removal by reactive stripping for a solid-acid catalyzed esterification in a monolithic reactor. Chemical Engineering Science, 2002, 57, 1627-1632.	3.8	52
244	Fe, Co and Cu-incorporated TUD-1: Synthesis, characterization and catalytic performance in N2O decomposition and cyclohexane oxidation. Catalysis Today, 2005, 110, 264-271.	4.4	52
245	TiO2 Nanoparticles in Mesoporous TUD-1: Synthesis, Characterization and Photocatalytic Performance in Propane Oxidation. Chemistry - A European Journal, 2006, 12, 620-628.	3.3	52
246	Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer–Tropsch synthesis. Catalysis Today, 2009, 147, S2-S9.	4.4	52
247	On the formation of aluminum tungstate and its presence in tungsten oxide on \$gamma;-alumina catalysts. Journal of Catalysis, 1980, 61, 559-561.	6.2	51
248	A numerical comparison of alternative three-phase reactors with a conventional trickle-bed reactor. The advantages of countercurrent flow for hydrodesulfurization. Chemical Engineering Science, 1999, 54, 4791-4799.	3.8	51
249	Gas and liquid distribution in the monolith film flow reactor. AICHE Journal, 2003, 49, 3007-3017.	3.6	51
250	Separation of CO2 and CH4 by a DDR membrane. Research on Chemical Intermediates, 2008, 34, 467-474.	2.7	51
251	The influence of pretreatment conditions on the activity and stability of sodium and potassium catalysts in carbon-steam reactions. Carbon, 1983, 21, 295-301.	10.3	50
252	Feasibility study towards a Cu/K/Mo/(Cl) soot oxidation catalyst for application in diesel exhaust gases. Applied Catalysis B: Environmental, 1997, 11, 365-382.	20.2	50

#	Article	IF	CITATIONS
253	Application of a zeolite membrane reactor in the metathesis of propene. Chemical Engineering Science, 1999, 54, 1441-1445.	3.8	50
254	Optimization of Geometric Properties of a Monolithic Catalyst for the Selective Hydrogenation of Phenylacetylene. Industrial & Engineering Chemistry Research, 2001, 40, 2801-2809.	3.7	50
255	Kinetics of solid acid catalysed etherification of symmetrical primary alcohols: zeolite BEA catalysed etherification of 1-octanol. Applied Catalysis A: General, 2004, 266, 109-116.	4.3	50
256	Application of a silicalite-1 membrane reactor in metathesis reactions. Applied Catalysis A: General, 1999, 178, 225-241.	4.3	49
257	Comparison of adsorption behaviour of light alkanes and alkenes on Kureha activated carbon. Carbon, 2005, 43, 1416-1423.	10.3	49
258	Are Fischer–Tropsch waxes good feedstocks for fluid catalytic cracking units?. Catalysis Today, 2005, 106, 288-292.	4.4	49
259	Highly active and stable ion-exchanged Fe–Ferrierite catalyst for N2O decomposition under nitric acid tail gas conditions. Catalysis Communications, 2005, 6, 301-305.	3.3	49
260	In situ monitoring of desilication of MFI-type zeolites in alkaline medium. Physical Chemistry Chemical Physics, 2007, 9, 4822.	2.8	49
261	Modelling of heat transfer in metallic monoliths consisting of sinusoidal cells. Chemical Engineering Science, 1994, 49, 19-27.	3.8	48
262	Operando ATR-FTIR analysis of liquid-phase catalytic reactions: can heterogeneous catalysts be observed?. Vibrational Spectroscopy, 2004, 34, 109-121.	2.2	48
263	Pd and Pt catalysts supported on carbon-coated monoliths for low-temperature combustion of xylenes. Carbon, 2006, 44, 2463-2468.	10.3	48
264	On the Nature and Formation of the Active Sites in Re2O7 Metathesis Catalysts Supported on Borated Alumina. Journal of Catalysis, 1994, 145, 416-428.	6.2	47
265	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon, 2005, 43, 1643-1651.	10.3	47
266	Selective hydrogenation of fatty acid methyl esters over palladium on carbon-based monoliths. Catalysis Today, 2007, 128, 13-17.	4.4	47
267	Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: Preparation and performance. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 20-27.	1.8	47
268	Heterogeneously Catalyzed Continuousâ€Flow Hydrogenation Using Segmented Flow in Capillary Columns. ChemCatChem, 2011, 3, 1155-1157.	3.7	47
269	Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions. Applied Catalysis B: Environmental, 2001, 29, 285-298.	20.2	46
270	Cyclohexane selective photocatalytic oxidation by anatase TiO2: influence of particle size and crystallinity. Physical Chemistry Chemical Physics, 2010, 12, 2744.	2.8	46

#	Article	lF	Citations
271	Monolithic Catalysts and Reactors. Advances in Catalysis, 2011, 54, 249-327.	0.2	46
272	Catalyst loss and retention during alkali-catalysed carbon gasification in CO2. Carbon, 1991, 29, 929-941.	10.3	45
273	Restriction for the ELPI in diesel particulate measurements. Journal of Aerosol Science, 2001, 32, 1117-1130.	3.8	45
274	Structured reactors for enzyme immobilization: advantages of tuning the wall morphology. Chemical Engineering Science, 2004, 59, 5027-5033.	3.8	45
275	N2O emission control in coal combustion. Fuel, 1994, 73, 1416-1422.	6.4	44
276	Direct gas-phase epoxidation of propene over bimetallic Au catalysts. Catalysis Today, 2002, 72, 59-62.	4.4	44
277	Catalyst deactivation during thiophene HDS: The role of structural sulfur. Applied Catalysis A: General, 2007, 318, 28-36.	4.3	44
278	Nanoparticle sintering in atomic layer deposition of supported catalysts: Kinetic modeling of the size distribution. Catalysis Today, 2018, 316, 51-61.	4.4	44
279	Alkali-catalyzed carbon gasification in CO/CO2 mixtures: An extended model for the oxygen exchange and gasification reaction. Journal of Catalysis, 1987, 107, 173-180.	6.2	43
280	Kinetics of the alkali-carbonate catalysed gasification of carbon: 3. H2O gasification. Fuel, 1994, 73, 723-730.	6.4	43
281	The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study. Applied Catalysis B: Environmental, 1998, 17, 205-220.	20.2	43
282	Preparation and characterisation of carbon-coated monoliths for catalyst supports. Carbon, 2002, 40, 1079-1088.	10.3	43
283	Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid Using Concentrated Solar Radiation:Â Batch and Continuous Operation. Industrial & Engineering Chemistry Research, 2004, 43, 8178-8187.	3.7	43
284	Scaling down trickle bed reactors. Catalysis Today, 2005, 106, 227-232.	4.4	43
285	The pyrolytic formation of polycyclic aromatic hydrocarbons from benzene, toluene, ethylbenze,e, styrene, phenylacetylene and n-decane in relation to fossil fuels utilization. Fuel Processing Technology, 1988, 18, 213-236.	7.2	42
286	Dual-bed catalytic system for NOx–N2O removal: a practical application for lean-burn deNOx HC-SCR. Applied Catalysis B: Environmental, 2000, 25, 191-203.	20.2	42
287	Kinetics of cinnamaldehyde hydrogenation–concentration dependent selectivity. Catalysis Today, 2001, 66, 381-387.	4.4	42
288	Natural gas purification with a DDR zeolite membrane; permeation modelling with maxwell-stefan equations. Studies in Surface Science and Catalysis, 2007, 170, 1021-1027.	1.5	42

