

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353328/publications.pdf Version: 2024-02-01

MENCLI

#	Article	IF	CITATIONS
1	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	7.8	321
2	High Efficiency Pb–In Binary Metal Perovskite Solar Cells. Advanced Materials, 2016, 28, 6695-6703.	11.1	211
3	Passivated Perovskite Crystallization via <i>g</i> â€C ₃ N ₄ for Highâ€Performance Solar Cells. Advanced Functional Materials, 2018, 28, 1705875.	7.8	208
4	Copper Salts Doped Spiroâ€OMeTAD for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601156.	10.2	205
5	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801509.	10.2	184
6	An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 2018, 49, 614-624.	8.2	169
7	PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 16583-16589.	5.2	162
8	Tailored Phase Transformation of CsPbI ₂ Br Films by Copper(II) Bromide for High-Performance All-Inorganic Perovskite Solar Cells. Nano Letters, 2019, 19, 5176-5184.	4.5	161
9	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American Chemical Society, 2020, 142, 2364-2374.	6.6	132
10	Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43, 47-54.	8.2	126
11	Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. ACS Nano, 2016, 10, 5479-5489.	7.3	125
12	Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability. Advanced Materials, 2019, 31, e1901519.	11.1	123
13	A room-temperature CuAlO ₂ hole interfacial layer for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1326-1335.	5.2	122
14	High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer. ACS Applied Materials & Interfaces, 2016, 8, 14503-14512.	4.0	120
15	Ionic Liquid Stabilizing Highâ€Efficiency Tin Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101539.	10.2	117
16	Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539.	5.2	116
17	Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1923-1929.	8.8	116
18	Passivated perovskite crystallization and stability in organic–inorganic halide solar cells by doping a donor polymer. Journal of Materials Chemistry A, 2017, 5, 2572-2579.	5.2	115

#	Article	IF	CITATIONS
19	Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & Interfaces, 2015, 7, 9645-9651.	4.0	114
20	Perovskite Films with Reduced Interfacial Strains via a Molecularâ€Level Flexible Interlayer for Photovoltaic Application. Advanced Materials, 2020, 32, e2001479.	11.1	110
21	Polarized Ferroelectric Polymers for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902222.	11.1	109
22	Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Advanced Materials, 2018, 30, e1800258.	11.1	106
23	Origin of Sn(<scp>ii</scp>) oxidation in tin halide perovskites. Materials Advances, 2020, 1, 1066-1070.	2.6	106
24	Synergistic Effect of Dual Ligands on Stable Blue Quasiâ€⊋D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1908339.	7.8	103
25	Indoor Thinâ€Film Photovoltaics: Progress and Challenges. Advanced Energy Materials, 2020, 10, 2000641.	10.2	89
26	Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8144-8149.	2.7	79
27	Solvents for Processing Stable Tin Halide Perovskites. ACS Energy Letters, 2021, 6, 959-968.	8.8	76
28	Allâ€Rounder Lowâ€Cost Dopantâ€Free Dâ€Aâ€D Holeâ€Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 1900884.	2.6	72
29	Doped Copper Phthalocyanine via an Aqueous Solution Process for Normal and Inverted Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701688.	10.2	71
30	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbI ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	11.1	71
31	Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15088-15094.	5.2	70
32	Flower-like MoS ₂ nanocrystals: a powerful sorbent of Li ⁺ in the Spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3655-3663.	5.2	70
33	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	5.2	70
34	Fluoride Chemistry in Tin Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 21583-21591.	7.2	68
35	N-Type Doping of Fullerenes for Planar Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 875-882.	8.8	66
36	Indoor application of emerging photovoltaics—progress, challenges and perspectives. Journal of Materials Chemistry A, 2020, 8, 21503-21525.	5.2	64

#	Article	IF	CITATIONS
37	Small Molecule–Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13240-13246.	4.0	62
38	Embedded Nickelâ€Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source. Advanced Materials, 2020, 32, e2003422.	11.1	62
39	Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%. Nano Energy, 2018, 48, 10-19.	8.2	61
40	Seed-mediated superior organometal halide films by GeO ₂ nano-particles for high performance perovskite solar cells. Applied Physics Letters, 2016, 108, 053301.	1.5	58
41	Performanceâ€Enhancing Approaches for PEDOT:PSSâ€Si Hybrid Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 5036-5055.	7.2	54
42	Smelting recrystallization of CsPbBrI2 perovskites for indoor and outdoor photovoltaics. EScience, 2021, 1, 53-59.	25.0	54
43	Annealing Induced Re-crystallization in CH3NH3PbI3â^'xClx for High Performance Perovskite Solar Cells. Scientific Reports, 2017, 7, 46724.	1.6	53
44	Ultrathin Nanosheets of Oxoâ€functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902653.	10.2	52
45	Design of Low Bandgap CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> l ₂ Br Perovskite Solar Cells with Excellent Phase Stability. Small, 2021, 17, e2101380.	5.2	42
46	Enhanced Crystalline Phase Purity of CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl <i>_x</i> Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23141-23151.	4.0	41
47	CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics. Science Bulletin, 2021, 66, 347-353.	4.3	38
48	Electric-field assisted perovskite crystallization for high-performance solar cells. Journal of Materials Chemistry A, 2018, 6, 1161-1170.	5.2	37
49	Hybrid tapered silicon nanowire/PEDOT:PSS solar cells. RSC Advances, 2015, 5, 10310-10317.	1.7	31
50	Semiâ€Planar Nonâ€Fullerene Molecules Enhance the Durability of Flexible Perovskite Solar Cells. Advanced Science, 2022, 9, e2105739.	5.6	31
51	Suppressed oxidation of tin perovskite by Catechin for eco-friendly indoor photovoltaics. Applied Physics Letters, 2021, 118, .	1.5	28
52	Challenges in tin perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 23413-23427.	1.3	27
53	Enhanced Electrical Property of Compact TiO ₂ Layer via Platinum Doping for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800149.	3.1	26
54	Structure, Optical Absorption, and Performance of Organic Solar Cells Improved by Gold Nanoparticles in Buffer Layers. ACS Applied Materials & Interfaces, 2015, 7, 24430-24437.	4.0	24

