
Lance R Mcmahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7353271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Regulation of the Mesoaccumbens Circuit by Serotonin 5-Hydroxytryptamine (5-HT) _{2A} and 5-HT _{2C} Receptors. Journal of Neuroscience, 2001, 21, 7781-7787.	3.6	126
2	Modulation of feeding by hypothalamic paraventricular nucleus α1- and α2-adrenergic receptors. Life Sciences, 1993, 53, 669-679.	4.3	115
3	Investigation of the Adrenergic and Opioid Binding Affinities, Metabolic Stability, Plasma Protein Binding Properties, and Functional Effects of Selected Indole-Based Kratom Alkaloids. Journal of Medicinal Chemistry, 2020, 63, 433-439.	6.4	92
4	Kratom policy: The challenge of balancing therapeutic potential with public safety. International Journal of Drug Policy, 2019, 70, 70-77.	3.3	83
5	Purity of Synthetic Cannabinoids Sold Online for Recreational Use. Journal of Analytical Toxicology, 2012, 36, 66-68.	2.8	81
6	JWH-018 and JWH-073: î" ⁹ -Tetrahydrocannabinol-Like Discriminative Stimulus Effects in Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 37-45.	2.5	62
7	Acetaminophen differentially enhances social behavior and cortical cannabinoid levels in inbred mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 38, 260-269.	4.8	60
8	Interactions between Δ9-tetrahydrocannabinol and μ opioid receptor agonists in rhesus monkeys: discrimination and antinociception. Psychopharmacology, 2008, 199, 199-208.	3.1	57
9	Selective serotonin reuptake inhibitors enhance cocaine-induced locomotor activity and dopamine release in the nucleus accumbens. Neuropharmacology, 2003, 44, 342-353.	4.1	55
10	Pharmacological Comparison of Mitragynine and 7-Hydroxymitragynine: In Vitro Affinity and Efficacy for <i>μ</i> -Opioid Receptor and Opioid-Like Behavioral Effects in Rats. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 410-427.	2.5	52
11	Differences in the relative potency of SR 141716A and AM 251 as antagonists of various in vivo effects of cannabinoid agonists in C57BL/6J mice. European Journal of Pharmacology, 2007, 569, 70-76.	3.5	51
12	Characterization of Cannabinoid Agonists and Apparent pA2 Analysis of Cannabinoid Antagonists in Rhesus Monkeys Discriminating Δ9-Tetrahydrocannabinol. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1211-1218.	2.5	47
13	Apparent Inverse Relationship between Cannabinoid Agonist Efficacy and Tolerance/Cross-Tolerance Produced by Δ ⁹ -Tetrahydrocannabinol Treatment in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 843-849.	2.5	47
14	Exploring the Chemistry of Alkaloids from Malaysian <i>Mitragyna speciosa</i> (Kratom) and the Role of Oxindoles on Human Opioid Receptors. Journal of Natural Products, 2021, 84, 1034-1043.	3.0	45
15	Cannabinoid agonists differentially substitute for the discriminative stimulus effects of Δ9-tetrahydrocannabinol in C57BL/6J mice. Psychopharmacology, 2008, 198, 487-495.	3.1	43
16	Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 6523-6548.	6.4	42
17	Rimonabant-Induced Δ9-Tetrahydrocannabinol Withdrawal in Rhesus Monkeys: Discriminative Stimulus Effects and Other Withdrawal Signs. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 347-356.	2.5	41
18	The effects of mitragynine and morphine on schedule-controlled responding and antinociception in rats. Psychopharmacology, 2019, 236, 2725-2734.	3.1	40

#	Article	IF	CITATIONS
19	Decreased Intake of a Liquid Diet in Nonfood-Deprived Rats Following Intra-PVN Injections of GLP-1 (7–36) Amide. Pharmacology Biochemistry and Behavior, 1997, 58, 673-677.	2.9	39
20	Exploration of cytochrome P450 inhibition mediated drug-drug interaction potential of kratom alkaloids. Toxicology Letters, 2020, 319, 148-154.	0.8	36
21	Metabolism of a Kratom Alkaloid Metabolite in Human Plasma Increases Its Opioid Potency and Efficacy. ACS Pharmacology and Translational Science, 2020, 3, 1063-1068.	4.9	36
22	Cannabinoid CB1 receptor antagonists as potential pharmacotherapies for drug abuse disorders. International Review of Psychiatry, 2009, 21, 134-142.	2.8	33
23	Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 111-120.	2.5	33
24	In vivo pharmacology of endocannabinoids and their metabolic inhibitors: Therapeutic implications in Parkinson's disease and abuse liability. Prostaglandins and Other Lipid Mediators, 2010, 91, 90-103.	1.9	31