#	Article	IF	CITATIONS
289	Synthesis and thermal stability of Ni, Cu, Co, and Mo catalysts based on high surface area silicon carbide. Applied Catalysis A: General, 1999, 184, 127-141.	4.3	41
290	One-component permeation maximum: Diagnostic tool for silicalite-1 membranes?. AICHE Journal, 2000, 46, 1096-1100.	3.6	41
291	Diffusivities of light alkanes in a silicalite-1 membrane layer. Microporous and Mesoporous Materials, 2000, 35-36, 267-281.	4.4	41
292	Reaction pathways on NiMo/Al2O3 catalysts for hydrodesulfurization of diesel fuel. Applied Catalysis A: General, 2005, 293, 11-23.	4.3	41
293	Reduction of NOxover alkali metal–carbon systems. Journal of the Chemical Society Chemical Communications, 1984, , 1085-1086.	2.0	40
294	Decomposition of nitrous oxide over ZSM-5 catalysts. Studies in Surface Science and Catalysis, 1996, , 641-650.	1.5	40
295	Selective three-phase hydrogenation of unsaturated hydrocarbons in a monolithic reactor. Chemical Engineering Science, 1996, 51, 3019-3025.	3.8	40
296	Coke formation in fluid catalytic cracking studied with the microriser. Catalysis Today, 1998, 46, 27-35.	4.4	40
297	Equilibrium Adsorption of Light Alkanes in Silicalite-1 by the Inertial Microbalance Technique. Adsorption, 2000, 6, 159-167.	3.0	40
298	Performance of the monolithic stirrer reactor: applicability in multi-phase processes. Chemical Engineering Science, 2004, 59, 4975-4981.	3.8	40
299	XPS characterisation of carbon-coated alumina support. Surface and Interface Analysis, 2006, 38, 917-921.	1.8	40
300	Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolitesâ€"Opportunities for improved N2O decomposition activity. Journal of Catalysis, 2006, 243, 212-216.	6.2	40
301	Catalyst testing in a multiple-parallel, gas–liquid, powder-packed bed microreactor. Applied Catalysis A: General, 2009, 365, 199-206.	4.3	40
302	Transient Behavior and Stability in Miniaturized Multiphase Packed Bed Reactors. Industrial & Engineering Chemistry Research, 2010, 49, 1033-1040.	3.7	40
303	Inhibition of a Gold-Based Catalyst in Benzyl Alcohol Oxidation: Understanding and Remediation. Catalysts, 2014, 4, 89-115.	3.5	40
304	Biofilm growth pattern in honeycomb monolith packings: Effect of shear rate and substrate transport limitations. Catalysis Today, 2005, 105, 448-454.	4.4	39
305	Electrochemical generation of hydrogen peroxide using surface area-enhanced Ti-mesh electrodes. Electrochimica Acta, 2007, 52, 6304-6309.	5.2	39
306	Deep desulphurization of diesel fuels on bifunctional monolithic nanostructured Pt-zeolite catalysts. Catalysis Today, 2009, 144, 235-250.	4.4	39

#	Article	IF	CITATIONS
307	Disproportionation and cyclotrimerization of alkynes over supported tungsten oxide. Journal of Catalysis, 1972, 25, 434-436.	6.2	38
308	Metal oxides as catalysts for the oxidation of soot. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 64, 295-302.	0.1	38
309	Modeling of the transient sorption and diffusion processes in microporous materials at low pressure. Catalysis Today, 1999, 53, 189-205.	4.4	38
310	Stability of catalytic foam diesel-soot filters based on CsO, MoO, and CsSO molten-salt catalysts. Applied Catalysis B: Environmental, 2003, 42, 337-347.	20.2	38
311	Deactivation of Mo/Al2O3 and NiMo/Al2O3 catalysts during hydrodesulfurization of thiophene. Applied Catalysis A: General, 2003, 251, 85-92.	4.3	38
312	Improved performance of TiO2 in the selective photo-catalytic oxidation of cyclohexane by increasing the rate of desorption through surface silylation. Journal of Catalysis, 2010, 273, 116-124.	6.2	38
313	Structure and activity of fluorinated alumina. 2. Nature of the active site for 2-methylpropene oligomerization. Journal of Colloid and Interface Science, 1980, 77, 120-130.	9.4	37
314	Testing and characterisation of Pt/ASA for deep HDS reactions. Fuel Processing Technology, 1999, 61, 117-131.	7.2	37
315	Improved estimation of zeolite diffusion coefficients from zero–length column experiments. Chemical Engineering Science, 2000, 55, 51-65.	3.8	37
316	Esterification in a structured catalytic reactor with counter-current water removal. Catalysis Today, 2001, 66, 175-181.	4.4	37
317	Influence of channel geometry on hydrodynamics and mass transfer in the monolith film flow reactor. Catalysis Today, 2001, 69, 153-163.	4.4	37
318	The Nature of the Active Phase in Sulfided NiW/ \hat{I}^3 -Al2O3 in Relation to Its Catalytic Performance in Hydrodesulfurization Reactions. Journal of Catalysis, 2001, 203, 509-515.	6.2	37
319	High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catalysis Today, 2003, 81, 457-471.	4.4	37
320	MultiTRACK and operando Raman-GC study of oxidative dehydrogenation of propane over alumina-supported vanadium oxide catalysts. Physical Chemistry Chemical Physics, 2003, 5, 4378-4383.	2.8	37
321	Formation of intercalate-like structures by heat treatment of K2CO3-carbon in an inert atmosphere. Fuel, 1983, 62, 249-251.	6.4	36
322	Applicability of supercritical water as a reaction medium for desulfurisation and demetallisation of gasoil. Fuel Processing Technology, 1999, 61, 265-277.	7.2	36
323	Deactivation of MoS2/Al2O3 in Thiophene Hydrodesulfurization: An Infrared Spectroscopic Analysis by Adsorbed CO. Journal of Catalysis, 2000, 196, 95-103.	6.2	36
324	Enhancing the start-up of pyrolysis gasoline hydrogenation reactors by applying tailored ex situ presulfided Ni/Al2O3 catalysts. Fuel, 2004, 83, 1-8.	6.4	36

#	Article	IF	Citations
325	Gasâ^'Liquid Mass Transfer in Benchscale Stirred TanksFluid Properties and Critical Impeller Speed for Gas Induction. Industrial & Engineering Chemistry Research, 2006, 45, 4574-4581.	3.7	36
326	Catalyst Performance Testing in Multiphase Systems: Implications of Using Small Catalyst Particles in Hydrodesulfurization. Industrial & Engineering Chemistry Research, 2013, 52, 9069-9085.	3.7	36
327	Reduction and activity of the metathesis catalyst WO3/SiO2. Journal of Catalysis, 1977, 46, 414-416.	6.2	35
328	Temperature-programmed desorption study of Na2CO3-containing activated carbon. Fuel, 1983, 62, 190-195.	6.4	35
329	High-resolution Electron Microscopy of Spent Ni-Mo/Al203 Hydrotreating Catalysts. Applied Catalysis, 1990, 63, 77-90.	0.8	35
330	A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites. Journal of Materials Chemistry, 2001, 11, 2529-2536.	6.7	35
331	Binary adsorption equilibrium of organics and water on activated carbon. AICHE Journal, 2001, 47, 1885-1892.	3.6	35
332	Carbon-based monolithic supports for palladium catalysts: The role of the porosity in the gas-phase total combustion of m-xylene. Applied Catalysis B: Environmental, 2008, 77, 272-277.	20.2	35
333	Monolithic reactors in catalysis: excellent control. Current Opinion in Chemical Engineering, 2013, 2, 346-353.	7.8	35
334	Thiophene hydrodesulphurization activity of alumina-, silica- and carbon-supported sulphided Re2O7 catalysts. Applied Catalysis, 1989, 48, 241-252.	0.8	34
335	Development of a palladium on activated carbon for a conceptual process in the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Catalysis Today, 2000, 55, 125-137.	4.4	34
336	On the difference between gas- and liquid-phase hydrotreating test reactions. Applied Catalysis A: General, 2001, 207, 25-36.	4.3	34
337	The pressure drop experiment to determine slug lengths in multiphase monoliths. Catalysis Today, 2005, 105, 667-672.	4.4	34
338	Monoliths as Biocatalytic Reactors: Â Smart Gasâ^'Liquid Contacting for Process Intensification. Industrial & Samp; Engineering Chemistry Research, 2005, 44, 9646-9652.	3.7	34
339	The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2009, 1, 479-484.	3.7	34
340	Catalyst testing in multiphase micro-packed-bed reactors; criterion for radial mass transport. Catalysis Today, 2016, 259, 354-359.	4.4	34
341	The interaction of CO2 and CO with an alkali carbonate carbon system studied by in-situ Fourier Transform infrared spectroscopy. Fuel, 1986, 65, 1349-1355.	6.4	33
342	Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst. Applied Catalysis A: General, 2001, 206, 171-181.	4.3	33

