
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353788/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.                                                                                                                  | 27.8 | 233       |
| 2  | Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition<br>Facility. Physical Review Letters, 2018, 120, 245003.                             | 7.8  | 205       |
| 3  | Microtesla MRI of the human brain combined with MEG. Journal of Magnetic Resonance, 2008, 194, 115-120.                                                                                  | 2.1  | 159       |
| 4  | Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Physics, 2016, 12,<br>800-806.                                                                       | 16.7 | 144       |
| 5  | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum. Physical Review Letters, 2015, 114, 175001.                                                                        | 7.8  | 117       |
| 6  | The neutron imaging diagnostic at NIF (invited). Review of Scientific Instruments, 2012, 83, 10D317.                                                                                     | 1.3  | 116       |
| 7  | Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Physics of Plasmas, 2017, 24, .                                            | 1.9  | 106       |
| 8  | Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium<br>Hohlraums at the National Ignition Facility. Physical Review Letters, 2015, 115, 055001. | 7.8  | 101       |
| 9  | The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling.<br>Physics of Plasmas, 2018, 25, .                                                     | 1.9  | 90        |
| 10 | MRI with an atomic magnetometer suitable for practical imaging applications. Journal of Magnetic Resonance, 2009, 199, 188-191.                                                          | 2.1  | 89        |
| 11 | SQUID detected NMR in microtesla magnetic fields. Journal of Magnetic Resonance, 2004, 170, 1-7.                                                                                         | 2.1  | 87        |
| 12 | Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.                                                                              | 16.7 | 87        |
| 13 | High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition<br>Facility. Physical Review Letters, 2018, 121, 135001.                                   | 7.8  | 86        |
| 14 | Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. NeuroImage, 2005, 26, 619-627.                                                                         | 4.2  | 85        |
| 15 | SQUID-based instrumentation for ultralow-field MRI. Superconductor Science and Technology, 2007, 20, S367-S373.                                                                          | 3.5  | 85        |
| 16 | Approaching a burning plasma on the NIF. Physics of Plasmas, 2019, 26, .                                                                                                                 | 1.9  | 83        |
| 17 | Neutron source reconstruction from pinhole imaging at National Ignition Facility. Review of Scientific Instruments, 2014, 85, 023508.                                                    | 1.3  | 78        |
| 18 | Toward direct neural current imaging by resonant mechanisms at ultra-low field. NeuroImage, 2008, 39. 310-317.                                                                           | 4.2  | 76        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.<br>Magnetic Resonance in Medicine, 2004, 52, 467-470.                                           | 3.0 | 68        |
| 20 | SQUIDs in biomagnetism: a roadmap towards improved healthcare. Superconductor Science and Technology, 2016, 29, 113001.                                                                          | 3.5 | 67        |
| 21 | Parallel MRI at microtesla fields. Journal of Magnetic Resonance, 2008, 192, 197-208.                                                                                                            | 2.1 | 65        |
| 22 | Nuclear imaging of the fuel assembly in ignition experiments. Physics of Plasmas, 2013, 20, 056320.                                                                                              | 1.9 | 65        |
| 23 | Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility<br>using a Four-Shock Adiabat Shaped Drive. Physical Review Letters, 2015, 115, 105001.   | 7.8 | 58        |
| 24 | Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions. Physical Review Letters, 2020, 124, 145001.                                                                        | 7.8 | 58        |
| 25 | Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility.<br>Physical Review Letters, 2015, 114, 145004.                                               | 7.8 | 56        |
| 26 | Co-Registration of Interleaved MEG and ULF MRI Using a 7 Channel Low-\$T_{m c}\$ SQUID System. IEEE<br>Transactions on Applied Superconductivity, 2011, 21, 456-460.                             | 1.7 | 55        |
| 27 | Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Physics of Plasmas, 2021, 28, .                                                                                 | 1.9 | 55        |
| 28 | Ultra-low-field MRI for the detection of liquid explosives. Superconductor Science and Technology, 2010, 23, 034023.                                                                             | 3.5 | 53        |
| 29 | Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023. | 2.1 | 53        |
| 30 | SQUID-Based Microtesla MRI for In Vivo Relaxometry of the Human Brain. IEEE Transactions on Applied<br>Superconductivity, 2009, 19, 823-826.                                                     | 1.7 | 50        |
