Dieter H Bimberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7355169/publications.pdf

Version: 2024-02-01

145 papers 4,612 citations

33 h-index 62 g-index

148 all docs

148 docs citations

times ranked

148

3061 citing authors

#	Article	IF	CITATIONS
1	Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photonics Research, 2022, 10, 1170.	7.0	10
2	Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots. Light: Science and Applications, 2021, 10, 125.	16.6	14
3	On the importance of antimony for temporal evolution of emission from self-assembled (InGa) (AsSb)/GaAs quantum dots on GaP(001). New Journal of Physics, 2021, 23, 103029.	2.9	10
4	Novel VCSEL Designs for the next generation of photonic systems. , 2021, , .		1
5	High-power, low resistance, single-mode, multi-aperture VCSELs. , 2021, , .		O
6	Multi-aperture VCSELs: high power, low resistance, single mode. , 2021, , .		2
7	High-power, single-mode, multi-aperture VCSELs for long-reach optical interconnects. , 2021, , .		1
8	$910\ \mathrm{nm}$ Single-Mode VCSELs and its Application for Few-Mode Transmission over Graded-Index Single-Mode Fibers. , 2020, , .		2
9	GaAs-based subwavelength grating on an AlOx layer for a vertical-cavity surface-emitting laser. OSA Continuum, 2020, 3, 317.	1.8	3
10	Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates. Optics Express, 2020, 28, 18931.	3.4	12
11	Energy-Efficient 50+ Gb/s VCSELs for 200+ Gb/s Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-5.	2.9	9
12	Optical response of (InGa)(AsSb)/GaAs quantum dots embedded in a GaP matrix. Physical Review B, 2019, 100, .	3.2	19
13	Electronic states of (InGa)(AsSb)/GaAs/GaP quantum dots. Physical Review B, 2019, 100, .	3.2	23
14	Static and Dynamic Characteristics of In(AsSb)/ GaAs Submonolayer Lasers. IEEE Journal of Quantum Electronics, 2019, 55, 1-7.	1.9	2
15	Energy-efficient VCSELs for 200+ Gb/s optical interconnects. , 2019, , .		3
16	Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Research, 2019, 7, 121.	7.0	155
17	Nanophotonics for a green internet. , 2019, , .		1
18	MOVPEâ€Growth of InGaSb/AlP/GaP(001) Quantum Dots for Nanoscale Memory Applications. Physica Status Solidi (B): Basic Research, 2018, 255, 1800182.	1.5	24

#	Article	IF	CITATIONS
19	Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Optics Letters, 2018, 43, 210.	3.3	18
20	Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes. Optics Express, 2018, 26, 1743.	3.4	23
21	Semiconductor nanostructures for flying q-bits and green photonics. Nanophotonics, 2018, 7, 1245-1257.	6.0	14
22	Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence. Ultramicroscopy, 2018, 190, 45-57.	1.9	17
23	Morphology and valence band offset of GaSb quantum dots grown on GaP(001) and their evolution upon capping. Nanotechnology, 2017, 28, 225601.	2.6	8
24	Fabrication and room temperature operation of semiconductor nano-ring lasers using a general applicable membrane transfer method. Applied Physics Letters, 2017, 110, 171105.	3.3	12
25	Comparison between high- and zero-contrast gratings as VCSEL mirrors. Optics Communications, 2017, 389, 35-41.	2.1	12
26	How can we accommodate the rapidly increasing power consumption of the internet? "Green―optical interconnects based on novel VCSELs. , 2017, , .		0
27	Spectral Efficiency and Energy Efficiency of Pulse-Amplitude Modulation Using $1.3\ \hat{l}^{1}/4$ m Wafer-Fusion VCSELs for Optical Interconnects. ACS Photonics, 2017, 4, 2018-2024.	6.6	16
28	Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset. Applied Physics Letters, 2017, 111, .	3.3	14
29	Large Bandwidth, Small Current Density, and Temperature Stable 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2017, 53, 1-8.	1.9	20
30	Quantum-Dot Semiconductor Optical Amplifiers for Energy-Efficient Optical Communication. Nanoscience and Technology, 2017, , 37-74.	1.5	8
31	Quantum-Dot Mode-Locked Lasers: Sources for Tunable Optical and Electrical Pulse Combs. Nanoscience and Technology, 2017, , 75-106.	1.5	5
32	Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile. Optics Express, 2016, 24, 30514.	3.4	15
33	Strong amplitude-phase coupling in submonolayer quantum dots. Applied Physics Letters, 2016, 109, 201102.	3.3	18
34	High-contrast-grating-based Fabry-PÃ $\hat{\mathbb{Q}}$ rot filter array for monolithic multiwavelength VCSEL arrays. , 2016, , .		0
35	Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects. Frontiers of Optoelectronics, 2016, 9, 249-258.	3.7	8
36	Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs. IEEE Photonics Technology Letters, 2016, 28, 2327-2330.	2.5	40

