Xiang-Kui Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/735682/publications.pdf Version: 2024-02-01

XIANC-KIII CIL

#	Article	IF	CITATIONS
1	Interface-Confined Ferrous Centers for Catalytic Oxidation. Science, 2010, 328, 1141-1144.	12.6	866
2	Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt ₁ Catalyst. ACS Catalysis, 2017, 7, 887-891.	11.2	407
3	Supported Single Pt ₁ /Au ₁ Atoms for Methanol Steam Reforming. ACS Catalysis, 2014, 4, 3886-3890.	11.2	204
4	Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Science Advances, 2019, 5, eaat6413.	10.3	187
5	Crystalâ€Planeâ€Controlled Selectivity of Cu ₂ 0 Catalysts in Propylene Oxidation with Molecular Oxygen. Angewandte Chemie - International Edition, 2014, 53, 4856-4861.	13.8	180
6	Stabilization of Copper Catalysts for Liquidâ€Phase Reactions by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2013, 52, 13808-13812.	13.8	162
7	First-Principles Study on the Origin of the Different Selectivities for Methanol Steam Reforming on Cu(111) and Pd(111). Journal of Physical Chemistry C, 2010, 114, 21539-21547.	3.1	137
8	Engineering the Electronic Structure of Submonolayer Pt on Intermetallic Pd ₃ Pb via Charge Transfer Boosts the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 19964-19968.	13.7	99
9	Single Pd Atom Embedded in CeO ₂ (111) for NO Reduction with CO: A First-Principles Study. Journal of Physical Chemistry C, 2014, 118, 12216-12223.	3.1	98
10	Atomic Layer Deposition Overcoating: Tuning Catalyst Selectivity for Biomass Conversion. Angewandte Chemie - International Edition, 2014, 53, 12132-12136.	13.8	78
11	First-Principles Study of Structure Sensitivity of Ethylene Glycol Conversion on Platinum. ACS Catalysis, 2015, 5, 2623-2631.	11.2	60
12	Theoretical Study of the Role of a Metal–Cation Ensemble at the Oxide–Metal Boundary on CO Oxidation. Journal of Physical Chemistry C, 2012, 116, 7491-7498.	3.1	59
13	Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. Journal of Catalysis, 2020, 388, 130-140.	6.2	59
14	Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. Chemistry of Materials, 2018, 30, 2860-2872.	6.7	56
15	Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides. Journal of the American Chemical Society, 2018, 140, 8128-8137.	13.7	49
16	Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation. Chinese Journal of Catalysis, 2019, 40, 1847-1853.	14.0	47
17	Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111). ACS Applied Materials & Interfaces, 2015, 7, 16428-16439.	8.0	39
18	CO Oxidation at the Perimeters of an FeO/Pt(111) Interface and how Water Promotes the Activity: A Firstâ€Principles Study. ChemSusChem, 2012, 5, 871-878.	6.8	37