#	Article	IF	Citations
343	N ₂ O Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm ⁻¹ . Catalysis Letters, 2004, 93, 113-120.	2.6	33
344	In situ visible microscopic study of molten Cs2SO4·V2O5–soot system: Physical interaction, oxidation rate, and data evaluation. Applied Catalysis B: Environmental, 2005, 60, 233-243.	20.2	33
345	Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts. Journal of Molecular Catalysis A, 2009, 309, 79-88.	4.8	33
346	Kinetics of the CO oxidation by O2 and N2O over Cu-Cr/Al2O3. AICHE Journal, 1992, 38, 385-396.	3.6	32
347	Mass transfer and kinetics of the three-phase hydrogenation of a dinitrile over a Raney-type nickel catalyst. Chemical Engineering Science, 2004, 59, 259-269.	3.8	32
348	Identification of the role of surface acidity in the deactivation of TiO2 in the selective photo-oxidation of cyclohexane. Catalysis Today, 2009, 143, 326-333.	4.4	32
349	The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 326-332.	3.9	32
350	Influence of phosphate on the structure of sulfided alumina supported cobalt-molybdenum catalysts. Applied Catalysis, 1991, 68, 161-177.	0.8	31
351	Trade-Off Between NOx and N2O in Fluidized-Bed Combustion of Coals. Energy & Samp; Fuels, 1995, 9, 743-752.	5.1	31
352	Role of the support nature in chemisorption of Ni(acac)2 on the surface of silica and alumina. Applied Surface Science, 1997, 115, 267-272.	6.1	31
353	Fluid catalytic cracking (FCC): activity in the (milli)seconds range in an entrained flow reactor. Applied Catalysis A: General, 1999, 187, 3-12.	4.3	31
354	Synergy effects of ZSM-5 addition in fluid catalytic cracking of hydrotreated flashed distillate. Applied Catalysis A: General, 2002, 223, 103-119.	4.3	31
355	An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor. Catalysis Today, 2009, 147, S324-S329.	4.4	31
356	Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media. Catalysis Science and Technology, 2013, 3, 1565.	4.1	31
357	Characterisation of alumina- and silica-supported vanadium sulphide catalysts and their performance in hydrotreating reactions. Applied Catalysis A: General, 1999, 179, 229-239.	4.3	30
358	Hydrodynamics and mass transfer issues in a countercurrent gas-liquid internally finned monolith reactor. Chemical Engineering Science, 1999, 54, 2381-2389.	3.8	30
359	Structured Reactors for Enzyme Immobilization. Chemical Engineering Research and Design, 2006, 84, 390-398.	5.6	30
360	Deuteration study to elucidate hydrogenolysis of benzylic alcohols over supported palladium catalysts. Journal of Catalysis, 2007, 246, 344-350.	6.2	30

#	Article	IF	Citations
361	Probing the influence of K2CO3- and Na2CO3-addition on the flash pyrolysis of a lignite and a bituminous coal with Curie-point pyrolysis techniques. Fuel, 1986, 65, 960-967.	6.4	29
362	Quantitative heat effects associated with pyrolysis of coals, ranging from anthracite to lignite. Fuel, 1989, 68, 999-1004.	6.4	29
363	Transient kinetic techniques for detailed insight in gas-solid reactions. Energy & amp; Fuels, 1992, 6, 494-497.	5.1	29
364	Parametric study of N2O formation in coal combustion. Fuel, 1992, 71, 9-14.	6.4	29
365	On why do different carbons show different gasification rates: A transient isotopic CO2 gasification study. Carbon, 1994, 32, 1223-1231.	10.3	29
366	Coating of activated carbon with silicon carbide by chemical vapour deposition. Carbon, 1996, 34, 567-579.	10.3	29
367	On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack. Applied Catalysis B: Environmental, 2003, 46, 687-702.	20.2	29
368	Potential application of monolith packed columns as bioreactors, control of biofilm formation. Biotechnology and Bioengineering, 2006, 93, 238-245.	3.3	29
369	Avoiding segregation during the loading of a catalyst–inert powder mixture in a packed micro-bed. Applied Catalysis A: General, 2009, 365, 110-121.	4.3	29
370	Stability of metal nanoparticles formed during reduction of alumina supported nickel and cobalt catalysts. Catalysis Today, 2011, 163, 20-26.	4.4	29
371	The interaction of H2O, CO2, H2 and CO with the alkali-carbonate/carbon system: a thermogravimetric study. Fuel, 1991, 70, 205-214.	6.4	28
372	Permeation and separation of light hydrocarbons through a silicalite-1 membrane. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 57, 145-153.	0.1	28
373	Carbon coating of ceramic monolithic substrates. Studies in Surface Science and Catalysis, 1998, 118, 175-183.	1.5	28
374	Direct N2O decomposition over ex-framework FeMFI catalysts. Role of extra-framework species. Catalysis Communications, 2002, 3, 19-23.	3.3	28
375	Fast gas–liquid–solid reactions in monoliths: A case study of nitro-aromatic hydrogenation. Catalysis Today, 2005, 105, 421-428.	4.4	28
376	Selective hydrogenation of fatty acid methyl esters on palladium catalysts supported on carbon-coated monoliths. Carbon, 2006, 44, 173-176.	10.3	28
377	The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation. Journal of Catalysis, 2011, 277, 129-133.	6.2	28
378	Alkali-catalysed gasification reactions studied by in situ FTIR spectroscopy. Fuel, 1983, 62, 256-258.	6.4	27

