Ren-Guo Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353618/publications.pdf

Version: 2024-02-01

44 papers

4,578 citations

257450
24
h-index

223800 46 g-index

47 all docs

47 docs citations

47 times ranked

5788 citing authors

#	Article	IF	Citations
1	Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions. Materials Advances, 2021, 2, 3744-3751.	5.4	12
2	Lightâ€Emitting Metal–Organic Halide 1D and 2D Structures: Nearâ€Unity Quantum Efficiency, Lowâ€Loss Optical Waveguide and Highly Polarized Emission. Angewandte Chemie - International Edition, 2021, 60, 13548-13553.	13.8	50
3	Lightâ€Emitting Metal–Organic Halide 1D and 2D Structures: Nearâ€Unity Quantum Efficiency, Lowâ€Loss Optical Waveguide and Highly Polarized Emission. Angewandte Chemie, 2021, 133, 13660-13665.	2.0	5
4	Doped Emitting Cesium Silver Halides as Xâ€Ray Scintillator with Fast Response Time, High Absorption Coefficient, and Light Yield. Advanced Photonics Research, 2021, 2, 2100066.	3.6	7
5	Bioinspired, Nanostructure-Amplified, Subcutaneous Light Harvesting to Power Implantable Biomedical Electronics. ACS Nano, 2021, 15, 12475-12482.	14.6	11
6	Histidine-directed formation of Ag octopods via pseudomorphic transformation of Ag2O. Materials Chemistry Frontiers, 2021, 5, 5478-5485.	5.9	0
7	Color Tunable Selfâ€Trapped Emissions from Leadâ€Free All Inorganic IAâ€IB Bimetallic Halides Csâ€Agâ€X (X =	Cl,) Ţį ĘTQ	9q1 ₄₄ 0.7843
8	Histidine-directed formation of nearly monodispersed silver nanoflowers and their ultra-high peroxidase-like activity under physiological pH. Applied Surface Science, 2020, 532, 147457.	6.1	7
9	Arm Growth and Facet Modulation in Perovskite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 16160-16168.	13.7	84
10	Bovine serum albumin assisted preparation of ultra-stable gold nanoflowers and their selective Raman response to charged dyes. RSC Advances, 2019, 9, 28228-28233.	3.6	7
11	Cd–Cu–Fe–S quaternary nanocrystals exhibiting excellent optical/optoelectronic properties. Nanoscale, 2019, 11, 6533-6537.	5.6	3
12	Electrochemiluminescent quaternary Cu-Zn-In-S nanocrystals as a sensing platform: Enzyme-free and sensitive detection of the FLT3 gene based on triple signal amplification. Biosensors and Bioelectronics, 2018, 100, 445-452.	10.1	18
13	Shape Control of Ternary Sulfide Nanocrystals. Crystal Growth and Design, 2018, 18, 864-871.	3.0	11
14	Phaseâ€Controlled Synthesis of Highâ€Biâ€Ratio Ternary Sulfide Nanocrystals of Cu _{1.57} Bi _{4.57} S ₈ and Cu _{2.93} Bi _{4.89} S ₉ . ChemPlusChem, 2018, 83, 812-818.	2.8	9
15	Dot–Wire–Platelet–Cube: Step Growth and Structural Transformations in CsPbBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2018, 3, 2014-2020.	17.4	106
16	A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies. Nanoscale Research Letters, 2017, 12, 179.	5.7	28
17	Bandgap―and Radialâ€Positionâ€Dependent Mnâ€Doped Zn–Cu–In–S/ZnS Core/Shell Nanocrystals. ChemPhysChem, 2016, 17, 752-758.	2.1	10
18	Synthesis of Cu–Sb–S nanocrystals: insight into the mechanism of composition and crystal phase selection. CrystEngComm, 2016, 18, 3703-3710.	2.6	29