| 31 | Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition<br>Facility. Physics of Plasmas, 2020, 27, .                                                     | 1.9 | 50        |
| 32 | 2015, 22, 056314.                                                                                                                                                                                | 1.9 | 49        |
| 33 | The role of hot spot mix in the low-foot and high-foot implosions on the NIF. Physics of Plasmas, 2017, 24, .                                                                                    | 1.9 | 49        |
| 34 | SQUID-detected ultra-low field MRI. Journal of Magnetic Resonance, 2013, 229, 127-141.                                                                                                           | 2.1 | 47        |
| 35 | On concomitant gradients in low-field MRI. Journal of Magnetic Resonance, 2005, 175, 103-113.                                                                                                    | 2.1 | 46        |
| 36 | Hot-spot mix in large-scale HDC implosions at NIF. Physics of Plasmas, 2020, 27, .                                                                                                               | 1.9 | 46        |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Multi-Channel SQUID System for MEG and Ultra-Low-Field MRI. IEEE Transactions on Applied Superconductivity, 2007, 17, 839-842.                                                        | 1.7  | 45        |
| 38 | Progress of indirect drive inertial confinement fusion in the United States. Nuclear Fusion, 2019, 59, 112018.                                                                        | 3.5  | 38        |
| 39 | SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields.<br>IEEE Transactions on Applied Superconductivity, 2005, 15, 635-639.                 | 1.7  | 33        |
| 40 | Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility.<br>Journal of Applied Physics, 2016, 120, .                                           | 2.5  | 32        |
| 41 | Plasma stopping-power measurements reveal transition from non-degenerate to degenerate plasmas.<br>Nature Physics, 2020, 16, 432-437.                                                 | 16.7 | 28        |
| 42 | Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .          | 1.9  | 27        |
| 43 | Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition. Journal of Applied Physics, 2017, 122, .                            | 2.5  | 27        |
| 44 | Time-Resolved Fuel Density Profiles of the Stagnation Phase of Indirect-Drive Inertial Confinement<br>Implosions. Physical Review Letters, 2020, 125, 155003.                         | 7.8  | 27        |
| 45 | Progress Toward a Deployable SQUID-Based Ultra-Low Field MRI System for Anatomical Imaging. IEEE<br>Transactions on Applied Superconductivity, 2015, 25, 1-5.                         | 1.7  | 26        |
| 46 | Implosion performance of subscale beryllium capsules on the NIF. Physics of Plasmas, 2019, 26, 052707.                                                                                | 1.9  | 26        |
| 47 | SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison. IEEE Transactions on Applied Superconductivity, 2011, 21, 465-468. | 1.7  | 25        |
| 48 | Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National<br>Ignition Facility. Physical Review E, 2020, 102, 023210.                     | 2.1  | 25        |
| 49 | Instrumentation for Simultaneous Detection of Low Field NMR and Biomagnetic Signals. IEEE Transactions on Applied Superconductivity, 2005, 15, 676-679.                               | 1.7  | 24        |
| 50 | Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11E715.            | 1.3  | 24        |
| 51 | Probabilistic forward model for electroencephalography source analysis. Physics in Medicine and Biology, 2007, 52, 5309-5327.                                                         | 3.0  | 23        |
| 52 | Applications of Ultra-Low Field Magnetic Resonance for Imaging and Materials Studies. IEEE<br>Transactions on Applied Superconductivity, 2009, 19, 835-838.                           | 1.7  | 23        |
| 53 | Noise-free magnetoencephalography recordings of brain function. Physics in Medicine and Biology, 2004, 49, 2117-2128.                                                                 | 3.0  | 22        |
| 54 | Non-cryogenic anatomical imaging in ultra-low field regime: Hand MRI demonstration. Journal of<br>Magnetic Resonance, 2011, 211, 101-108.                                             | 2.1  | 22        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | SQUID-based systems for co-registration of ultra-low field nuclear magnetic resonance images and magnetoencephalography. Physica C: Superconductivity and Its Applications, 2012, 482, 19-26.   | 1.2 | 22        |
| 56 | Integrated performance of large HDC-capsule implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .                                                                       | 1.9 | 22        |
| 57 | Mix and hydrodynamic instabilities on NIF. Journal of Instrumentation, 2017, 12, C06001-C06001.                                                                                                 | 1.2 | 21        |
| 58 | Ultra-low field NMR measurements of liquids and gases with short relaxation times. Journal of Magnetic Resonance, 2006, 183, 134-141.                                                           | 2.1 | 20        |
| 59 | On three-dimensional reconstruction of a neutron/x-ray source from very few two-dimensional projections. Journal of Applied Physics, 2015, 118, .                                               | 2.5 | 20        |