#	Article	IF	Citations
379	Comparison of the sulfiding rate and mechanism of supported NiO and NiO particles. Journal of Catalysis, 1992, 137, 92-101.	6.2	27
380	ROTACAT: A Rotating Device Containing a Designed Catalyst for Highly Selective Hydroformylation. Advanced Synthesis and Catalysis, 2001, 343, 201-206.	4.3	27
381	Innovations in the synthesis of Fe-(exchanged)-zeolites. Catalysis Today, 2005, 110, 255-263.	4.4	27
382	Tuning the support adsorption properties of Pd/SiO2 by silylation to improve the selective hydrogenation of aromatic ketones. Journal of Catalysis, 2008, 257, 55-63.	6.2	27
383	Kinetic and deactivation modelling of biphenyl liquid-phase hydrogenation over bimetallic Pt–Pd catalyst. Applied Catalysis B: Environmental, 2009, 88, 213-223.	20.2	27
384	Heat transport in structured packings with two-phase co-current downflow. Chemical Engineering Journal, 2012, 185-186, 250-266.	12.7	27
385	Axial dispersion of gases flowing through coiled columns. Journal of Chromatography A, 1977, 142, 155-166.	3.7	26
386	Temperature-programmed gasification of the coke on spent hydrotreating catalysts with oxygen and hydrogen. Industrial & Engineering Chemistry Research, 1992, 31, 101-107.	3.7	26
387	In situ FTâ€"IR study of copperâ€"chromium oxide catalysts in CO oxidation. Journal of Molecular Catalysis, 1992, 74, 193-205.	1.2	26
388	Mechanistic study of the selective hydrogenolysis of CCI ₂ F ₂ (CFCâ€12) into CH ₂ F ₂ (HFCâ€32) over palladium on activated carbon. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 505-510.	0.0	26
389	Development of a satisfactory palladium on activated carbon catalyst for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Journal of Molecular Catalysis A, 1998, 134, 191-200.	4.8	26
390	A DRIFTS study of the interaction of alkali metal oxides with carbonaceous surfaces. Carbon, 1999, 37, 401-410.	10.3	26
391	Supported honeycomb monolith catalysts for high-temperature ammonia decomposition and H2S removal. Catalysis Today, 2001, 69, 351-356.	4.4	26
392	Novel method for non-intrusive measurement of velocity and slug length in two- and three-phase slug flow in capillaries. Measurement Science and Technology, 2002, 13, 1540-1544.	2.6	26
393	Modeling of fast pulse responses in the Multitrack: an advanced TAP reactor. Chemical Engineering Science, 2002, 57, 1835-1847.	3.8	26
394	Chromium-incorporated TUD-1 as a new visible light-sensitive photo-catalyst for selective oxidation of propane. Catalysis Today, 2006, 117, 337-342.	4.4	26
395	Effect of steaming of iron containing AlPO-5 on the structure and activity in N2O decomposition. Microporous and Mesoporous Materials, 2008, 112, 193-201.	4.4	26
396	Heat transport in structured packings with co-current downflow of gas and liquid. Chemical Engineering Science, 2010, 65, 420-426.	3.8	26

#	Article	IF	CITATIONS
397	On the mechanism of the disproportionation of olefins. Journal of Catalysis, 1968, 11, 87-88.	6.2	25
398	New insight in the platinum-catalyzed CO oxidation kinetic mechanism by using an advanced TAP reactor system. Applied Catalysis A: General, 1997, 164, 237-249.	4.3	25
399	Potentials of internally finned monoliths as a packing for multifunctional reactors. Chemical Engineering Science, 1999, 54, 1359-1365.	3.8	25
400	The direct epoxidation of propene by molten salts. Applied Catalysis A: General, 2000, 196, 217-224.	4.3	25
401	Carbon coated monolithic catalysts in the selective oxidation of cyclohexanone. Catalysis Today, 2001, 69, 283-290.	4.4	25
402	Cracking behavior of organic sulfur compounds under realistic FCC conditions in a microriser reactor. Applied Catalysis A: General, 2003, 238, 223-238.	4.3	25
403	Development of TiO2/Ti wire-mesh honeycomb for catalytic combustion of ethyl acetate in air. Applied Catalysis A: General, 2006, 313, 86-93.	4.3	25
404	Zeolite BEA catalysed esterification of hexanoic acid with 1-octanol: Kinetics, side reactions and the role of water. Applied Catalysis A: General, 2009, 358, 141-145.	4.3	25
405	Production of Monosugars from Lignocellulosic Biomass in Molten Salt Hydrates: Process Design and Techno-Economic Analysis. Industrial & Engineering Chemistry Research, 2017, 56, 13423-13433.	3.7	25
406	The evaluation in time domain of mass transfer parameters from chromatographic peaks. Chemical Engineering Science, 1979, 34, 959-969.	3.8	24
407	A transient kinetic study of carbon monoxide oxidation over copper-based catalysts for automotive pollution control. Catalysis Today, 1994, 20, 409-422.	4.4	24
408	Synthesis of high surface area silicon carbide by fluidized bed chemical vapour deposition. Applied Catalysis A: General, 1997, 162, 181-191.	4.3	24
409	Alcothermal Synthesis under Basic Conditions of an SBA-15 with Long-Range Order and Stability. Advanced Materials, 2001, 13, 327-331.	21.0	24
410	Oil-soaked sintered impactors for the ELPI in diesel particulate measurements. Journal of Aerosol Science, 2003, 34, 635-640.	3.8	24
411	Concentration-dependent diffusion of isobutane in silicalite-1 studied with the ZLC technique. Chemical Engineering Science, 2004, 59, 3827-3835.	3.8	24
412	Liquid residence time distribution in the film flow monolith reactor. AICHE Journal, 2005, 51, 122-133.	3.6	24
413	Tuning the morphology of monolith coatings. Applied Catalysis A: General, 2007, 319, 267-271.	4.3	24
414	Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis, 2015, 330, 84-92.	6.2	24

#	Article	IF	CITATIONS
415	An in situ infrared spectroscopic study of the activity of \hat{l}^3 -alumina supported Mo(CO)6 for metathesis and ethene polymerization. Journal of Molecular Catalysis, 1980, 8, 147-160.	1.2	23
416	CO2 step-response experiments during alkali catalyzed carbon gasification; evaluation of the so-called CO overshoot. Carbon, 1987, 25, 351-359.	10.3	23
417	Characterization of ex Situ Presulfided Ni/Al2O3 Catalysts for Pyrolysis Gasoline Hydrogenation. Journal of Catalysis, 2002, 209, 245-255.	6.2	23
418	Improvement of Thermal Stability of Porous Titania Films Prepared by Electrostatic Sol-Spray Deposition (ESSD). Chemistry of Materials, 2003, 15, 1283-1288.	6.7	23
419	Silicalite-1 coating on Pt/TiO2 particles by a two-step hydrothermal synthesis. Microporous and Mesoporous Materials, 2005, 83, 244-250.	4.4	23
420	Simulation of coke and metal deposition in catalyst pellets using a non-steady state fixed bed reactor model. Chemical Engineering Science, 2006, 61, 7463-7478.	3.8	23
421	Hydrogenation of dinitriles on Raney-type Ni catalysts: kinetic and mechanistic aspects. Applied Catalysis A: General, 2009, 352, 193-201.	4.3	23
422	Combined ATR-FTIR and DFT Study of Cyclohexanone Adsorption on Hydrated TiO ₂ Anatase Surfaces. Journal of Physical Chemistry C, 2011, 115, 14164-14172.	3.1	23
423	Influence of reaction conditions on the direct synthesis of hydrogen peroxide over AuPd/carbon catalysts. Catalysis Science and Technology, 2012, 2, 1908.	4.1	23
424	Temperature-programmed reduction of Re2O7/Al2O3 metathesis catalysts; calculation of activation parameters for reduction. Journal of Molecular Catalysis, 1985, 30, 111-123.	1.2	22
425	The sulfidation mechanism of NiW/ \hat{l}^3 -Al2O3 as a function of the calcination temperature studied with and temperature programmed sulfidation. Fuel Processing Technology, 1999, 61, 43-54.	7.2	22
426	Reactive stripping in pilot scale monolith reactorsâ€"application to esterification. Chemical Engineering and Processing: Process Intensification, 2005, 44, 695-699.	3.6	22
427	Synthesis and characterisation of hybrid carbon-alumina support. Applied Surface Science, 2006, 252, 8549-8556.	6.1	22
428	Mechanism of deactivation of Au/Fe2O3 catalysts under water–gas shift conditions. Topics in Catalysis, 2007, 44, 209-221.	2.8	22
429	FAPO and Fe-TUD-1: Promising catalysts for N2O mediated selective oxidation of propane?. Journal of Catalysis, 2009, 262, 1-8.	6.2	22
430	Extraction of spent hydrotreating catalysts studied by fourier transform infra-red spectroscopy. Fuel Processing Technology, 1990, 26, 39-51.	7.2	21
431	Steam gasification kinetics and burn-off behaviour for a bituminous coal derived char in the presence of H2. Fuel Processing Technology, 1993, 36, 235-242.	7.2	21
432	Temperature programmed sulfiding of commercial cobalt oxide-molybdenum oxide (CoO-MoO3)/alumina catalysts. Industrial & Engineering Chemistry Research, 1993, 32, 1818-1821.	3.7	21

