Francisco Wandosell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/735458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Neurite Retraction Induced by Lysophosphatidic Acid Increases Alzheimer's Disease-like Tau Phosphorylation. Journal of Biological Chemistry, 1999, 274, 37046-37052.	3.4	155
2	Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides, 2002, 23, 1323-1332.	2.4	121
3	MAP1B Is Required for Netrin 1 Signaling in Neuronal Migration and Axonal Guidance. Current Biology, 2004, 14, 840-850.	3.9	121
4	PTEN recruitment controls synaptic and cognitive function in Alzheimer's models. Nature Neuroscience, 2016, 19, 443-453.	14.8	118
5	Characterization of a Neurite Outgrowth Inhibitor Expressed After CNS Injury. European Journal of Neuroscience, 1993, 5, 454-465.	2.6	115
6	Deconstructing GSK-3: The Fine Regulation of Its Activity. International Journal of Alzheimer's Disease, 2011, 2011, 1-12.	2.0	113
7	A role of MAP1B in Reelin-dependent Neuronal Migration. Cerebral Cortex, 2005, 15, 1134-1145.	2.9	111
8	Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Review of Neurotherapeutics, 2010, 10, 703-710.	2.8	111
9	Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochemical Journal, 2003, 372, 129-136.	3.7	110
10	Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 609-618.	3.3	109
11	Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: Cellular and molecular mechanisms. Frontiers in Neuroendocrinology, 2006, 27, 391-403.	5.2	100
12	Genes Associated with Adult Axon Regeneration Promoted by Olfactory Ensheathing Cells: A New Role for Matrix Metalloproteinase 2. Journal of Neuroscience, 2006, 26, 5347-5359.	3.6	97
13	GSK3 alpha and GSK3 beta are necessary for axon formation. FEBS Letters, 2007, 581, 1579-1586.	2.8	96
14	Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. Journal of Neurobiology, 2004, 58, 48-59.	3.6	94
15	WASP-interacting protein (WIP): working in polymerisation and much more. Trends in Cell Biology, 2007, 17, 555-562.	7.9	85
16	Impaired Function of HDAC6 Slows Down Axonal Growth and Interferes with Axon Initial Segment Development. PLoS ONE, 2010, 5, e12908.	2.5	81
17	Perinatal Lethality of Microtubule-Associated Protein 1B-Deficient Mice Expressing Alternative Isoforms of the Protein at Low Levels. Molecular and Cellular Neurosciences, 2000, 16, 408-421.	2.2	76
18	Glycogen Synthase Kinase-3 Is Activated in Neuronal Cells by Gα ₁₂ and Gα ₁₃ by Rho-Independent and Rho-Dependent Mechanisms, Journal of Neuroscience, 2002, 22, 6863-6875.	3.6	76

FRANCISCO WANDOSELL

#	Article	IF	CITATIONS
19	Neuronal and glial purinergic receptors functions in neuron development and brain disease. Frontiers in Cellular Neuroscience, 2013, 7, 197.	3.7	72
20	Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. Journal of Cell Science, 2012, 125, 176-188.	2.0	71
21	Estradiol Activates β-Catenin Dependent Transcription in Neurons. PLoS ONE, 2009, 4, e5153.	2.5	71
22	Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene, 2017, 36, 3515-3527.	5.9	69
23	Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PSI transgenic mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 421-430.	3.3	68
24	BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochemistry International, 2007, 50, 491-498.	3.8	65
25	Interaction of estrogen receptors with insulin-like growth factor-I and Wnt signaling in the nervous system. Steroids, 2010, 75, 565-569.	1.8	64
26	Specific Roles of Akt iso Forms in Apoptosis and Axon Growth Regulation in Neurons. PLoS ONE, 2012, 7, e32715.	2.5	64
27	Cancer Stem Cell-Like Phenotype and Survival Are Coordinately Regulated by Akt/FoxO/Bim Pathway. Stem Cells, 2015, 33, 646-660.	3.2	64
28	Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochemical Journal, 1998, 335, 369-374.	3.7	61
29	Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. Journal of Neuroinflammation, 2012, 9, 157.	7.2	58
30	Functional Recovery in a Friedreich's Ataxia Mouse Model by Frataxin Gene Transfer Using an HSV-1 Amplicon Vector. Molecular Therapy, 2007, 15, 1072-1078.	8.2	52
31	ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury. Cerebral Cortex, 2015, 25, 2282-2294.	2.9	52
32	A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy, 2006, 13, 598-608.	8.2	49
33	Thienylhalomethylketones: Irreversible glycogen synthase kinase 3 inhibitors as useful pharmacological tools. Bioorganic and Medicinal Chemistry, 2009, 17, 6914-6925.	3.0	49
34	The hunt for brain AÎ ² oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 43-52.	3.3	46
35	Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?. Journal of Biomedicine and Biotechnology, 2002, 2, 37-43.	3.0	44
36	WIP Drives Tumor Progression through YAP/TAZ-Dependent Autonomous Cell Growth. Cell Reports, 2016, 17, 1962-1977.	6.4	44

