
Alex C Copley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353916/publications.pdf Version: 2024-02-01

ALEY C CODIEV

#	Article	IF	CITATIONS
1	Indiaâ€Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. Journal of Geophysical Research, 2010, 115, .	3.3	332
2	Active tectonics of the Turkish-Iranian Plateau. Tectonics, 2006, 25, n/a-n/a.	2.8	171
3	Models of crustal flow in the India-Asia collision zone. Geophysical Journal International, 2007, 169, 683-698.	2.4	171
4	Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature, 2011, 472, 79-81.	27.8	144
5	A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophysical Journal International, 2014, 197, 63-89.	2.4	99
6	Thermal and tectonic consequences of India underthrusting Tibet. Earth and Planetary Science Letters, 2012, 353-354, 231-239.	4.4	97
7	Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth and Planetary Science Letters, 2016, 433, 1-9.	4.4	87
8	Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophysical Journal International, 2008, 174, 1081-1100.	2.4	86
9	The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. Journal of Geophysical Research: Solid Earth, 2013, 118, 1619-1637.	3.4	80
10	The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivation of an intramountain reverse fault. Geophysical Journal International, 2006, 164, 137-148.	2.4	79
11	Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophysical Journal International, 2017, 209, 1800-1830.	2.4	68
12	The 2001 <i>M</i> _{<i>w</i>} 7.6 Bhuj earthquake, low fault friction, and the crustal support of plate driving forces in India. Journal of Geophysical Research, 2011, 116, .	3.3	65
13	Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland. Geology, 2018, 46, 279-282.	4.4	59
14	Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International, 2017, 211, 593-620.	2.4	49
15	The Dzhungarian fault: Late Quaternary tectonics and slip rate of a major rightâ€lateral strikeâ€slip fault in the northern Tien Shan region. Journal of Geophysical Research: Solid Earth, 2013, 118, 5681-5698.	3.4	48
16	Constraints on fault and lithosphere rheology from the coseismic slip and postseismic afterslip of the 2006 M _{<i>w</i>} 7.0 Mozambique earthquake. Journal of Geophysical Research, 2012, 117,	3.3	45
17	The relationship between mantle potential temperature and oceanic lithosphere buoyancy. Earth and Planetary Science Letters, 2019, 518, 86-99.	4.4	41
18	Active faulting in apparently stable peninsular India: Rift inversion and a Holoceneâ€age great earthquake on the Tapti Fault. Journal of Geophysical Research: Solid Earth, 2014, 119, 6650-6666.	3.4	40

ALEX C COPLEY

#	Article	IF	CITATIONS
19	The 2013 <i>M</i> _{<i>w</i>} 6.2 Khakiâ€Shonbe (Iran) Earthquake: Insights into seismic and aseismic shortening of the Zagros sedimentary cover. Earth and Space Science, 2015, 2, 435-471.	2.6	38
20	The strength of earthquake-generating faults. Journal of the Geological Society, 2018, 175, 1-12.	2.1	38
21	Subparallel thrust and normal faulting in Albania and the roles of gravitational potential energy and rheology contrasts in mountain belts. Journal of Geophysical Research, 2009, 114, .	3.3	37
22	Evolution and dynamics of a fold-thrust belt: the Sulaiman Range of Pakistan. Geophysical Journal International, 2015, 201, 683-710.	2.4	36
23	The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish–Iranian Plateau. Geophysical Journal International, 2014, 196, 15-21.	2.4	35
24	Postseismic afterslip 30 years after the 1978 Tabas-e-Golshan (Iran) earthquake: observations and implications for the geological evolution of thrust belts. Geophysical Journal International, 2014, 197, 665-679.	2.4	34
25	Seismogenic faulting of the sedimentary sequence and laterally variable material properties in the Zagros Mountains (Iran) revealed by the August 2014 Murmuri (E. Dehloran) earthquake sequence. Geophysical Journal International, 2015, 203, 1436-1459.	2.4	34
26	The metamorphic and magmatic record of collisional orogens. Nature Reviews Earth & Environment, 2021, 2, 781-799.	29.7	34
27	Blind Thrusting, Surface Folding, and the Development of Geological Structure in the <i>M</i> _{<i>w</i>} 6.3 2015 Pishan (China) Earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 9359-9382.	3.4	33
28	Constraining fault friction by re-examining earthquake nodal plane dips. Geophysical Journal International, 2014, 196, 671-680.	2.4	28
29	The formation of mountain range curvature by gravitational spreading. Earth and Planetary Science Letters, 2012, 351-352, 208-214.	4.4	27
30	Fault mechanics and post-seismic deformation at Bam, SE Iran. Geophysical Journal International, 2017, 209, 1018-1035.	2.4	27
31	The exhumation of the Indo-Burman Ranges, Myanmar. Earth and Planetary Science Letters, 2020, 530, 115948.	4.4	26
32	lmaging topographic growth by long-lived postseismic afterslip at Sefidabeh, east Iran. Tectonics, 2014, 33, 330-345.	2.8	24
33	An explanation for the age independence of oceanic elastic thickness estimates from flexural profiles at subduction zones, and implications for continental rheology. Earth and Planetary Science Letters, 2014, 392, 207-216.	4.4	24
34	Constraining fault friction in oceanic lithosphere using the dip angles of newly-formed faults at outer rises. Earth and Planetary Science Letters, 2014, 392, 94-99.	4.4	23
35	Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia-Eurasia convergence in NE Iran since the Oligocene. Geophysical Journal International, 2010, , no-no.	2.4	22
36	Extension and Dynamics of the Andes Inferred From the 2016 Parina (Huarichancara) Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 8198-8228.	3.4	21