#	Article	IF	CITATIONS
433	Selective catalytic reduction of no with NH3 over activated carbons. I: Effect of origin and activation procedure on activity. Carbon, 1994, 32, 897-904.	10.3	21
434	Determination of adsorption and diffusion parameters in zeolites through a structured approach. Chemical Engineering Science, 2004, 59, 2477-2487.	3.8	21
435	Functioning devices for solar to fuel conversion. Chemical Engineering and Processing: Process Intensification, 2012, 51, 137-149.	3.6	21
436	Tail gas catalyzed N2O decomposition over Fe-beta zeolite. On the promoting role of framework connected AlO6 sites in the vicinity of Fe by controlled dealumination during exchange. Applied Catalysis B: Environmental, 2017, 203, 218-226.	20.2	21
437	Catalytic oxidation of diesel soot: Catalyst development. Studies in Surface Science and Catalysis, 1995, , 549-561.	1.5	20
438	Carbon monoxide oxidation over platinum powder: A comparison of TAP and step-response experiments. Applied Catalysis A: General, 1997, 151, 247-266.	4.3	20
439	Structured catalysts for the acylation of aromatics. Topics in Catalysis, 2000, 13, 275-280.	2.8	20
440	Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts. Catalysis Communications, 2006, 7, 100-103.	3.3	20
441	Modelling kinetics and deactivation for the selective hydrogenation of an aromatic ketone over Pd/SiO2. Chemical Engineering Science, 2007, 62, 5322-5329.	3.8	20
442	The correlation of axial dispersion data for beds of small particles. Chemical Engineering Science, 1976, 31, 845-847.	3.8	19
443	Stability of carbon-supported catalysts in an oxidizing environment. Carbon, 1992, 30, 577-585.	10.3	19
444	Preparation and characterisation aspects of carbon-coated monoliths. Catalysis Today, 2001, 69, 357-363.	4.4	19
445	Formation of textural and mechanical properties of extruded ceramic honeycomb monoliths: An 1H NMR imaging study. Catalysis Today, 2005, 105, 507-515.	4.4	19
446	Alkaline Treatment of Iron-Containing MFI Zeolites. Influence on Mesoporosity Development and Iron Speciation. Journal of Physical Chemistry B, 2006, 110, 20369-20378.	2.6	19
447	Low-temperature atomic layer deposition delivers more active and stable Pt-based catalysts. Nanoscale, 2017, 9, 10802-10810.	5.6	19
448	Deactivation of nickel during gasification of activated carbon, studied by X-ray photoelectron spectroscopy. Surface Science, 1983, 135, 532-552.	1.9	18
449	Characterization of coal pyrolysis by means of differential scanning calorimetry. 1. Quantitative heat effects in an inert atmosphere. Fuel Processing Technology, 1987, 15, 45-57.	7.2	18
450	Characterization of alkali carbonate catalysts for carbon gasification with 180 labeled CO2. Carbon, 1988, 26, 41-48.	10.3	18

#	Article	IF	Citations
451	Selective hydrogenolysis of CCl2F2 into CH2F2 over palladium on activated carbon. Catalysis Today, 2000, 59, 221-230.	4.4	18
452	Axial Mixing in Monolith Reactors:Â Effect of Channel Size. Industrial & Engineering Chemistry Research, 2005, 44, 2046-2057.	3.7	18
453	Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: Characterization and design of the carbon carriers. Carbon, 2006, 44, 3053-3063.	10.3	18
454	Model-based, thermo-physical optimisation for high olefin yield in steam cracking reactors. Chemical Engineering Research and Design, 2010, 88, 1305-1319.	5.6	18
455	Slow and Rapid Pyrolysis of Coal. , 1988, , 305-338.		17
456	Monolithic catalysts for selective hydrogenation of benzaldehyde. Catalysis Today, 1996, 30, 91-97.	4.4	17
457	Hydrodynamics of gas-liquid countercurrent flow in internally finned monolithic structures. Chemical Engineering Science, 1997, 52, 3893-3899.	3.8	17
458	A Rotating Adsorber for Multistage Cyclic Processes:  Principle and Experimental Demonstration in the Separation of Paraffins. Industrial & Engineering Chemistry Research, 2001, 40, 357-363.	3.7	17
459	Elucidation of the Surprising Role of NO in N2O Decomposition over FeZSM-5. Kinetics and Catalysis, 2003, 44, 639-647.	1.0	17
460	Dispersion and Distribution of Ruthenium on Carbon-Coated Ceramic Monolithic Catalysts Prepared by Impregnation. Catalysis Letters, 2003, 90, 181-186.	2.6	17
461	Enhancement of Catalyst Performance Using Pressure Pulses on Macroporous Structured Catalysts. Industrial & Description of Catalysts (Catalysts & Pressure Pulses) (1988) Industrial & Description of Catalysts) (1988) Engineering Chemistry Research, 2007, 46, 8574-8583).	3.7	17
462	Carbon–ceramic composites for enzyme immobilization. Microporous and Mesoporous Materials, 2007, 99, 216-223.	4.4	17
463	Influence of Si/Al ratio on hexane isomers adsorption equilibria. Microporous and Mesoporous Materials, 2008, 111, 171-177.	4.4	17
464	Photo-catalytic oxidation of cyclohexane over TiO ₂ : a novel interpretation of temperature dependent performance. Physical Chemistry Chemical Physics, 2011, 13, 1345-1355.	2.8	17
465	X-ray photoelectron (ESCA) spectra of some fluorine containing aluminas. Reaction Kinetics and Catalysis Letters, 1977, 7, 15-20.	0.6	16
466	Short contact time experiments in a novel benchscale FCC riser reactor. Chemical Engineering Science, 1996, 51, 3039-3044.	3.8	16
467	XPS characterization of carbon-coated alumina support. Surface and Interface Analysis, 1999, 27, 911-914.	1.8	16
468	Supported gold catalysts studied with 197Au Mössbauer effect spectroscopy. Catalysis Today, 2002, 72, 95-100.	4.4	16

#	Article	IF	CITATIONS
469	Adsorption of Butane Isomers and SF6on Kureha Activated Carbon:Â 1. Equilibrium. Langmuir, 2004, 20, 5277-5284.	3.5	16
470	Catalytic Characterization of Mesoporous Ti–Silica Hollow Spheres. Catalysis Letters, 2006, 109, 207-210.	2.6	16
471	Sorbitol dehydration in a ZnCl ₂ molten salt hydrate medium: molecular modeling. Catalysis Science and Technology, 2014, 4, 152-163.	4.1	16
472	Gas phase stabiliser-free production of hydrogen peroxide using supported gold–palladium catalysts. Chemical Science, 2016, 7, 5833-5837.	7.4	16
473	Characterization of carbon deposits on alumina supported cobalt and nickel by temperature programmed gasification with O2, CO2 and H2. Fuel, 1986, 65, 1383-1387.	6.4	15
474	Hydrodemetalization Kinetics of Nickel Tetraphenylporphyrin over Mo/Al2O3 Catalysts. Industrial & Engineering Chemistry Research, 1995, 34, 3801-3807.	3.7	15
475	Nickel-Catalyzed Conversion of Activated Carbon Extrudates into High Surface Area Silicon Carbide by Reactive Chemical Vapour Deposition. Journal of Catalysis, 1997, 170, 311-324.	6.2	15
476	Preparation of thin porous titania films on stainless steel substrates for heat exchange (HEX) reactors. Separation and Purification Technology, 2003, 32, 387-395.	7.9	15
477	Evaluation of deactivation mechanisms of Pd-catalyzed hydrogenation of 4-isobutylacetophenone. Journal of Catalysis, 2007, 248, 249-257.	6.2	15
478	Deep Desulfurization of Fossil Fuels by Air in the Absence of a Catalyst. ChemSusChem, 2008, 1, 817-819.	6.8	15
479	Gas chromatographic determination of diffusion constants by means of moment analysis. Journal of Chromatography A, 1978, 160, 11-28.	3.7	14
480	Role of the influence of potassium during pyrolysis of medium volatile coal. Fuel, 1984, 63, 870-872.	6.4	14
481	Methanation of CO over alkali metal–carbon catalysts. Journal of the Chemical Society Chemical Communications, 1984, , 278-279.	2.0	14
482	A model of coke on hydrotreating catalysts under reaction conditions. Fuel Processing Technology, 1993, 35, 275-287.	7.2	14
483	Gas–liquid mass transfer in an internally finned monolith operated countercurrently in the film flow regime. Chemical Engineering Science, 1999, 54, 5119-5125.	3.8	14
484	Influence of water on fast hydrogenation reactions with monolithic and slurry catalysts. Catalysis		
101	Today, 2001, 69, 265-273.	4.4	14
485		4.3	14