FRANCISCO WANDOSELL

#	Article	IF	CITATIONS
37	Assessment of Autophagy in Neurons and Brain Tissue. Cells, 2017, 6, 25.	4.1	41
38	Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. Journal of Neurochemistry, 2003, 85, 861-871.	3.9	40
39	AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging. Journal of Alzheimer's Disease, 2016, 54, 645-656.	2.6	40
40	Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochemical Journal, 2005, 389, 333-341.	3.7	38
41	Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal. Biomedicines, 2018, 6, 29.	3.2	38
42	Expression of Presenilin 1 in nervous system during rat development. Journal of Comparative Neurology, 1999, 410, 556-570.	1.6	37
43	Angiotensin II type-2 receptor stimulation induces neuronal VEGF synthesis after cerebral ischemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1297-1308.	3.8	37
44	Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Frontiers in Neuroscience, 2018, 12, 60.	2.8	37
45	Peripheral Amyloid Levels Present Gender Differences Associated with Aging in AβPP/PS1 Mice. Journal of Alzheimer's Disease, 2015, 44, 1063-1068.	2.6	34
46	GSK3 and β-catenin determines functional expression of sodium channels at the axon initial segment. Cellular and Molecular Life Sciences, 2013, 70, 105-120.	5.4	33
47	Sex steroid hormones as neuroprotective elements in ischemia models. Journal of Endocrinology, 2018, 237, R65-R81.	2.6	33
48	Increasing neurite outgrowth capacity of ?-amyloid precursor protein proteoglycan in Alzheimer's disease. Journal of Neuroscience Research, 2000, 60, 87-97.	2.9	32
49	ImmunoPEGliposome-mediated reduction of blood and brain amyloid levels in a mouse model of Alzheimer's disease is restricted to aged animals. Biomaterials, 2017, 112, 141-152.	11.4	32
50	Stroke and Neuroinflamation: Role of Sexual Hormones. Current Pharmaceutical Design, 2016, 22, 1334-1349.	1.9	31
51	Highly Efficient and Specific Gene Transfer to Purkinje CellsIn VivoUsing a Herpes Simplex Virus I Amplicon. Human Gene Therapy, 2002, 13, 665-674.	2.7	30
52	Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cellular and Molecular Life Sciences, 2015, 72, 2719-2737.	5.4	29
53	R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. Journal of Neuroscience, 2018, 38, 5096-5110.	3.6	27
54	AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on Î ² -amyloid clearance. Autophagy, 2021, 17, 656-671.	9.1	26