| 60 | Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition<br>Facility. Physics of Plasmas, 2020, 27, .                                                  | 1.9 | 20        |
| 61 | Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility.<br>Physical Review Letters, 2021, 127, 125001.                                                 | 7.8 | 20        |
| 62 | Performance of a novel SQUID-based superconducting imaging-surface magnetoencephalography system. Physica C: Superconductivity and Its Applications, 2002, 368, 18-23.                          | 1.2 | 18        |
| 63 | Progress on Detection of Liquid Explosives Using Ultra-Low Field MRI. IEEE Transactions on Applied Superconductivity, 2011, 21, 530-533.                                                        | 1.7 | 16        |
| 64 | Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments. Review of Scientific Instruments, 2012, 83, 10D316. | 1.3 | 16        |
| 65 | Combined neutron and x-ray imaging at the National Ignition Facility (invited). Review of Scientific<br>Instruments, 2016, 87, 11D703.                                                          | 1.3 | 15        |
| 66 | Variable convergence liquid layer implosions on the National Ignition Facility. Physics of Plasmas, 2018, 25, .                                                                                 | 1.9 | 15        |
| 67 | Density determination of the thermonuclear fuel region in inertial confinement fusion implosions.<br>Journal of Applied Physics, 2020, 127, .                                                   | 2.5 | 15        |
| 68 | Self characterization of a coded aperture array for neutron source imaging. Review of Scientific Instruments, 2014, 85, 123506.                                                                 | 1.3 | 14        |
| 69 | Design of the polar neutron-imaging aperture for use at the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11D821.                                                     | 1.3 | 13        |
| 70 | Demonstration of transmission high energy electron microscopy. Applied Physics Letters, 2018, 112, .                                                                                            | 3.3 | 13        |
| 71 | Simulations of indirectly driven gas-filled capsules at the National Ignition Facility. Physics of Plasmas, 2014, 21, .                                                                         | 1.9 | 12        |
| 72 | A liquid VI scintillator cell for fast-gated neutron imaging. Review of Scientific Instruments, 2018, 89, 101142.                                                                               | 1.3 | 12        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Deficiencies in compression and yield in x-ray-driven implosions. Physics of Plasmas, 2020, 27, .                                                                               | 1.9 | 12        |
| 74 | Three dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the<br>National Ignition Facility. Physics of Plasmas, 2021, 28, .                    | 1.9 | 12        |
| 75 | Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators.<br>Physics of Plasmas, 2020, 27, .                                              | 1.9 | 11        |
| 76 | Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using a cylindrical-harmonics expansion. Review of Scientific Instruments, 2021, 92, 033508.          | 1.3 | 11        |
| 77 | Fuel convergence sensitivity in indirect drive implosions. Physics of Plasmas, 2021, 28, 042705.                                                                                | 1.9 | 11        |
| 78 | Experiments to explore the influence of pulse shaping at the National Ignition Facility. Physics of Plasmas, 2020, 27, 112708.                                                  | 1.9 | 11        |
| 79 | First-Order Planar Superconducting Quantum Interference Device Gradiometers With Long Baseline.<br>IEEE Transactions on Applied Superconductivity, 2007, 17, 672-675.           | 1.7 | 10        |
| 80 | Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion. Review of Scientific Instruments, 2015, 86, 125112.              | 1.3 | 10        |
| 81 | Toward SQUID-Based Direct Measurement of Neural Currents by Nuclear Magnetic Resonance. IEEE<br>Transactions on Applied Superconductivity, 2007, 17, 854-857.                   | 1.7 | 9         |
| 82 | Optimization and Configuration of SQUID Sensor Arrays for a MEG-MRI System. IEEE Transactions on Applied Superconductivity, 2013, 23, 1601304-1601304.                          | 1.7 | 9         |
| 83 | Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition<br>Facility. Review of Scientific Instruments, 2018, 89, 10127.             | 1.3 | 9         |
| 84 | First D+D neutron image at the National Ignition Facility. Physics of Plasmas, 2018, 25, .                                                                                      | 1.9 | 9         |
| 85 | Ultra-Low Field NMR of \${m UF}_{6}\$ for \$^{235}{m U}\$ Detection and Characterization. IEEE Transactions on Applied Superconductivity, 2009, 19, 816-818.                    | 1.7 | 8         |
| 86 | Noise Modeling From Conductive Shields Using Kirchhoff Equations. IEEE Transactions on Applied Superconductivity, 2011, 21, 489-492.                                            | 1.7 | 8         |
| 87 | Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single<br>line of sight at Omega. Review of Scientific Instruments, 2015, 86, 043503. | 1.3 | 8         |
| 88 | Magnetic Resonance Relaxometry at Low and Ultra Low Fields. IFMBE Proceedings, 2010, 28, 82-87.                                                                                 | 0.3 | 8         |