#	Article	IF	CITATIONS
487	Selection and development of a reactor for diesel particulate filtration. Chemical Engineering Science, 2001, 56, 1705-1712.	3.8	14
488	Performance of activated carbon-supported noble metal catalysts in the hydrogenolysis of CCl3F. Applied Catalysis B: Environmental, 2001, 29, 13-22.	20.2	14
489	A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. Applied Catalysis A: General, 2002, 225, 87-100.	4.3	14
490	Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods. Catalysis Letters, 2002, 78, 303-312.	2.6	14
491	Extraction of citric acid from aqueous solutions with Alamine 336: equilibrium and kinetics. Journal of Chemical Technology and Biotechnology, 2004, 79, 1155-1161.	3.2	14
492	Characteristics of drying and active component distribution in alumina monoliths using 1H-NMR imaging. Catalysis Today, 2005, 105, 484-491.	4.4	14
493	Micropore accessibility of large mordenite crystals. Microporous and Mesoporous Materials, 2006, 92, 145-153.	4.4	14
494	On the Wavelength-Dependent Performance of Cr-Doped Silica in Selective Photo-Oxidation. Journal of Physical Chemistry C, 2008, 112, 5471-5475.	3.1	14
495	Comparison of a block-flow reactor and thermogravimetric analysis in the steam gasification of different types of carbon. Carbon, 1981, 19, 309-320.	10.3	13
496	Mass transfer phenomena during potassium carbonate catalysed carbon steam gasification reactions in a microbalance setup. Carbon, 1983, 21, 23-31.	10.3	13
497	Characterization of coal pyrolysis by means of differential scanning calorimetry. 2. Quantitative heat effects in a H2 and in a CO2 atmosphere. Fuel Processing Technology, 1989, 23, 63-74.	7.2	13
498	Novel application of catalysis in the synthesis of catalysts. Catalysis Letters, 1995, 34, 285-291.	2.6	13
499	Sorbent development for continuous regenerative H ₂ S removal in a rotating monolith reactor. Canadian Journal of Chemical Engineering, 1996, 74, 713-718.	1.7	13
500	Adsorption of Butane Isomers and SF6on Kureha Activated Carbon:Â 2. Kinetics. Langmuir, 2004, 20, 1704-1710.	3.5	13
501	Ideal Chemical Conversion Concept for the Industrial Production of Ethene from Hydrocarbons. Industrial & Description of Ethene from Hydrocarbons.	3.7	13
502	Influence of phosphorus on the structure and the catalytic activity of sulfided carbon-supported Co–Mo catalysts. Applied Catalysis, 1990, 67, 119-139.	0.8	12
503	An exploratory study of the processing of plastics, by means of pyrolysis, with the emphasis on PVC/aluminum combinations. Journal of Analytical and Applied Pyrolysis, 1991, 20, 321-336.	5.5	12
504	Hydrodemetallisation of nickel-5,10,15,20-tetraphenylporphyrin over sulphided Mo/Al2O3: initial catalyst deactivation. Applied Catalysis A: General, 1994, 108, 171-186.	4.3	12

#	Article	IF	CITATIONS
505	Effect of the adsorption isotherm on one- and two-component diffusion in activated carbon. Carbon, 1997, 35, 1415-1425.	10.3	12
506	The Delft silicalite-1 membrane: peculiar permeation and counter-intuitive separation phenomena. Journal of Molecular Catalysis A, 1998, 134, 201-208.	4.8	12
507	Preparation of carbon-coated alumina by pyrolysis of adsorbed acetylacetone. Mendeleev Communications, 1999, 9, 95-96.	1.6	12
508	Deactivation of manganese oxide-based honeycomb monolith catalyst under reaction conditions of ammonia decomposition at high temperature. Catalysis Today, 2001, 69, 253-257.	4.4	12
509	An Optimal Usage of NOxin a Combined Pt/Ceramic Foam and a Wall-Flow Monolith Filter for an Effective NOx-Assisted Soot Oxidation. Topics in Catalysis, 2004, 30/31, 305-308.	2.8	12
510	Modelling of reactive stripping in monolith reactors. Catalysis Today, 2005, 105, 414-420.	4.4	12
511	Room temperature detemplation of zeolites through H2O2-mediated oxidation. Chemical Communications, 2005, , 2744.	4.1	12
512	Stacking of Film-Flow Monoliths for Improved Performance in Reactive Stripping. Industrial & Engineering Chemistry Research, 2005, 44, 9556-9560.	3.7	12
513	Experimental and Theoretical Study of Reactive Stripping in Monolith Reactors. Industrial & Description of the Engineering Chemistry Research, 2007, 46, 4149-4157.	3.7	12
514	Coke Deposition Profiles during Artificial Aging of Hydroprocessing Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 421-429.	3.7	12
515	The thermoplasticity of coal and the effect of K2CO3 addition in relation to the reactivity of the char in gasification. Fuel, 1986, 65, 1450-1456.	6.4	11
516	Selective hydrogenation of styrene/1-octene mixtures over a monolithic Pd catalyst. Reaction Kinetics and Catalysis Letters, 1997, 60, 351-356.	0.6	11
517	Comments on "Infrared emission spectroscopic studies of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts―[Appl. Catal. A: Gen. 184 (1999) 61–71]. Applied Catalysis A: General, 2000, 204, 265-267.	4.3	11
518	Role of intrinsic zeolite properties on mesopore formation by desilication of MFI structures. Studies in Surface Science and Catalysis, 2005, 156, 401-408.	1.5	11
519	Infinite Dilution Binary Diffusion Coefficients of Hydrotreating Compounds in Tetradecane in the Temperature Range from (310 to 475) K. Journal of Chemical & Engineering Data, 2008, 53, 439-443.	1.9	11
520	On-site low-pressure diesel HDS for fuel cell applications: Deepening the sulfur content to $\hat{a}@\frac{1}{2}1ppm$. Fuel, 2011, 90, 3021-3027.	6.4	11
521	A packed-bed balance reactor for gas adsorption and gas-solid reactions under elevated pressures. Journal of Physics E: Scientific Instruments, 1982, 15, 1064-1067.	0.7	10
522	Novel type of carbon-supported catalysts. Applied Catalysis, 1989, 48, 253-264.	0.8	10