3

#	Article	IF	CITATIONS
37	1060-nm High Brightness Picosecond Pulse Generation in Photonic Band Crystal Lasers. IEEE Photonics Technology Letters, 2016, 28, 2086-2089.	2.5	0
38	Hole localization energy of 1.18 eV in GaSb quantum dots embedded in GaP. Physica Status Solidi (B): Basic Research, 2016, 253, 1877-1881.	1.5	10
39	Novel types of photonic band crystal high power and high brightness semiconductor lasers. Frontiers of Optoelectronics, 2016, 9, 225-237.	3.7	4
40	Nanophotonics for future data communication and ethernet networks., 2015,,.		0
41	Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots. Applied Physics Letters, 2015, 107, .	3.3	17
42	Temperature-Stable, Energy-Efficient, and High-Bit Rate Oxide-Confined 980-nm VCSELs for Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 405-413.	2.9	19
43	230 s room-temperature storage time and 1.14 eV hole localization energy in In0.5Ga0.5As quantum dot on a GaAs interlayer in GaP with an AlP barrier. Applied Physics Letters, 2015, 106, .	ts 3.3	23
44	Temperature-Dependent Impedance Characteristics of Temperature-Stable High-Speed 980-nm VCSELs. IEEE Photonics Technology Letters, 2015, 27, 832-835.	2.5	15
45	High Temperature Operation of 1060-nm High-Brightness Photonic Band Crystal Lasers With Very Low Astigmatism. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 722-727.	2.9	16
46	Impact of the Oxide-Aperture Diameter on the Energy Efficiency, Bandwidth, and Temperature Stability of 980-nm VCSELs. Journal of Lightwave Technology, 2015, 33, 825-831.	4.6	44
47	Flying qubits and entangled photons. Laser and Photonics Reviews, 2014, 8, 276-290.	8.7	14
48	Temperature-Stable 980-nm VCSELs for 35-Gb/s Operation at 85 °C With 139-fJ/bit Dissipated Heat. IEEE Photonics Technology Letters, 2014, 26, 2349-2352.	2.5	20
49	Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2014, 50, 613-621.	1.9	36
50	Correction to "Energy Efficiency of Directly Modulated Oxide-confined High Bit Rate 850Ânm VCSELs for Optical Interconnects―[Jul/Aug 13 1702212]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 335-335.	2.9	0
51	GaSb quantum dots on GaAs with high localization energy of 710 meV and an emission wavelength of 1.3 µm. Journal of Crystal Growth, 2014, 404, 48-53.	1.5	11
52	Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Optics Express, 2014, 22, 11804.	3.4	32
53	Energy Efficiency of Directly Modulated Oxide-Confined High Bit Rate 850-nm VCSELs for Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1702212-1702212.	2.9	57
54	Error-Free Transmission Over 1-km OM4 Multimode Fiber at 25 Gb/s Using a Single Mode Photonic Crystal Vertical-Cavity Surface-Emitting Laser. IEEE Photonics Technology Letters, 2013, 25, 1823-1825.	2.5	40