FRANCISCO WANDOSELL

#	Article	IF	CITATIONS
55	Nanoliposomes as a Therapeutic Tool for Alzheimer's Disease. Frontiers in Synaptic Neuroscience, 2020, 12, 20.	2.5	24
56	WIP Regulates Persistence of Cell Migration and Ruffle Formation in Both Mesenchymal and Amoeboid Modes of Motility. PLoS ONE, 2013, 8, e70364.	2.5	23
57	Secreted Herpes Simplex Virus-2 Glycoprotein G Modifies NGF-TrkA Signaling to Attract Free Nerve Endings to the Site of Infection. PLoS Pathogens, 2015, 11, e1004571.	4.7	23
58	Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models. Scientific Reports, 2022, 12, .	3.3	22
59	High level of amyloid precursor protein expression in neurite-promoting olfactory ensheathing glia (OEG) and OEG-derived cell lines. Journal of Neuroscience Research, 2003, 71, 871-881.	2.9	21
60	Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Molecular Neurobiology, 2015, 52, 1690-1703.	4.0	21
61	Ephrin-B1 Promotes Dendrite Outgrowth on Cerebellar Granule Neurons. Molecular and Cellular Neurosciences, 2002, 20, 429-446.	2.2	19
62	Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy. Cellular and Molecular Life Sciences, 2012, 69, 1689-1703.	5.4	18
63	R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 5911.	4.1	18
64	Neurogenic effects of β-amyloid in the choroid plexus epithelial cells in Alzheimer's disease. Cellular and Molecular Life Sciences, 2013, 70, 2787-2797.	5.4	17
65	Cellular prion protein modulates β-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiology of Aging, 2013, 34, 2793-2804.	3.1	17
66	WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma. Cancers, 2018, 10, 191.	3.7	17
67	Botulinum Neurotoxin Light Chains Expressed by Defective Herpes Simplex Virus Type-1 Vectors Cleave SNARE Proteins and Inhibit CGRP Release in Rat Sensory Neurons. Toxins, 2019, 11, 123.	3.4	15
68	Dihydroceramide Desaturase 1 Inhibitors Reduce Amyloid-β Levels in Primary Neurons from an Alzheimer's Disease Transgenic Model. Pharmaceutical Research, 2018, 35, 49.	3.5	14
69	Secreted herpes simplex virus-2 glycoprotein G alters thermal pain sensitivity by modifying NGF effects on TRPV1. Journal of Neuroinflammation, 2016, 13, 210.	7.2	12
70	Amyloid precursor protein proteoglycan is increased after brain damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1406, 237-250.	3.8	11
71	Reticulon-4B/Nogo-B acts as a molecular linker between microtubules and actin cytoskeleton in vascular smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1985-1995.	4.1	11
72	Pathways Involved in Remyelination after Cerebral Ischemia. Current Neuropharmacology, 2022, 20, 751-765.	2.9	11

#	Article	IF	CITATIONS
73	Integrating Retroviral Cassette Extends Gene Delivery of HSV-1 Expression Vectors to Dividing Cells. BioTechniques, 2001, 31, 394-405.	1.8	8
74	Oncogene-mediated tumor transformation sensitizes cells to autophagy induction. Oncology Reports, 2016, 35, 3689-3695.	2.6	7
75	Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2574-2583.	4.1	7
76	Crosstalk between WIP and Rho family GTPases. Small GTPases, 2020, 11, 1-7.	1.6	7
77	Absence of Râ€Ras1 and Râ€Ras2 causes mitochondrial alterations that trigger axonal degeneration in a hypomyelinating disease model. Glia, 2021, 69, 619-637.	4.9	6
78	Neuritic complexity of hippocampal neurons depends on WIP â€mediated mTORC 1 and Abl family kinases activities. Brain and Behavior, 2015, 5, e00359.	2.2	5
79	WIP, YAP/TAZ and Actin Connections Orchestrate Development and Transformation in the Central Nervous System. Frontiers in Cell and Developmental Biology, 2021, 9, 673986.	3.7	5
80	Trehalose Reduces the Secreted Beta-Amyloid Levels in Primary Neurons Independently of Autophagy Induction. Metabolites, 2021, 11, 421.	2.9	5
81	Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC. Current Pharmaceutical Design, 2020, 25, 4763-4770.	1.9	5
82	WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells. Antioxidants, 2020, 9, 773.	5.1	4
83	Diets with Higher ω-6/ω-3 Ratios Show Differences in Ceramides and Fatty Acid Levels Accompanied by Increased Amyloid-Beta in the Brains of Male APP/PS1 Transgenic Mice. International Journal of Molecular Sciences, 2021, 22, 10907.	4.1	4
84	Ovarian Hormone-Dependent Effects of Dietary Lipids on APP/PS1 Mouse Brain. Frontiers in Aging Neuroscience, 2019, 11, 346.	3.4	3
85	R-Ras1 and R-Ras2 Expression in Anatomical Regions and Cell Types of the Central Nervous System. International Journal of Molecular Sciences, 2022, 23, 978.	4.1	1
86	Role of GSK-3/Shaggy in Neuronal Cell Biology. , 0, , 45-60.		0
87	412. A Novel Friedreich's Ataxia Model and In Vivo Gene Rescue Using HSV-1 Amplicon Vectors in Transgenic Mice. Molecular Therapy, 2006, 13, S158.	8.2	0
88	Centro de Biologia Molecular "Severo Ochoa― A Center for Basic Research into Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 21, 325-335.	2.6	0
89	P1-071: Synergistic effect between chronic estrogen treatment and dha-enriched diet on AÎ ² burden in APPswe/PSEN1Ĩ´e9 mice. , 2015, 11, P365-P365.		0
90	Cancer cell development, migratory response, and the role of the tumor microenvironment in invasion and metastasis. , 2022, , 245-270.		0