#	Article	IF	CITATIONS
523	Burn-off behaviour in alkali-catalysed CO2 gasification of bituminous coal char: A comparison of TGA and fixed-bed reactor. Fuel Processing Technology, 1991, 28, 5-17.	7.2	10
524	Evaluation of Isothermal Chemical Vapor Infiltration with Langmuirâ€Hinshelwood Type Kinetics. Journal of the Electrochemical Society, 1994, 141, 282-290.	2.9	10
525	NO Reduction over Alumina-Supported Cu and Cu–Cr Studied with the Step–Response Method. Journal of Catalysis, 1997, 170, 168-180.	6.2	10
526	Bench-scale demonstration of an integrated deSoot–deNO system. Catalysis Today, 2002, 75, 459-464.	4.4	10
527	Hydrodynamic properties of a novel â€ ⁻ open wall' monolith reactor. Catalysis Today, 2005, 105, 385-390.	4.4	10
528	Process intensification and process system engineering: a friendly symbiosis. Computer Aided Chemical Engineering, 2006, , 29-37.	0.5	10
529	On the drug adsorption capacity of SBA-15 obtained from various detemplation protocols. Materials Letters, 2014, 131, 186-189.	2.6	10
530	Performance Testing of Hydrodesulfurization Catalysts Using a Singleâ€Pelletâ€String Reactor. Chemical Engineering and Technology, 2017, 40, 2025-2034.	1.5	10
531	Numerical Simulation of the Generalized Maxwell-Stefan Model for Multicomponent Diffusion in Microporous Sorbents. Collection of Czechoslovak Chemical Communications, 1992, 57, 687-697.	1.0	10
532	Measurement of C,H,N-release from coals during pyrolysis. Fuel, 1988, 67, 1190-1196.	6.4	9
533	Analytical curie-point pyrolysis-gas chromatography as a tool to characterize key parameters relevant to coal reactivity. Journal of Analytical and Applied Pyrolysis, 1989, 15, 319-331.	5.5	9
534	Characterization of carbon deposits on used hydrotreating catalysts by curie-point pyrolysis. Journal of Analytical and Applied Pyrolysis, 1989, 15, 333-345.	5 . 5	9
535	High temperature gasification of coal under severely product inhibited conditions: the potential of catalysis. Fuel, 1990, 69, 846-850.	6.4	9
536	Temperature-Programmed Sulfiding of Vanadium Oxides and Alumina-Supported Vanadium Oxide Catalysts. Journal of Catalysis, 1995, 154, 115-123.	6.2	9
537	Improving Flooding Performance for Countercurrent Monolith Reactors. Industrial & Samp; Engineering Chemistry Research, 2004, 43, 4848-4855.	3.7	9
538	Reaction Kinetics and Intermediate Determination of Solid Acid Catalysed Liquid-phase Hydrolysis Reactions: A Real-time in situ ATR FT-IR Study. Catalysis Letters, 2006, 109, 199-206.	2.6	9
539	Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 815-824.	3.0	9
540	Kinetics of the alkali-metal-carbonate-catalyzed gasification of carbon. 2. The water-gas-shift reaction. Industrial & Description of the material series of the alkali-metal-carbonate-catalyzed gasification of carbon. 2. The water-gas-shift reaction. Industrial & Description of the alkali-metal-carbonate-catalyzed gasification of carbon. 2. The water-gas-shift reaction.	3.7	8

#	Article	IF	CITATIONS
541	Catalytic Automotive Pollution Control Without Noble Metals. Studies in Surface Science and Catalysis, 1991, 71, 353-369.	1.5	8
542	Methane formation in H2,CO mixtures over carbon-supported potassium carbonate. Journal of Catalysis, 1992, 134, 525-535.	6.2	8
543	On the metal deposition process during the hydrodemetallation of vanadyl-tetraphenylporphyrin. Studies in Surface Science and Catalysis, 1997, 111, 283-294.	1.5	8
544	Catalytic oxidation of model soot by chlorine based catalysts. Studies in Surface Science and Catalysis, 1998, 116, 645-654.	1.5	8
545	Adsorption of 1,2-Dichloropropane on Activated Carbon. Journal of Chemical & Engineering Data, 2001, 46, 662-664.	1.9	8
546	Flooding Performance of Square Channel Monolith Structures. Industrial & Engineering Chemistry Research, 2002, 41, 6759-6771.	3.7	8
547	Volatile tracer dispersion in multi-phase packed beds. Chemical Engineering Science, 2010, 65, 3972-3985.	3.8	8
548	Process Intensification \hat{a}^{-} , 2017, 509-518.		8
549	Overcoming the Engineering Constraints for Scaling-Up the State-of-the-Art Catalyst for Tail-Gas N ₂ O Decomposition. Industrial & Engineering Chemistry Research, 2018, 57, 939-945.	3.7	8
550	Novel type of carbon-supported catalysts. Applied Catalysis, 1989, 49, 319-327.	0.8	7
551	Anomalous carbon dioxide gasification behaviour of high temperature coal chars. Fuel Processing Technology, 1993, 36, 243-250.	7.2	7
552	High vacuum cell for high temperature in-situ infrared studies of heterogeneous catalysts. Vibrational Spectroscopy, 1993, 4, 245-250.	2.2	7
553	Preparation, characterization and testing of nickel on alumina monolithic catalysts. Reaction Kinetics and Catalysis Letters, 1997, 60, 339-349.	0.6	7
554	Competitive effects of hetero-atom containing compounds in the hydrodemetallisation of vanadyl-tetraphenyl-porphyrin. Fuel, 1998, 77, 1367-1375.	6.4	7
555	Effect of Entrance and Exit Geometry on Pressure Drop and Flooding Limits in a Single Channel of an Internally Finned Monolith. Industrial & Engineering Chemistry Research, 1998, 37, 3722-3730.	3.7	7
556	Influence of Nox on soot combustion with supported molten salt catalysts. Reaction Kinetics and Catalysis Letters, 1999, 67, 3-7.	0.6	7
557	Effect of the Support in de-NOx HC-SCR Over Transition Metal Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 199-206.	0.6	7
558	Prediction of the Performance of Coked and Regenerated Fluid Catalytic Cracking Catalyst Mixtures. Opportunities for Process Flexibility. Industrial & Engineering Chemistry Research, 2001, 40, 1602-1607.	3.7	7

#	Article	IF	Citations
559	Design of an Industrial Adsorption Process with Activated Carbon for the Removal of Hexafluoropropylene from Wet Air. Industrial & Engineering Chemistry Research, 2001, 40, 3171-3180.	3.7	7
560	Adsorption on Kureha Activated Carbon: Isotherms and Kinetics. Adsorption, 2005, 11, 637-641.	3.0	7
561	Combined Hydrogenation and Isomerization Combined Hydrogenation and Isomerization under Diffusion Limiting Conditions. Industrial & Engineering Chemistry Research, 2005, 44, 9668-9675.	3.7	7
562	Critical Impeller Speed (NSG) for Solid Suspension in Sparged Stirred Vessels Fitted with Helical Coils. Industrial & Engineering Chemistry Research, 2005, 44, 4400-4405.	3.7	7
563	Applicability of Fiber-Optic-Based Raman Probes for On-Line Reaction Monitoring of High-Pressure Catalytic Hydrogenation Reactions. Applied Spectroscopy, 2007, 61, 470-478.	2.2	7
564	Bottom-mounted ATR probes: Pitfalls that arise from gravitational effects. Catalysis Today, 2007, 126, 184-190.	4.4	7
565	Preparation of a monolith-supported Au/TiO2 catalyst active for CO oxidation. Gold Bulletin, 2007, 40, 291-294.	2.7	7
566	Tailoring the multiphase flow pattern of gas and liquid through micro-packed bed of pillars. Reaction Chemistry and Engineering, 2019, 4, 838-851.	3.7	7
567	Oligomerization of cyclohexene by a mixture of tungsten hexachloride and tetramethyltin. Reaction Kinetics and Catalysis Letters, 1975, 3, 405-408.	0.6	6
568	Incorporation of Surface Migration in the Theory of Gas-Solid Chromatography. Industrial & Engineering Chemistry Fundamentals, 1977, 16, 301-303.	0.7	6
569	Activity and mechanism of CO methanation on activated carbon-supported nickel. Journal of the Chemical Society Chemical Communications, 1980, , 170.	2.0	6
570	Fuelâ€"Gas injection to reduce N2O emissions from the combustion of coal in a fluidized bed. Combustion and Flame, 1996, 107, 103-113.	5.2	6
571	Feature Article. Green Chemistry, 2000, 2, G97-G100.	9.0	6
572	Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication ChemInform, 2004, 35, no.	0.0	6
573	Towards synthesis of an optimal thermal cracking reactor. Chemical Engineering Research and Design, 2008, 86, 703-712.	5.6	6
574	The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology, 2020, 10, 8203-8212.	4.1	6
575	Catalyst Structure and Mechanism in Carbon Gasification Reactions; Influence of Preparation on the Ni and K Catalysed Hydrogenative and Steam Gasification. Studies in Surface Science and Catalysis, 1981, , 501-516.	1.5	5
576	A versatile infrared cell for in situ catalyst pretreatment and measurements at temperatures between 120 and 773 K. Vibrational Spectroscopy, 1998, 16, 119-126.	2.2	5