#	Article	IF	CITATIONS
55	Leakage-Assisted Transverse Mode Selection in Vertical-Cavity Surface-Emitting Lasers With Thick Large-Diameter Oxide Apertures. IEEE Journal of Quantum Electronics, 2013, 49, 1034-1039.	1.9	5
56	Collective Light Emission Revisited: Reservoir Induced Coherence. Physical Review Letters, 2013, 110, 113604.	7.8	19
57	85-fJ Dissipated Energy Per Bit at 30 Gb/s Across 500-m Multimode Fiber Using 850-nm VCSELs. IEEE Photonics Technology Letters, 2013, 25, 1638-1641.	2.5	22
58	Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers. Optics Express, 2013, 21, 30336.	3.4	19
59	Spatial structure of In0.25Ga0.75As/GaAs/GaP quantum dots on the atomic scale. Applied Physics Letters, 2013, 102, .	3.3	13
60	High-Speed and Temperature-Stable, Oxide-Confined 980-nm VCSELs for Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1701207-1701207.	2.9	17
61	Room-Temperature Hysteresis in a Hole-Based Quantum Dot Memory Structure. Journal of Nanotechnology, 2013, 2013, 1-4.	3.4	4
62	Electro-optical resonance modulation of vertical-cavity surface-emitting lasers. Optics Express, 2012, 20, 5099.	3.4	32
63	VCSEL-Based Light Sourcesâ€"Scalability Challenges for VCSEL-Based Multi-100- Gb/s Systems. IEEE Photonics Journal, 2012, 4, 1831-1843.	2.0	19
64	Energy-Efficient VCSELs for Interconnects. IEEE Photonics Journal, 2012, 4, 652-656.	2.0	36
65	Progress on single mode VCSELs for data- and tele-communications. Proceedings of SPIE, 2012, , .	0.8	21
66	Cavity-Volume Scaling Law of Quantum-Dot Metal-Cavity Surface-Emitting Microlasers. IEEE Photonics Journal, 2012, 4, 1103-1114.	2.0	15
67	Strain effects and band parameters in MgO, ZnO, and CdO. Applied Physics Letters, 2012, 101, .	3.3	67
68	Energy-efficient 1.3 &		3
69	Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. Optics Express, 2012, 20, 20222.	3.4	22
70	Wide-Range Wavelength Conversion of 40-Gb/s NRZ-DPSK Signals Using a 1.3-\$mu\$m Quantum-Dot Semiconductor Optical Amplifier. IEEE Photonics Technology Letters, 2012, 24, 1163-1165.	2.5	17
71	Temperature-Dependent Characteristics of Single-Mode InAs Submonolayer Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2012, 24, 906-908.	2.5	22
72	Lateral-Longitudinal Modes of High-Power Inhomogeneous Waveguide Lasers. IEEE Journal of Quantum Electronics, 2012, 48, 123-128.	1.9	13

#	Article	IF	CITATIONS
73	Polarization switching and polarization mode hopping in quantum dot vertical-cavity surface-emitting lasers. Optics Express, 2011, 19, 2476.	3.4	28
74	40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier. Optics Express, 2011, 19, 3788.	3.4	29
75	80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express, 2011, 19, 5134.	3.4	32
76	Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors. Optics Letters, 2011, 36, 2447.	3.3	30
77	Progress on High-Speed 980 nm VCSELs for Short-Reach Optical Interconnects. Advances in Optical Technologies, 2011, 2011, 1-15.	0.8	37
78	Quantum dots: promises and accomplishments. Materials Today, 2011, 14, 388-397.	14.2	157
79	Pulse Broadening in Quantum-Dot Mode-Locked Semiconductor Lasers: Simulation, Analysis, and Experiments. IEEE Journal of Quantum Electronics, 2011, 47, 935-943.	1.9	27
80	1550-nm High-Speed Short-Cavity VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1158-1166.	2.9	124
81	Theory of Metal-Cavity Surface-Emitting Microlasers and Comparison With Experiment. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1681-1692.	2.9	8
82	Tilted Wave Lasers: A Way to High Brightness Sources of Light. IEEE Journal of Quantum Electronics, 2011, 47, 1014-1027.	1.9	22
83	CW substrate-free metal-cavity surface microemitters at 300 K. Semiconductor Science and Technology, 2011, 26, 014012.	2.0	16
84	GReen Data And Computer Communication., 2011,,.		5
85	Antimony-based quantum dot memories. Proceedings of SPIE, 2011, , .	0.8	8
86	Low Thermal Impedance of Substrate-Free Metal Cavity Surface-Emitting Microlasers. IEEE Photonics Technology Letters, 2011, 23, 1031-1033.	2.5	13
87	Numerical Simulation of Temporal and Spectral Variation of Gain and Phase Recovery in Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2010, 46, 405-413.	1.9	28
88	Effect of Inhomogeneous Broadening on Gain and Phase Recovery of Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2010, 46, 1670-1680.	1.9	50
89	Large-Signal Response of Semiconductor Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2010, 46, 1755-1762.	1.9	37
90	Finite element simulation of the optical modes of semiconductor lasers. Physica Status Solidi (B): Basic Research, 2010, 247, 846-853.	1.5	12

