Duo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353631/publications.pdf

Version: 2024-02-01

		236925	2	214800	
52	2,391	25		47	
papers	citations	h-index		g-index	
5 2	50	5 2		2707	
52	52	52		3797	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Club Cell Secretory Protein–Derived Acute Respiratory Distress Syndrome Phenotypes Predict 90-Day Mortality: A Reanalysis of the Fluids and Catheter Treatment Trial. , 2022, 4, e0711.		2
2	Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO Reports, 2022, 23, .	4.5	3
3	MMP3 in Severe COVID-19: A Biomarker or Therapeutic Target?. Infectious Disorders - Drug Targets, 2022, 22, .	0.8	O
4	A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice. Mucosal Immunology, 2021, 14, 342-356.	6.0	4
5	Hepatic miR-378 modulates serum cholesterol levels by regulating hepatic bile acid synthesis. Theranostics, 2021, 11, 4363-4380.	10.0	6
6	Overview and Update on Methods for Cargo Loading into Extracellular Vesicles. Processes, 2021, 9, 356.	2.8	57
7	<scp> </scp> -Arabinose Attenuates Gliadin-Induced Food Allergy via Regulation of Th1/Th2 Balance and Upregulation of Regulatory T Cells in Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 3638-3646.	5.2	17
8	Surfaceâ€bound matrix metalloproteinaseâ€8 on macrophages: Contributions to macrophage pericellular proteolysis and migration through tissue barriers. Physiological Reports, 2021, 9, e14778.	1.7	3
9	Discovery of a novel linc01125 isoform in serum exosomes as a promising biomarker for NSCLC diagnosis and survival assessment. Carcinogenesis, 2021, 42, 831-841.	2.8	12
10	The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury. Diagnostics, 2021, 11, 1643.	2.6	10
11	Metformin: Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 651-666.	5.6	49
12	Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition, 2021, 89, 111230.	2.4	23
13	CC16 Regulates Inflammation, ROS Generation and Apoptosis in Bronchial Epithelial Cells during Klebsiella pneumoniae Infection. International Journal of Molecular Sciences, 2021, 22, 11459.	4.1	6
14	ADAM15 expression is increased in lung CD8+ T cells, macrophages, and bronchial epithelial cells in patients with COPD and is inversely related to airflow obstruction. Respiratory Research, 2020, 21, 188.	3.6	11
15	The Roles of CCN1/CYR61 in Pulmonary Diseases. International Journal of Molecular Sciences, 2020, 21, 7810.	4.1	18
16	Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. Journal of Clinical Medicine, 2020, 9, 4039.	2.4	42
17	Delivery of Functional Small RNAs via Extracellular Vesicles In Vitro and In Vivo. Methods in Molecular Biology, 2020, 2115, 107-117.	0.9	22
18	A potential role of microvesicle-containing miR-223/142 in lung inflammation. Thorax, 2019, 74, 865-874.	5.6	113