25	Combined discriminative stimulus effects of midazolam with other positive GABAA modulators and GABAA receptor agonists in rhesus monkeys. Psychopharmacology, 2005, 178, 400-409.	3.1	30
26	Activity of <i>Mitragyna speciosa</i> ("Kratomâ€) Alkaloids at Serotonin Receptors. Journal of Medicinal Chemistry, 2021, 64, 13510-13523.	6.4	30
27	SR 141716A differentially attenuates the behavioral effects of ??9-THC in rhesus monkeys. Behavioural Pharmacology, 2005, 16, 363-372.	1.7	29
28	Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. Journal of Natural Products, 2021, 84, 1104-1112.	3.0	29
29	Effects of (-)-ephedrine on locomotion, feeding, and nucleus accumbens dopamine in rats. Psychopharmacology, 1998, 135, 133-140.	3.1	28
30	Discriminative stimulus effects of the cannabinoid CB1 antagonist SR 141716A in rhesus monkeys pretreated with Δ9-tetrahydrocannabinol. Psychopharmacology, 2006, 188, 306-314.	3.1	27
31	Pharmacologic Characterization of a Nicotine-Discriminative Stimulus in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 840-849.	2.5	27
32	The contribution of α4β2 and non-α4β2 nicotinic acetylcholine receptors to the discriminative stimulus effects of nicotine and varenicline in mice. Psychopharmacology, 2017, 234, 781-792.	3.1	27
33	Role of 5-HT2A and 5-HT2B/2C Receptors in the Behavioral Interactions Between Serotonin and Catecholamine Reuptake Inhibitors. Neuropsychopharmacology, 2001, 24, 319-329.	5.4	26
34	Chronic Δ ⁹ â€ŧetrahydrocannabinol treatment in rhesus monkeys: differential tolerance and crossâ€ŧolerance among cannabinoids. British Journal of Pharmacology, 2011, 162, 1060-1073.	5.4	26
35	JWH-018 in rhesus monkeys: Differential antagonism of discriminative stimulus, rate-decreasing, and hypothermic effects. European Journal of Pharmacology, 2014, 740, 151-159.	3.5	26
36	The effects of nicotine, varenicline, and cytisine on schedule-controlled responding in mice: Differences in α4β2 nicotinic receptor activation. European Journal of Pharmacology, 2011, 654, 47-52.	3.5	25

#	Article	IF	CITATIONS
37	Acute and chronic effects of ramelteon in rhesus monkeys (Macaca mulatta): Dependence liability studies Behavioral Neuroscience, 2006, 120, 535-541.	1.2	24
38	Daily Treatment with Diazepam Differentially Modifies Sensitivity to the Effects of Î ³ -Aminobutyric AcidA Modulators on Schedule-Controlled Responding in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 1017-1025.	2.5	22
39	Simultaneous Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Shares Discriminative Stimulus Effects with Δ9-Tetrahydrocannabinol in Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 261-268.	2.5	22
40	Acute and chronic effects of the neuroactive steroid pregnanolone on schedule-controlled responding in rhesus monkeys. Behavioural Pharmacology, 2002, 13, 545-555.	1.7	21
41	Relationship of cocaine-induced c-Fos expression to behaviors and the role of serotonin 5-HT2A receptors in cocaine-induced c-Fos expression Behavioral Neuroscience, 2005, 119, 1173-1183.	1.2	21
42	Apparent affinity estimates of rimonabant in combination with anandamide and chemical analogs of anandamide in rhesus monkeys discriminating Δ9-tetrahydrocannabinol. Psychopharmacology, 2009, 203, 219-228.	3.1	20
43	Differential behavioral effects of low efficacy positive GABAA modulators in combination with benzodiazepines and a neuroactive steroid in rhesus monkeys. British Journal of Pharmacology, 2006, 147, 260-268.	5.4	19
44	Tolerance and cross-tolerance to cannabinoids in mice: schedule-controlled responding and hypothermia. Psychopharmacology, 2011, 215, 665-675.	3.1	19
45	The rise (and fall?) of drug discrimination research. Drug and Alcohol Dependence, 2015, 151, 284-288.	3.2	19
46	Apparent Affinity Estimates and Reversal of the Effects of Synthetic Cannabinoids AM-2201, CP-47,497, JWH-122, and JWH-250 by Rimonabant in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 278-286.	2.5	19
47	Pharmacokinetics and Safety of Mitragynine in Beagle Dogs. Planta Medica, 2020, 86, 1278-1285.	1.3	19
48	Evaluation of the rewarding effects of mitragynine and 7â€hydroxymitragynine in an intracranial self-stimulation procedure in male and female rats. Drug and Alcohol Dependence, 2020, 215, 108235.	3.2	19