#	Article	IF	CITATIONS
55	Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021, 11, 295.	1.0	23
56	Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2343-2348.	8.8	20
57	Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	20
58	Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10721-10727.	2.7	19
59	Ï€-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices. Journal of Power Sources, 2020, 448, 227420.	4.0	18
60	Lights and Shadows of DMSO as Solvent for Tin Halide Perovskites. Chemistry - A European Journal, 2022, 28, .	1.7	18
61	Managing Phase Purities and Crystal Orientation for Highâ€Performance and Photostable Cesium Lead Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000213.	3.1	17
62	Nâ€ŧype Doping of Organicâ€Inorganic Hybrid Perovskites Toward Highâ€Performance Photovoltaic Devices. Solar Rrl, 2019, 3, 1800269.	3.1	16
63	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
64	Lead Oxalate-Induced Nucleation Retardation for High-Performance Indoor and Outdoor Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2020, 12, 836-843.	4.0	15
65	PEDOT:PSS-CrO3 composite hole-transporting layer for high-performance p-i-n structure perovskite solar cells. Organic Electronics, 2018, 54, 9-13.	1.4	14
66	Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. Applied Physics Letters, 2019, 114, .	1.5	14
67	In Situ Methylammonium Chloride-Assisted Perovskite Crystallization Strategy for High-Performance Solar Cells. , 2022, 4, 448-456.		13
68	Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation. Science and Technology of Advanced Materials, 2018, 19, 194-202.	2.8	12
69	Detrimental effect of silver doping in spiro-MeOTAD on the device performance of perovskite solar cells. Organic Electronics, 2019, 69, 343-347.	1.4	12
70	A facile surfactant-free synthesis of flower-like ZnO hierarchical structure at room temperature. Materials Letters, 2014, 137, 300-303.	1.3	10
71	UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO ₃ as an Electron-Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 21772-21778.	4.0	10
72	Enhancement of exciton separation in indoor perovskite photovoltaics by employing conjugated organic chromophores. Journal of Power Sources, 2022, 520, 230785.	4.0	10

#	Article	IF	CITATIONS
73	Investigation of the magnetic nickel nanoparticle on performance improvement of P3HT:PCBM solar cell. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	9
74	Improved open-circuit voltage via Cs2CO3-Doped TiO2 for high-performance and stable perovskite solar cells. Organic Electronics, 2020, 77, 105495.	1.4	9
75	Effect of alkali treatment on the spectral response of silicon-nanowire solar cells. Materials Science in Semiconductor Processing, 2014, 17, 81-86.	1.9	8
76	Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2021, 13, 26170-26179.	4.0	8
77	Energy Distribution in Tin Halide Perovskite. Solar Rrl, 2022, 6, 2100825.	3.1	8
78	Ferroelectric field effect of the bulk heterojunction in polymer solar cells. Applied Physics Letters, 2014, 104, 253905.	1.5	6
79	Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells. Rare Metals, 2021, 40, 2747-2762.	3.6	6
80	Electric-field-manipulated crystal stacking for high-quality organic–inorganic halide perovskites. Applied Physics Express, 2020, 13, 085503.	1.1	5
81	Strategien zur Steigerung der Leistung von PEDOT:PSS/Siâ€Hybridâ€Solarzellen. Angewandte Chemie, 2021, 133, 5092-5112.	1.6	5
82	Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten. Angewandte Chemie, 2021, 133, 21753-21762.	1.6	5
83	Lead Leaching of Perovskite Solar Cells in Aqueous Environments: A Quantitative Investigation. Solar Rrl, 0, , .	3.1	5
84	Ultrafast carrier dynamics in high-performance α-bis-PCBM doped organic-inorganic hybrid perovskite solar cell. Organic Electronics, 2019, 75, 105384.	1.4	4
85	Induced charge transfer bridge by non-fullerene surface treatment for high-performance perovskite solar cells. Applied Physics Letters, 2019, 115, .	1.5	4
86	Liquid-chalk painted perovskite films toward low-cost photovoltaic devices. Organic Electronics, 2019, 75, 105371.	1.4	3
87	Effect of electrode geometry on photovoltaic performance of polymer solar cells. Journal Physics D: Applied Physics, 2014, 47, 435104.	1.3	2
88	Til4-doping induced bulk defects passivation in halide perovskites for high efficient photovoltaic devices. Organic Electronics, 2021, 88, 105973.	1.4	1
89	Synthesis of two Dâ€Ï€â€A polymers Ï€â€bridged by different blocks and investigation of their photovoltaic property. Journal of Applied Polymer Science, 2015, 132, .	1.3	0
90	Research on Particle Size of Organic Semiconductor Materials Poly(3-hexylthiophene) and [6,6]-Phenyl-C60-butyric Acid Methyl Ester in Chlorobenzene Solution. Chinese Journal of Organic Chemistry, 2014, 34, 2370.	0.6	0