#	Article	IF	CITATIONS
19	Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. Journal of Experimental Medicine, 2019, 216, 2202-2220.	8.5	147
20	Tissue Inhibitor of Metalloproteinase-1 Promotes Polymorphonuclear Neutrophil (PMN) Pericellular Proteolysis by Anchoring Matrix Metalloproteinase-8 and -9 to PMN Surfaces. Journal of Immunology, 2019, 202, 3267-3281.	0.8	20
21	microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10849-E10858.	7.1	96
22	Extracellular Vesicle: An Emerging Mediator of Intercellular Crosstalk in Lung Inflammation and Injury. Frontiers in Immunology, 2018, 9, 924.	4.8	69
23	Exosome-Mediated Small RNA Delivery: A Novel Therapeutic Approach for Inflammatory Lung Responses. Molecular Therapy, 2018, 26, 2119-2130.	8.2	136
24	Functional Evidence of Pulmonary Extracellular Vesicles in Infectious and Noninfectious Lung Inflammation. Journal of Immunology, 2018, 201, 1500-1509.	0.8	82
25	A Disintegrin and Metalloproteinase Domain-8: A Novel Protective Proteinase in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1254-1267.	5.6	31
26	A Disintegrin and Metalloproteinase Domain-9: A Novel Proteinase Culprit with Multifarious Contributions to Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1500-1518.	5.6	25
27	Long Non-Coding RNA Review and Implications in Lung Diseases. JSM Bioinformatics, Genomics and Preteomics, 2018, 3, .	0.0	3
28	Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. Journal of Leukocyte Biology, 2017, 101, 1349-1359.	3.3	83
29	Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L110-L121.	2.9	219
30	microRNA and thyroid hormone signaling in cardiac and skeletal muscle. Cell and Bioscience, 2017, 7, 14.	4.8	19
31	Lung Epithelial Cell–Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221–Induced Integrin β1 Recycling. Journal of Immunology, 2017, 199, 1453-1464.	0.8	79
32	Long noncoding RNA FOXD3â€AS1 regulates oxidative stressâ€induced apoptosis <i>via</i> sponging microRNAâ€150. FASEB Journal, 2017, 31, 4472-4481.	0.5	61
33	The obstacles to current extracellular vesicle-mediated drug delivery research. Journal of Pharmacy & Pharmaceutics, 2017, 4, 156-158.	0.3	4
34	MicroRNA-15a/16 Regulates Apoptosis of Lung Epithelial Cells After Oxidative Stress. Molecular Medicine, 2016, 22, 233-243.	4.4	14
35	CaMKK2 Suppresses Muscle Regeneration through the Inhibition of Myoblast Proliferation and Differentiation. International Journal of Molecular Sciences, 2016, 17, 1695.	4.1	23
36	Extracellular Vesicles Facilitate the Intercellular Communications in the Pathogenesis of Lung Injury. Cell & Developmental Biology, 2016, 5 , .	0.3	6

#	Article	IF	CITATIONS
37	miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle. Cell Reports, 2016, 16, 757-768.	6.4	51
38	miR-185 mediates lung epithelial cell death after oxidative stress. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L700-L710.	2.9	40
39	Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Scientific Reports, 2016, 6, 35250.	3.3	135
40	Caenorhabditis elegans: An important tool for dissecting microRNA functions. Biomedical Genetics and Genomics, 2016, 1, 34-36.	0.1	3
41	Hypoxia-inducible miR-182 enhances HIF1α signaling via targeting PHD2 and FIH1 in prostate cancer. Scientific Reports, 2015, 5, 12495.	3.3	74
42	In situ Detection of MicroRNAs: The Art of MicroRNA Research in Human Diseases. Journal of Cytology & Histology, 2015, s3, .	0.1	3
43	CCN1 Suppresses Pulmonary Vascular Smooth Muscle Contraction in Response to Hypoxia. Pulmonary Circulation, 2015, 5, 716-722.	1.7	16
44	Hepatic p38α regulates gluconeogenesis by suppressing AMPK. Journal of Hepatology, 2015, 62, 1319-1327.	3.7	33
45	Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach. Prostaglandins and Other Lipid Mediators, 2015, 118-119, 11-18.	1.9	21
46	Circulating Muscle-specific miRNAs in Duchenne Muscular Dystrophy Patients. Molecular Therapy - Nucleic Acids, 2014, 3, e177.	5.1	78
47	Thyroid hormone regulates muscle fiber type conversion via miR-133a1. Journal of Cell Biology, 2014, 207, 753-766.	5.2	83
48	Hepatic miR-378 targets p110 $\hat{i}\pm$ and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nature Communications, 2014, 5, 5684.	12.8	99
49	Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell and Bioscience, 2014, 4, 38.	4.8	38
50	Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia, 2013, 56, 2275-2285.	6.3	114
51	Attenuation of p38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration. PLoS ONE, 2012, 7, e41478.	2.5	87
52	Hydroxysafflor yellow A triggered a fast-to-slow muscle fiber-type conversion $\langle i \rangle via \langle i \rangle$ regulating FoxO1 in myocytes. Food and Function, 0, , .	4.6	1