49	Effects on food and water intake of the α1-adrenoceptor agonists amidephrine and SK&F-89748. Life Sciences, 1993, 53, 169-174.	4.3	18
50	Multiple nicotine training doses in mice as a basis for differentiating the effects of smoking cessation aids. Psychopharmacology, 2013, 228, 321-333.	3.1	18
51	Blood levels do not predict behavioral or physiological effects of Δ9-tetrahydrocannabinol in rhesus monkeys with different patterns of exposure. Drug and Alcohol Dependence, 2014, 139, 1-8.	3.2	18
52	Comparison of naltrexone, 6α-naltrexol, and 6β-naltrexol in morphine-dependent and in nondependent rhesus monkeys. Psychopharmacology, 2007, 195, 479-486.	3.1	17
53	Advances in the In vitro and In vivo pharmacology of Alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology, 2020, 168, 108008.	4.1	17
54	Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement. Psychopharmacology, 2022, 239, 1475-1486.	3.1	17

#	Article	IF	CITATIONS
55	Slow conformational dynamics of the human A2A adenosine receptor are temporally ordered. Structure, 2022, 30, 329-337.e5.	3.3	17
56	The fatty acid amide hydrolase inhibitor URB 597: interactions with anandamide in rhesus monkeys. British Journal of Pharmacology, 2011, 164, 655-666.	5.4	16
57	Interactions between dopamine transporter and cannabinoid receptor ligands in rhesus monkeys. Psychopharmacology, 2012, 222, 425-438.	3.1	16
58	Discriminative stimulus and hypothermic effects of some derivatives of the nAChR agonist epibatidine in mice. Psychopharmacology, 2014, 231, 4455-4466.	3.1	16
59	Changes in relative potency among positive GABAA receptor modulators upon discontinuation of chronic benzodiazepine treatment in rhesus monkeys. Psychopharmacology, 2007, 192, 135-145.	3.1	15
60	The cannabinoid agonist HU-210: Pseudo-irreversible discriminative stimulus effects in rhesus monkeys. European Journal of Pharmacology, 2014, 727, 35-42.	3.5	15
61	Evaluation of the reinforcing and discriminative stimulus effects of 1,4-butanediol and γ-butyrolactone in rhesus monkeys. European Journal of Pharmacology, 2003, 466, 113-120.	3.5	14
62	Discriminative Stimulus Effects of the Cannabinoid Antagonist, SR 141716A, in Δâ¹-Tetrahydrocannabinol-Treated Rhesus Monkeys Experimental and Clinical Psychopharmacology, 2003, 11, 286-293.	1.8	14
63	Cocaine and Other Indirect-Acting Monoamine Agonists Differentially Attenuate a Naltrexone Discriminative Stimulus in Morphine-Treated Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 111-119.	2.5	14
64	Bioanalytical method development and validation of corynantheidine, a kratom alkaloid, using UPLC-MS/MS, and its application to preclinical pharmacokinetic studies. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180, 113019.	2.8	14
65	Repeated administration of ephedrine induces behavioral sensitization in rats. Psychopharmacology, 1998, 140, 52-56.	3.1	13
66	Discriminative stimulus effects of (â^)-ephedrine in rats: analysis with catecholamine transporter and receptor ligands. Drug and Alcohol Dependence, 2003, 70, 255-264.	3.2	13
67	Enhanced discriminative stimulus effects of Δ9-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys. Drug and Alcohol Dependence, 2016, 165, 87-93.	3.2	13
68	In vitro and in vivo pharmacology of kratom. Advances in Pharmacology, 2022, 93, 35-76.	2.0	13
69	Discriminative Stimulus Effects of Benzodiazepine (BZ)1 Receptor-Selective Ligands in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 505-512.	2.5	12
70	Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice. European Journal of Pharmacology, 2016, 786, 169-178.	3.5	12
71	Alterations in mouse spinal cord and sciatic nerve microRNAs after the chronic constriction injury (CCI) model of neuropathic pain. Neuroscience Letters, 2020, 731, 135029.	2.1	12
72	Medicinal Cannabis and Central Nervous System Disorders. Frontiers in Pharmacology, 2022, 13, 881810.	3.5	12

#	Article	IF	CITATIONS
73	Effects of systemic phenylpropanolamine and fenfluramine on serotonin activity within rat paraventricular hypothalamus. Physiology and Behavior, 1996, 59, 63-69.	2.1	11
74	Stereoselective discriminative stimulus effects of zopiclone in rhesus monkeys. Psychopharmacology, 2003, 165, 222-228.	3.1	11
75	The Lack of Contribution of 7-Hydroxymitragynine to the Antinociceptive Effects of Mitragynine in Mice: A Pharmacokinetic and Pharmacodynamic Study. Drug Metabolism and Disposition, 2022, 50, 158-167.	3.3	11