XIANG-KUI GU

#	Article	IF	CITATIONS
19	Differentiating Intrinsic Reactivity of Copper, Copper–Zinc Alloy, and Copper/Zinc Oxide Interface for Methanol Steam Reforming by First-Principles Theory. Journal of Physical Chemistry C, 2017, 121, 21553-21559.	3.1	37
20	Following Molecules through Reactive Networks: Surface Catalyzed Decomposition of Methanol on Pd(111), Pt(111), and Ni(111). Journal of Physical Chemistry C, 2014, 118, 12364-12383.	3.1	35
21	Structure evolution of Pt–3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: a first-principles study. Catalysis Today, 2011, 165, 89-95.	4.4	33
22	Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nature Communications, 2021, 12, 5921.	12.8	33
23	Design of Ruddlesden–Popper Oxides with Optimal Surface Oxygen Exchange Properties for Oxygen Reduction and Evolution. ACS Catalysis, 2017, 7, 5912-5920.	11.2	32
24	Engineering Complex, Layered Metal Oxides: High-Performance Nickelate Oxide Nanostructures for Oxygen Exchange and Reduction. ACS Catalysis, 2015, 5, 4013-4019.	11.2	30
25	Design Strategies for Efficient Nonstoichiometric Mixed Metal Oxide Electrocatalysts: Correlating Measurable Oxide Properties to Electrocatalytic Performance. ACS Catalysis, 2019, 9, 10575-10586.	11.2	28
26	First-principles study of single transition metal atoms on ZnO for the water gas shift reaction. Catalysis Science and Technology, 2017, 7, 4294-4301.	4.1	27
27	Fundamental Insights into High-Temperature Water Electrolysis Using Ni-Based Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 26980-26988.	3.1	26
28	Reaction of Trimethylaluminum with Water on Pt(111) and Pd(111) from 10 ^{–5} to 10 ^{–1} Millibar. Journal of Physical Chemistry C, 2015, 119, 2399-2411.	3.1	21
29	First-Principles and Microkinetic Simulation Studies of the Structure Sensitivity of Cu Catalyst for Methanol Steam Reforming. Journal of Physical Chemistry C, 2018, 122, 10811-10819.	3.1	20
30	Preferential cleavage of C C bonds over C N bonds at interfacial CuO Cu2O sites. Journal of Catalysis, 2015, 330, 458-464.	6.2	18
31	Robust Ruddlesdenâ€Popper phase Sr ₃ Fe _{1.3} Mo _{0.5} N _{i0.2} O _{7â€î} decorated with inâ€situ exsolved Ni nanoparticles as an efficient anode for hydrocarbon fueled solid oxide fuel cells. SusMat_2022_2_487-501	14.9	18
32	Electrochemical Reduction of CO ₂ on Metal-Based Cathode Electrocatalysts of Solid Oxide Electrolysis Cells. Industrial & Engineering Chemistry Research, 2020, 59, 15884-15893.	3.7	17
33	First-Principles Study of High Temperature CO ₂ Electrolysis on Transition Metal Electrocatalysts. Industrial & Engineering Chemistry Research, 2017, 56, 6155-6163.	3.7	16
34	One-step synthesis of gasoline fuels from γ-valerolactone with high selectivity over Cu/HZSM-5 bifunctional catalyst. Applied Catalysis B: Environmental, 2021, 296, 120338.	20.2	16
35	Surface Chemistry of Trimethylaluminum on Pd(111) and Pt(111). Journal of Physical Chemistry C, 2015, 119, 19059-19072.	3.1	14
36	First-principles study of water activation on Cu-ZnO catalysts. Chinese Journal of Catalysis, 2013, 34, 1705-1711.	14.0	11

XIANG-KUI GU

#	Article	IF	CITATIONS
37	One-step synthesis of pentane fuel from γ-valerolactone with high selectivity over a Co/HZSM-5 bifunctional catalyst. Green Chemistry, 2021, 23, 4780-4789.	9.0	10
38	Modulating Catalytic Properties of Targeted Metal Cationic Centers in Nonstochiometric Mixed Metal Oxides for Electrochemical Oxygen Reduction. ACS Energy Letters, 2021, 6, 1065-1072.	17.4	10
39	Ethylene adsorption on Ag(111), Rh(111) and Ir(111) by (meta)-GGA based density functional theory calculations. Chinese Journal of Chemical Physics, 2019, 32, 437-443.	1.3	9
40	Controlling reaction pathways via selective C-O activation for highly efficient biomass oriented-upgrading. Chemical Engineering Journal, 2022, 446, 137404.	12.7	9
41	Characterization and theory of Re films on Pt(111) grown by UHV-CVD. Surface Science, 2015, 640, 2-9.	1.9	8
42	Understanding Surface Catalyzed Decomposition Reactions Using a Chemical Pathway Analysis. Journal of Physical Chemistry C, 2018, 122, 28158-28172.	3.1	8
43	Bimetallic Cu/Rh Catalyst for Preferential Oxidation of CO in H ₂ : a DFT Study. Journal of Physical Chemistry C, 2021, 125, 19697-19705.	3.1	7
44	Finding Key Factors for Efficient Water and Methanol Activation at Metals, Oxides, MXenes, and Metal/Oxide Interfaces. ACS Catalysis, 2022, 12, 1237-1246.	11.2	5
45	Heterogeneous electrocatalysts for CO2 reduction. Catalysis, 0, , 94-121.	1.0	2
46	Rücktitelbild: Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition (Angew. Chem. 51/2013). Angewandte Chemie, 2013, 125, 14068-14068.	2.0	1