#	Article	IF	Citations
91	Atomic Structure of Buried InAs Sub-Monolayer Depositions in GaAs. Applied Physics Express, 2010, 3, 105602.	2.4	28
92	Ultrafast VCSELs for Datacom. IEEE Photonics Journal, 2010, 2, 273-275.	2.0	20
93	Confined States of Individual Type-II GaSb/GaAs Quantum Rings Studied by Cross-Sectional Scanning Tunneling Spectroscopy. Nano Letters, 2010, 10, 3972-3977.	9.1	28
94	Linear and nonlinear semiconductor optical amplifiers. , 2010, , .		2
95	Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in Undoped and p-Doped 1.3- <formula formulatype="inline"> <tex notation="TeX">\$muhbox{m}\$</tex> </formula> Quantum Dot Semiconductor Optical Amplifiers. IEEE Photonics Journal, 2010, 2, 141-151.	2.0	29
96	Metal-cavity surface-emitting microlaser at room temperature. Applied Physics Letters, 2010, 96, .	3.3	107
97	1.55 µm high-speed VCSELs enabling error-free fiber-transmission up to 25 Gbit/s., 2010,,.		14
98	Few-particle energies versus geometry and composition of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> In </mml:mtext> </mml:mrow> <mml:m .<="" 2009,="" 79,="" b,="" dots.="" physical="" quantum="" review="" td=""><td>i>x</td><td></td></mml:m></mml:msub></mml:mrow></mml:math>	i>x	
99	High-Speed Small-Signal Cross-Gain Modulation in Quantum-Dot Semiconductor Optical Amplifiers at 1.3 \$mu\$m. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 749-756.	2.9	26
100	High-Brightness and Ultranarrow-Beam 850-nm GaAs/AlGaAs Photonic Band Crystal Lasers and Single-Mode Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 901-908.	2.9	21
101	Temperature-Dependent Small-Signal Analysis of High-Speed High-Temperature Stable 980-nm VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 679-686.	2.9	29
102	Modeling Highly Efficient RCLED-Type Quantum-Dot-Based Single Photon Emitters. IEEE Journal of Quantum Electronics, 2009, 45, 1084-1088.	1.9	4
103	22-Gb/s Long Wavelength VCSELs. Optics Express, 2009, 17, 17547.	3.4	44
104	Quantum Dots for Single- and Entangled-Photon Emitters. IEEE Photonics Journal, 2009, 1, 58-68.	2.0	52
105	Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2009, 45, 240-248.	1.9	95
106	InGaAs Quantum Dots Coupled to a Reservoir of Nonequilibrium Free Carriers. IEEE Journal of Quantum Electronics, 2009, 45, 1121-1128.	1.9	28
107	Quantum-Dot Semiconductor Mode-Locked Lasers and Amplifiers at 40 GHz. IEEE Journal of Quantum Electronics, 2009, 45, 1429-1435.	1.9	36
108	Polarization Switching in Quantum-Dot Vertical-Cavity Surface-Emitting Lasers. IEEE Photonics Technology Letters, 2009, 21, 1008-1010.	2.5	18

#	Article	IF	CITATIONS
109	Magnetooptical properties of quantum dots: Influence of the piezoelectric field. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1163-1165.	2.7	0
110	Progress in Epitaxial Growth and Performance of Quantum Dot and Quantum Wire Lasers. Journal of Lightwave Technology, 2008, 26, 1540-1555.	4.6	43
111	High-Power Low-Beam Divergence Edge-Emitting Semiconductor Lasers with 1- and 2-D Photonic Bandgap Crystal Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1113-1122.	2.9	27
112	Static gain saturation in quantum dot semiconductor optical amplifiers. Optics Express, 2008, 16, 8269.	3.4	44
113	Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2008, 44, 658-666.	1.9	73
114	Single-Lobe Single-Wavelength Lasing in Ultrabroad-Area Vertical-Cavity Surface-Emitting Lasers Based on the Integrated Filter Concept. IEEE Journal of Quantum Electronics, 2008, 44, 724-731.	1.9	2
115	Quantum Dots: Genesis, the Excitonic Zoo, and its Applications. , 2007, , .		1
116	Collaborative Research Programs in Germany and the EU., 2007,,.		0
117	High-Speed Mode-Locked Quantum-Dot Lasers and Optical Amplifiers. Proceedings of the IEEE, 2007, 95, 1767-1778.	21.3	53
118	20 Gb/s 85\$^{circ}\$C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1302-1308.	2.9	56
119	Coulomb Damped Relaxation Oscillations in Semiconductor Quantum Dot Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1242-1248.	2.9	44
120	Epitaxy of multimodal InAs/GaAs quantum dot ensembles. Journal of Crystal Growth, 2007, 298, 567-569.	1.5	0
121	Theory of relaxation oscillations in semiconductor quantum dot lasers. Applied Physics Letters, 2006, 89, 101107.	3.3	50
122	Dual Semiconductor Laser System With Rapid Time-Delay for Ultrafast Measurements. IEEE Photonics Technology Letters, 2006, 18, 2338-2340.	2.5	1
123	Ultrafast carrier dynamics in InGaAs quantum dot materials and devices. Journal of Optics, 2006, 8, \$33-\$46.	1.5	7 5
124	Theory of excitation transfer in coupled nanostructures – from quantum dots to light harvesting complexes. Physica Status Solidi (B): Basic Research, 2006, 243, 2302-2310.	1.5	48
125	Onion-like growth of and inverted many-particle energies in quantum dots. Materials Science and Engineering C, 2005, 25, 698-704.	7.3	2
126	Quantum dots for lasers, amplifiers and computing. Journal Physics D: Applied Physics, 2005, 38, 2055-2058.	2.8	143