| 89 | Toward High Resolution Images With SQUID-Based Ultra-Low Field Magnetic Resonance Imaging. IEEE<br>Transactions on Applied Superconductivity, 2013, 23, 1603107-1603107.        | 1.7 | 7         |
| 90 | First downscattered neutron images from Inertial Confinement Fusion experiments at the National<br>Ignition Facility. EPJ Web of Conferences, 2013, 59, 13018.                  | 0.3 | 7         |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Toward early cancer detection using superparamagnetic relaxometry in a SQUID-based ULF-MRI system.<br>Superconductor Science and Technology, 2014, 27, 044031.                                                                             | 3.5 | 7         |
| 92  | Results from neutron imaging of ICF experiments at NIF. Journal of Physics: Conference Series, 2016, 688, 012064.                                                                                                                          | 0.4 | 7         |
| 93  | Principal factors in performance of indirect-drive laser fusion experiments. Physics of Plasmas, 2020, 27, .                                                                                                                               | 1.9 | 7         |
| 94  | Measurements of enhanced performance in an indirect drive inertial confinement fusion experiment when reducing the contact area of the capsule support. Physics of Plasmas, 2020, 27, .                                                    | 1.9 | 7         |
| 95  | SQUIDs for Magnetic Resonance Imaging at Ultra-low Magnetic Field. Progress in Electromagnetics<br>Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2009, 5,<br>466-470.                                 | 0.4 | 7         |
| 96  | Summary of the first neutron image data collected at the National Ignition Facility. EPJ Web of Conferences, 2013, 59, 13017.                                                                                                              | 0.3 | 6         |
| 97  | A concept to collect neutron and x-ray images on the same line of sight at NIF. Review of Scientific Instruments, 2014, 85, 11E614.                                                                                                        | 1.3 | 6         |
| 98  | Optimizing neutron imaging line of sight locations for maximizing sampling of the cold fuel density in<br>inertial confinement fusion implosions at the National Ignition Facility. Review of Scientific<br>Instruments, 2018, 89, 101147. | 1.3 | 6         |
| 99  | Source Localization Precision of the Superconducting Imaging-Surface MEG System. Biomedizinische Technik, 2001, 46, 38-40.                                                                                                                 | 0.8 | 5         |
| 100 | Detection of 3He spins with ultra-low field nuclear magnetic resonance employing SQUIDs for<br>application to a neutron electric dipole moment experiment. Journal of Magnetic Resonance, 2008, 195,<br>129-133.                           | 2.1 | 5         |
| 101 | A new aperture for neutron and x-ray imaging of inertial confinement fusion experiments. Review of Scientific Instruments, 2012, 83, 10E522.                                                                                               | 1.3 | 5         |
| 102 | Polarization enhancement technique for nuclear quadrupole resonance detection. Solid State<br>Nuclear Magnetic Resonance, 2014, 61-62, 35-38.                                                                                              | 2.3 | 5         |
| 103 | Toward 3D data visualization using virtual reality tools. Review of Scientific Instruments, 2021, 92, 033528.                                                                                                                              | 1.3 | 5         |
| 104 | Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas. Review of<br>Scientific Instruments, 2021, 92, 053526.                                                                                              | 1.3 | 5         |
| 105 | First graded metal pushered single shell capsule implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .                                                                                                             | 1.9 | 4         |
| 106 | Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .                                                                                                                                  | 1.9 | 4         |
| 107 | Determining x-ray spectra of radiographic sources with a Compton spectrometer. Proceedings of SPIE, 2014, , .                                                                                                                              | 0.8 | 3         |
| 108 | Measuring x-ray spectra of flash radiographic sources. Proceedings of SPIE, 2015, , .                                                                                                                                                      | 0.8 | 3         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Nuclear Diagnostics at the National Ignition Facility, 2013-2015. Journal of Physics: Conference Series, 2016, 717, 012117.                                                      | 0.4 | 3         |
| 110 | A wide-acceptance Compton spectrometer for spectral characterization of a medical x-ray source.<br>Proceedings of SPIE, 2016, , .                                                | 0.8 | 3         |
| 111 | Design of the aperture array for neutron imaging from the north pole of the National Ignition Facility. Proceedings of SPIE, 2016, , .                                           | 0.8 | 3         |