#	Article	IF	Citations
19	Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Research, 2016, 9, 1994-2006.	10.4	93
20	Ultra-small nickel phosphide nanoparticles as a high-performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 74895-74902.	3.6	12
21	Colloidal preparation and electrocatalytic hydrogen production of MoS2and WS2nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016, 8, 15262-15272.	5.6	64
22	Single-phase dual emissive Cu:CdS–ZnSe core–shell nanocrystals with "zero self-absorption―and their application in white light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 3614-3622.	5.5	23
23	Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source "Greener―Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes. Chemistry of Materials, 2015, 27, 1405-1411.	6.7	90
24	Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn–Cu–In–S nanocrystals for bright white light-emitting diodes. Nano Research, 2015, 8, 3316-3331.	10.4	46
25	Ultrafast Carrier Dynamics and Hot Electron Extraction in Tetrapod-Shaped CdSe Nanocrystals. ACS Applied Materials & Description (2015), 7, 7938-7944.	8.0	14
26	Greener Gd-doped ZnAgInS3 quantum dots for fluorescent and magnetic resonance imaging applications. Chemical Research in Chinese Universities, 2015, 31, 1-3.	2.6	4
27	Zinc Chalcogenide Seed-Mediated Synthesis of CdSe Nanocrystals: Nails, Chesses and Tetrahedrons. Chemistry of Materials, 2015, 27, 3055-3064.	6.7	20
28	Large Scale Synthesis of Air Stable Precursors for the Preparation of High Quality Metal Arsenide and Phosphide Nanocrystals as Efficient Emitters Covering the Visible to Near Infrared Region. Chemistry of Materials, 2014, 26, 3599-3602.	6.7	16
29	Synthesis, Crystal Structure and Antitumor Activities of a New Cobalt-containing Tungstoantimonate Na ₉ [{Na(H ₂ O) ₂ } ₃ {Co(H ₂ O)} ₃ (α Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 33-36.	B £S bW<5	sub>9
30	Syntheses and Characterization of Nearly Monodispersed, Size-Tunable Silver Nanoparticles over a Wide Size Range of 7–200 nm by Tannic Acid Reduction. Langmuir, 2014, 30, 3876-3882.	3.5	112
31	Insights into the Energy Levels of Semiconductor Nanocrystals by a Dopant Approach. Angewandte Chemie - International Edition, 2013, 52, 5052-5055.	13.8	19
32	A Simple Route for Highly Luminescent Quaternary Cu-Zn-In-S Nanocrystal Emitters. Chemistry of Materials, 2011, 23, 3357-3361.	6.7	229
33	Synthesis of Monodisperse, Highly Emissive, and Size-Tunable Cd3P2 Nanocrystals. Chemistry of Materials, 2010, 22, 3820-3822.	6.7	47
34	Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents. Chemistry of Materials, 2010, 22, 2107-2113.	6.7	144
35	Aqueous Synthesis of ZnSe Nanocrystals by Using Glutathione As Ligand: The pH-Mediated Coordination of Zn ²⁺ with Glutathione. Journal of Physical Chemistry C, 2010, 114, 11087-11091.	3.1	69
36	Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. Journal of the American Chemical Society, 2009, 131, 10645-10651.	13.7	311

#	Article	lF	CITATIONS
37	Formation of High-Quality Iâ^'IIIâ^'VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. Journal of the American Chemical Society, 2009, 131, 5691-5697.	13.7	715
38	Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals. Journal of the American Chemical Society, 2009, 131, 15457-15466.	13.7	179
39	InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Research, 2008, 1, 457-464.	10.4	103
40	Synthetic Scheme for Highâ€Quality InAs Nanocrystals Based on Selfâ€Focusing and Oneâ€Pot Synthesis of InAsâ€Based Core–Shell Nanocrystals. Angewandte Chemie - International Edition, 2008, 47, 7677-7680.	13.8	130
41	Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared. Journal of the American Chemical Society, 2007, 129, 15432-15433.	13.7	454
42	Surface Ligand Dynamics in Growth of Nanocrystals. Journal of the American Chemical Society, 2007, 129, 9500-9509.	13.7	274
43	Design and Synthesis of Colloidal Nanocrystal Heterostructures with Tetrapod Morphology. Small, 2006, 2, 1454-1457.	10.0	76
44	Synthesis and Characterization of Highly Luminescent CdSeâ^'Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. Journal of the American Chemical Society, 2005, 127, 7480-7488.	13.7	857