Jean-Pierre Kruth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7354327/publications.pdf

Version: 2024-02-01

37 papers	3,812 citations	23 h-index	330143 37 g-index
39	39	39	3816
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Melt pool feature analysis using a high-speed coaxial monitoring system for laser powder bed fusion of Ti-6Al-4ÂV grade 23. International Journal of Advanced Manufacturing Technology, 2022, 120, 6497-6514.	3.0	11
2	Laser powder bed fusion as a net-shaping method for reaction bonded SiC and B ₄ C. Virtual and Physical Prototyping, 2022, 17, 854-863.	10.4	6
3	Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy. Additive Manufacturing, 2021, 37, 101630.	3.0	29
4	Crack mitigation in Laser Powder Bed Fusion processed Hastelloy X using a combined numerical-experimental approach. Journal of Alloys and Compounds, 2021, 864, 158803.	5.5	21
5	Hybrid dual laser processing for improved quality of inclined up-facing surfaces in laser powder bed fusion of metals. Journal of Materials Processing Technology, 2021, 298, 117263.	6.3	16
6	Mechanical and electrical properties of selective laserâ€melted parts produced from surfaceâ€oxidized copper powder. Material Design and Processing Communications, 2020, 2, e94.	0.9	24
7	Modification of Electrical and Mechanical Properties of Selective Laserâ€Melted CuCr0.3 Alloy Using Carbon Nanoparticles. Advanced Engineering Materials, 2020, 22, 1900946.	3.5	21
8	Description and validation of a circular padding method for linear roughness measurements of short data lengths. MethodsX, 2020, 7, 101122.	1.6	1
9	In situ transformations during SLM of an ultra-strong TiC reinforced Ti composite. Scientific Reports, 2020, 10, 10523.	3.3	18
10	Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper. Materials, 2019, 12, 2469.	2.9	58
11	Resonating Shell: A Spherical-Omnidirectional Ultrasound Transducer for Underwater Sensor Networks. Sensors, 2019, 19, 757.	3.8	22
12	Selective Laser Melting to Manufacture "In Situ―Metal Matrix Composites: A Review. Advanced Engineering Materials, 2019, 21, 1801244.	3.5	130
13	Selective laser sintering of polystyrene: a single-layer approach. Plastics, Rubber and Composites, 2018, 47, 2-8.	2.0	19
14	Direct laser sintering of reaction bonded silicon carbide with low residual silicon content. Journal of the European Ceramic Society, 2018, 38, 3709-3717.	5.7	65
15	Additively manufactured metals for medical applications. , 2018, , 261-309.		21
16	Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70, 53-59.	3.1	172
17	Additively Manufactured and Surface Biofunctionalized Porous Nitinol. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1293-1304.	8.0	78
18	Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation. Journal of Materials Chemistry A, 2017, 5, 25401-25409.	10.3	103

#	Article	IF	Citations
19	Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomaterialia, 2017, 47, 193-202.	8.3	233
20	Single-Element Omnidirectional Piezoelectric Ultrasound Transducer for under Water Communication. Proceedings (mdpi), 2017, 1, .	0.2	5
21	Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing. Applied Sciences (Switzerland), 2017, 7, 250.	2.5	46
22	Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications. MRS Bulletin, 2016, 41, 765-774.	3.5	132
23	On the Transformation Behavior of NiTi Shape-Memory Alloy Produced by SLM. Shape Memory and Superelasticity, 2016, 2, 310-316.	2.2	98
24	Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Materials Science and Engineering C, 2015, 54, 94-100.	7.3	126
25	Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation. Materials Science and Technology, 2015, 31, 917-923.	1.6	312
26	Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufacturing, 2015, 5, 77-84.	3.0	313
27	Additively manufactured porous tantalum implants. Acta Biomaterialia, 2015, 14, 217-225.	8.3	309
28	Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	2.2	106
29	Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel Titanium Parts. Advanced Engineering Materials, 2014, 16, 1140-1146.	3.5	200
30	Additive manufacturing of zirconia parts by indirect selective laser sintering. Journal of the European Ceramic Society, 2014, 34, 81-89.	5.7	183
31	Gelatin functionalised porous titanium alloy implants for orthopaedic applications. Materials Science and Engineering C, 2014, 42, 396-404.	7.3	35
32	Polystyreneâ€coated alumina powder via dispersion polymerization for indirect selective laser sintering applications. Journal of Applied Polymer Science, 2013, 128, 2121-2128.	2.6	8
33	Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. Journal of Materials Processing Technology, 2013, 213, 1484-1494.	6.3	152
34	The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomaterialia, 2012, 8, 2824-2834.	8.3	594
35	Normal-directional and normal-hemispherical reflectances of micron- and submicron-sized powder beds at 633 and 790nm. Journal of Applied Physics, 2006, 99, 113528.	2.5	19
36	Surface and Sub-Surface Quality of Steel after EDM. Advanced Engineering Materials, 2006, 8, 15-25.	3.5	85

#	Article	IF	CITATIONS
37	Statistical Analysis of Experimental Parameters in Selective Laser Sintering. Advanced Engineering Materials, 2005, 7, 750-755.	3.5	29