| 112 | System design of the NIF Neutron Imaging System North Pole. , 2017, , .                                                                                                          |     | 3         |
| 113 | Three-dimensional characterization of the third line-of-site neutron imaging pinhole at NIF. , 2019, , .                                                                         |     | 3         |
| 114 | Using ultra-low field nuclear magnetic resonance for direct neural current measurements.<br>International Congress Series, 2007, 1300, 582-585.                                  | 0.2 | 2         |
| 115 | Multi-sensor system for simultaneous ultra-low-field MRI and MEG. International Congress Series, 2007, 1300, 631-634.                                                            | 0.2 | 2         |
| 116 | Multi-axis neutron imaging at the National Ignition Facility. Proceedings of SPIE, 2015, , .                                                                                     | 0.8 | 2         |
| 117 | Solid polystyrene and deuterated polystyrene light output response to fast neutrons. Review of<br>Scientific Instruments, 2016, 87, 043513.                                      | 1.3 | 2         |
| 118 | Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators. Review of Scientific Instruments, 2018, 89, 073303.           | 1.3 | 2         |
| 119 | Spectral characterization of flash and high flux x-ray radiographic sources with a magnetic Compton spectrometer. Review of Scientific Instruments, 2021, 92, 083102.            | 1.3 | 2         |
| 120 | Bound on hot-spot mix in high-velocity, high-adiabat direct-drive cryogenic implosions based on comparison of absolute x-ray and neutron yields. Physical Review E, 2022, 106, . | 2.1 | 2         |
| 121 | IMAGING MAGNETIC SOURCES IN THE PRESENCE OF SUPERCONDUCTING SURFACES: MODEL & EXPERIMENT.<br>Biomedizinische Technik, 2001, 46, 159-161.                                         | 0.8 | 1         |
| 122 | Radiation damping for speedingâ€up NMR applications. Concepts in Magnetic Resonance Part A: Bridging<br>Education and Research, 2012, 40A, 179-185.                              | 0.5 | 1         |
| 123 | The neutron imaging system fielded at the National Ignition Facility. EPJ Web of Conferences, 2013, 59, 13016.                                                                   | 0.3 | 1         |
| 124 | Lens design challenges for scintillator-based neutron imaging. , 2018, , .                                                                                                       |     | 1         |
| 125 | Evolution of the neutron imaging aperture. , 2018, , .                                                                                                                           |     | 1         |
| 126 | Experimental investigation of high temperature superconducting imaging surface magnetometry.<br>Review of Scientific Instruments, 2002, 73, 2360-2363.                           | 1.3 | 0         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Forward model theoretical basis for a superconducting imaging surface magnetoencephalography system. Physics in Medicine and Biology, 2004, 49, 523-532.                            | 3.0 | 0         |
| 128 | Performance characteristics of the neutron imaging diagnostic at NIF. , 2011, , .                                                                                                   |     | 0         |
| 129 | On a ghost artefact in ultra low field magnetic resonance relaxation imaging. Journal of Magnetic<br>Resonance, 2014, 243, 98-106.                                                  | 2.1 | 0         |
| 130 | Multi-Channel SQUID-Based Ultra-Low Field Magnetic Resonance Imaging in Unshielded Environment. ,<br>2015, , .                                                                      |     | 0         |
| 131 | Overview of Performance and Progress with Inertially Confined Fusion Implosions on the National Ignition Facility. , 2015, , .                                                      |     | 0         |
| 132 | Scintillator Characterization Measurements for Neutron Imaging in Inertial Confinement Fusion. , 2017, , .                                                                          |     | 0         |
| 133 | Demonstration of transmission high energy electron microscopy. AIP Conference Proceedings, 2020, ,                                                                                  | 0.4 | 0         |
| 134 | MagViz: A Bottled Liquids Scanner Using Ultra-Low Field NMR Relaxometry. NATO Science for Peace and Security Series B: Physics and Biophysics, 2014, , 99-110.                      | 0.3 | 0         |
| 135 | Electric and Magnetic Fields of the Brain. , 2014, , 73-105.                                                                                                                        |     | 0         |
| 136 | CHAPTER 7. Detection Using SQUIDs and Atomic Magnetometers. New Developments in NMR, 2015, , 183-224.                                                                               | 0.1 | 0         |
| 137 | Electric and Magnetic Fields of the Brain. , 2019, , 111-143.                                                                                                                       |     | 0         |
| 138 | Electric and Magnetic Fields of the Brain. , 2019, , 1-33.                                                                                                                          |     | 0         |
| 139 | Bootstrap estimation of the effect of instrument response function uncertainty on the reconstruction of fusion neutron sources. Review of Scientific Instruments, 2022, 93, 043508. | 1.3 | 0         |