#	Article	IF	Citations
127	Quantum dots: lasers and amplifiers. Journal of Physics Condensed Matter, 2003, 15, R1063-R1076.	1.8	87
128	Direct Evidence of Nanoscale Carrier Localization in InGaN/GaN Structures Grown on Si Substrates. Japanese Journal of Applied Physics, 2003, 42, L1057-L1060.	1.5	6
129	Post-growth p-type doping enhancement for ZnSe-based lasers using a Li3N interlayer. Applied Physics Letters, 2002, 81, 4916-4918.	3.3	15
130	Self-Organized InGaAs Quantum Dots for Advanced Applications in Optoelectronics. Japanese Journal of Applied Physics, 2002, 41, 949-952.	1.5	22
131	ZnMgCdSe structures on InP grown by MOVPE. Journal of Crystal Growth, 2000, 221, 416-420.	1.5	6
132	Progress in Quantum Dot Lasers: 1100 nm, 1300 nm, and High Power Applications. Japanese Journal of Applied Physics, 2000, 39, 2341-2343.	1.5	48
133	Spontaneous ordering of nanostructures on crystal surfaces. Reviews of Modern Physics, 1999, 71, 1125-1171.	45.6	925
134	First observation of symmetry breaking in strained In0.7Ga0.3As/InP V-groove quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 969-973.	2.7	1
135	Effects of growth interruption on uniformity of GaAs quantum wires formed on vicinal GaAs(110) surfaces by MBE. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 51, 229-232.	3.5	2
136	InAs/GaAs Quantum Dots Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1997, 36, 4129-4133.	1.5	20
137	InGaAs/GaAs Quantum Dot Lasers with Ultrahigh Characteristic Temperature (T0=385K) Grown by Metal Organic Chemical Vapour Deposition. Japanese Journal of Applied Physics, 1997, 36, 4221-4223.	1.5	60
138	Gain and Threshold of Quantum Dot Lasers: Theory and Comparison to Experiments. Japanese Journal of Applied Physics, 1997, 36, 4181-4187.	1.5	109
139	Uniform GaAs quantum wires formed on vicinal GaAs (110) surfaces by two-step MBE growth. Superlattices and Microstructures, 1997, 22, 43-49.	3.1	18
140	Size-dependent luminescence of GaAs quantum wires on vicinal GaAs (110) surfaces with giant steps formed by MBE. Physica B: Condensed Matter, 1996, 227, 291-294.	2.7	7
141	Formation of AlGaAs quantum wires on vicinal GaAs(110) surfaces misoriented $3\hat{A}^{\circ}$ toward (111)A by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 35, 295-298.	3.5	3
142	Disordering of CdZnSe/ZnSe Strained Layer Superlattices by Ion Implantation. Japanese Journal of Applied Physics, 1995, 34, 1159-1161.	1.5	9
143	Cathodoluminescence of strained quantum wells and layers. Superlattices and Microstructures, 1991, 9, 65-75.	3.1	4
144	Cathodoluminescence observation of GaAs-AlGas heterointerfaces Hyomen Kagaku, 1989, 10, 697-702.	0.0	0

#	Article	IF	CITATIONS
145	Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems. Japanese Journal of Applied Physics, 0, , .	1.5	6