ALEX C COPLEY

#	Article	IF	CITATIONS
37	Reconciling the Longâ€Term Relationship Between Reservoir Pore Pressure Depletion and Compaction in the Groningen Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 6165-6178.	3.4	21
38	The 2008 Methoni earthquake sequence: the relationship between the earthquake cycle on the subduction interface and coastal uplift in SW Greece. Geophysical Journal International, 2017, 208, 1592-1610.	2.4	19
39	Subduction tractions and vertical axis rotations in the Zagros–Makran transition zone, SE Iran: the 2013 May 11 <i>M</i> _w 6.1 Minab earthquake. Geophysical Journal International, 2015, 202, 1122-1136.	2.4	16
40	Lateral Variations in Lower Crustal Strength Control the Temporal Evolution of Mountain Ranges: Examples From Southâ€East Tibet. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009092.	2.5	16
41	Estimates of fault strength from the Variscan foreland of the northern UK. Earth and Planetary Science Letters, 2016, 451, 108-113.	4.4	14
42	Reconciling Geophysical and Petrological Estimates of the Thermal Structure of Southern Tibet. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008837.	2.5	12
43	Observations and dynamical implications of active normal faulting in South Peru. Geophysical Journal International, 2020, 222, 27-53.	2.4	11
44	Fault rheology in an aseismic foldâ€ŧhrust belt (Shahdad, eastern Iran). Journal of Geophysical Research: Solid Earth, 2016, 121, 412-431.	3.4	10
45	Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones. Earth and Planetary Science Letters, 2018, 486, 141-154.	4.4	9
46	Forearc collapse, plate flexure, and seismicity within the downgoing plate along the Sunda Arc west of Sumatra. Earth and Planetary Science Letters, 2018, 484, 81-91.	4.4	9
47	The Late Eoceneâ€Early Miocene Unconformities of the NW Indian Intraplate Basins and Himalayan Foreland: A Record of Tectonics or Mantle Dynamics?. Tectonics, 2018, 37, 3970-3985.	2.8	9
48	The decade-long Machaze–Zinave aftershock sequence in the slowly straining Mozambique Rift. Geophysical Journal International, 2019, 217, 504-531.	2.4	9
49	Controls on the geometry and evolution of thin-skinned fold-thrust belts, and applications to the Makran accretionary prism and Indo–Burman Ranges. Geophysical Journal International, 2019, 218, 247-267.	2.4	9
50	Crustal Deformation and Fault Strength of the Sulawesi Subduction Zone. Tectonics, 2021, 40, e2020TC006573.	2.8	7
51	Indian plate structural inheritance in the Himalayan foreland basin, Nepal. Basin Research, 2021, 33, 2792-2816.	2.7	6
52	Quantifying Water Diffusivity and Metamorphic Reaction Rates Within Mountain Belts, and Their Implications for the Rheology of Cratons. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009988.	2.5	5
53	The controls on earthquake ground motion in foreland-basin settings: the effects of basin and source geometry. Geophysical Journal International, 2021, 225, 512-529.	2.4	5
54	The controls on the thermal evolution of continental mountain ranges. Journal of Metamorphic Geology, 2022, 40, 1235-1270.	3.4	5

ALEX C COPLEY

#	Article	IF	CITATIONS
55	Seismological constraints on the down-dip shape of normal faults. Geophysical Journal International, 2018, 213, 534-560.	2.4	3
56	Links between foreland rheology and the growth and evolution of a young mountain belt in New Guinea. Geophysical Journal International, 2021, 228, 1684-1712.	2.4	2
57	Understanding earthquakes using the geological record: an introduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190410.	3.4	1
58	Corrigendum to: Links between foreland rheology and the growth and evolution of a young mountain belt in New Guinea. Geophysical Journal International, 2022, 229, 719-719.	2.4	0