#	Article	IF	Citations
577	Reduction of NO by Propene Over Pt, Pd and Rh-Based ZSM-5 Under Lean-Burn Conditions. Reaction Kinetics and Catalysis Letters, 2000, 69, 385-392.	0.6	5
578	Reactive Stripping in Structured Catalytic Reactors: Hydrodynamics and Reaction Performance. , 2005, , 233-264.		5
579	Zeolite based separation of light olefin and paraffin mixtures. Studies in Surface Science and Catalysis, 2005, 158, 979-986.	1.5	5
580	Fenton detemplation of ordered (meso)porous materials. Studies in Surface Science and Catalysis, 2007, 170, 648-654.	1.5	5
581	Oxidative thermolysis of Mn(acac)3 on the surface of \hat{I}^3 -alumina support. Thermochimica Acta, 2007, 456, 145-151.	2.7	5
582	Recent advances in catalysis—selected papers from APCAT 4 (Singapore, 6–8 December 2006). Catalysis Today, 2008, 131, 1.	4.4	5
583	Coal Characterization by Means of Curie-Point Pyrolysis Techniques. , 1988, , 241-269.		5
584	Organic emissions in coal combustion in relation to coal structure and combustion temperature. Fuel, 1985, 64, 1468-1475.	6.4	4
585	The potential of coal gasification in a novel iron oxide reduction process. Chemical Engineering Science, 1990, 45, 2721-2728.	3.8	4
586	Pressure Drop of Taylor Flow in Capillaries: Impact of Slug Length., 2003,, 519.		4
587	The Potential of Biomass in the Production of Clean Transportation Fuels and Base Chemicals. ACS Symposium Series, 2011, , 65-77.	0.5	4
588	Designing new catalysts: synthesis of new active structures: general discussion. Faraday Discussions, 2016, 188, 131-159.	3.2	4
589	High temperature gasification reactivity of coal under severely product inhibited conditions. Fuel Processing Technology, 1990, 24, 269-276.	7.2	3
590	Prediction of the Performance of Coked and Regenerated FCC Catalyst Mixtures. Studies in Surface Science and Catalysis, 2001, 139, 197-204.	1.5	3
591	The Present and the Future of Structured Catalysts. Chemical Industries, 2005, , 1-17.	0.1	3
592	On the role of iron in preparation of mesoporous Fe-MFI zeolites via desilication. Studies in Surface Science and Catalysis, 2006, 162, 267-274.	1.5	3
593	Bridging model and real catalysts: general discussion. Faraday Discussions, 2016, 188, 565-589.	3.2	3
594	Estimation of kinetic parameters from non-isothermally operated monolithic reactors: Oxidation of carbon monoxide. Chemical Engineering Science, 1995, 50, 2845-2852.	3.8	2

#	Article	IF	CITATIONS
595	A radiotracer method for measuring the rate of metal volatilisation losses from catalysts. Applied Radiation and Isotopes, 1997, 48, 1521-1524.	1.5	2
596	Reactant Additive-Triggered Deactivation of Pd/\hat{I}^3 -Alumina-Catalyzed Hydrogenation Reactions. A Reactivity and Adsorption Study. Industrial & Engineering Chemistry Research, 2020, 59, 17762-17768.	3.7	2
597	An improved apparatus for measuring volumetric flow of gases. Journal of Physics E: Scientific Instruments, 1978, 11, 259-261.	0.7	1
598	Better sulphide catalysts through optimized active phase-support interaction. International Journal of Energy Research, 1994, 18, 127-143.	4. 5	1
599	Gas injection as a measure to reduce N2O emissions from fluidized bed combustion of coal. Coal Science and Technology, 1995, 24, 1915-1918.	0.0	1
600	Potential of Monolithic Reactors in Catalysis; Multiphase Applications. Materials Research Society Symposia Proceedings, 1998, 549, 3.	0.1	1
601	Catalyst deactivation in the selective hydrogenolysis of CCl2F2 into CH2F2. Studies in Surface Science and Catalysis, 1999, 126, 349-356.	1.5	1
602	Highly Active and Stable Pt-USY in the Low-Temperature de-NOx HC-SCR. Reaction Kinetics and Catalysis Letters, 2000, 71, 33-40.	0.6	1
603	Catalysis Engineering on Three Levels. International Journal of Chemical Reactor Engineering, 2003, 1, .	1.1	1
604	67 Activity and deactivation of HDS catalysts: Studying the active phase using CO as a probe molecule. Studies in Surface Science and Catalysis, 2003, 145, 319-321.	1.5	1
605	Modeling and Design of Monolith Reactors for Three-Phase Processes. Chemical Industries, 2005, , 435-478.	0.1	1
606	Tooling up Heterogeneous Catalysis through Fenton's Chemistry. Detemplation and functionalization of micro- And mesoporous materials Studies in Surface Science and Catalysis, 2006, 162, 37-46.	1.5	1
607	Reactive Separations., 2017,, 565-572.		1
608	89. Deactivation of finely dispersed nickel during gasification of activated carbon, studied by X-ray photoelectron spectroscopy (XPS). Carbon, 1984, 22, 213.	10.3	0
609	102. Nickel and molybdenum compounds as catalysts for CO methanation and carbon gasification. Carbon, 1984, 22, 215.	10.3	0
610	The characterization of †fly-chars' from coal combustion; the effect of temperature and rank on reactivity, texture and composition. Fuel Processing Technology, 1990, 24, 391-398.	7.2	0
611	Formal reply to letter to the editor †Comments on the modeling of a fore void volume in a TAP reactor'. Chemical Engineering Science, 2001, 56, 3927.	3.8	0
612	Cracking behaviour of aromatic- and organic sulfur compounds under realistic FCC conditions in a microriser reactor. Studies in Surface Science and Catalysis, 2004, 149, 217-232.	1.5	0

#	Article	IF	CITATIONS
613	Two-Phase Segmented Flow in Capillaries and Monolith Reactors. Chemical Industries, 2005, , 393-434.	0.1	O
614	Monoliths as Biocatalytic Reactors: Smart Gasâ€"Liquid Contacting for Process Intensification. ChemInform, 2006, 37, no.	0.0	0
615	Structure and performance in propane ODH of Vanadia incorporated in (Ti-, Zr-)TUD-1. Studies in Surface Science and Catalysis, 2007, 170, 1190-1196.	1.5	0
616	The Focused Action of Surface Tension Versus the Brute Force of Turbulence– Scaleable Microchannel-Based Process Intensification using Monoliths. , 0, , 149-164.		0
617	Preparation of Supported Metal Catalysts. Catalytic Science Series, 2011, , 1-40.	0.0	0
618	Chemical Design of Carbon Coating on the Alumina Support. , 2009, , 119-130.		0
619	Corrigendum to "On the drug adsorption capacity of SBA-15 obtained from various detemplation protocols―[Mater. Lett. 131 (2014) 186–189]. Materials Letters, 2022, 309, 131425.	2.6	O