76	Relative Efficacy of Buprenorphine, Nalbuphine and Morphine in Opioid-Treated Rhesus Monkeys Discriminating Naltrexone. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 1167-1173.	2.5	10
77	Discriminative Stimulus Effects of Positive GABAAModulators and Other Anxiolytics, Sedatives, and Anticonvulsants in Untreated and Diazepam-Treated Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 109-120.	2.5	10
78	Inez Beverly Prosser and the education of African Americans. Journal of the History of the Behavioral Sciences, 2005, 41, 43-62.	0.7	10
79	Acute cross tolerance to midazolam, and not pentobarbital and pregnanolone, after a single dose of chlordiazepoxide in monkeys discriminating midazolam. Behavioural Pharmacology, 2008, 19, 796-804.	1.7	10
80	Nicotinic Acetylcholine Receptor Accessory Subunits Determine the Activity Profile of Epibatidine Derivatives. Molecular Pharmacology, 2020, 98, 328-342.	2.3	10
81	Preclinical pharmacokinetic study of speciociliatine, a kratom alkaloid, in rats using an UPLC-MS/MS method. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113778.	2.8	10
82	Monoaminergic drugs and directly observable signs of LAAM withdrawal in rhesus monkeys. Behavioural Pharmacology, 2005, 16, 53-58.	1.7	9
83	Differential antagonism and tolerance/cross-tolerance among nicotinic acetylcholine receptor agonists. Behavioural Pharmacology, 2016, 27, 240-248.	1.7	9
84	Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline?. Pharmacology Biochemistry and Behavior, 2021, 206, 173192.	2.9	9
85	Reactions of Trifluoromethylsulfenyl Chloride with 1,5-Cyclooctadiene. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1117-1125.	1.6	8
86	The discriminative stimulus effects of mecamylamine in nicotine-treated and untreated rhesus monkeys. Behavioural Pharmacology, 2014, 25, 296-305.	1.7	8
87	The discriminative stimulus effects of i.v. nicotine in rhesus monkeys: Pharmacokinetics and apparent pA 2 analysis with dihydro-Î ² -erythroidine. Neuropharmacology, 2017, 116, 9-17.	4.1	8
88	Tolerance and dependence to Δ9-tetrahydrocannabinol in rhesus monkeys: Activity assessments. PLoS ONE, 2019, 14, e0209947.	2.5	8
89	Effects of the α1a-Adrenoceptor Antagonist RS-17053 on Phenylpropanolamine-Induced Anorexia in Rats. Pharmacology Biochemistry and Behavior, 1997, 57, 281-284.	2.9	7
90	Discriminative stimulus effects of mecamylamine and nicotine in rhesus monkeys: Central and peripheral mechanisms. Pharmacology Biochemistry and Behavior, 2019, 179, 27-33.	2.9	7

#	Article	IF	CITATIONS
91	Cross-tolerance and μ agonist efficacy in pigeons treated with LAAM or buprenorphine. Pharmacology Biochemistry and Behavior, 2005, 81, 626-634.	2.9	6
92	The Effects of Morphine, Baclofen, and Buspirone Alone and in Combination on Schedule-Controlled Responding and Hot Plate Antinociception in Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 380-389.	2.5	6
93	Green tobacco sickness: mecamylamine, varenicline, and nicotine vaccine as clinical research tools and potential therapeutics. Expert Review of Clinical Pharmacology, 2019, 12, 189-195.	3.1	6
94	Axially Chiral Cannabinols: A New Platform for Cannabinoidâ€Inspired Drug Discovery. ChemMedChem, 2020, 15, 728-732.	3.2	6
95	Kratom (Mitragyna speciosa Korth.): A description on the ethnobotany, alkaloid chemistry, and neuropharmacology. Studies in Natural Products Chemistry, 2021, 69, 195-225.	1.8	6
96	The use of hypercapnic conditions to assess opioid-induced respiratory depression in rats. Journal of Pharmacological and Toxicological Methods, 2021, 111, 107101.	0.7	6
97	Negative GABAA modulators attenuate the discriminative stimulus effects of benzodiazepines and the neuroactive steroid pregnanolone in rhesus monkeys. Psychopharmacology, 2005, 181, 697-705.	3.1	5
98	Some effects of dopamine transporter and receptor ligands on discriminative stimulus, physiologic, and directly observable indices of opioid withdrawal in rhesus monkeys. Psychopharmacology, 2009, 203, 411-420.	3.1	5
99	Current and Future Potential Impact of COVID-19 on Kratom (Mitragyna speciosa Korth.) Supply and Use. Frontiers in Psychiatry, 2020, 11, 574483.	2.6	5
100	Rapid nicotine tolerance and cross-tolerance to varenicline in rhesus monkeys: Drug discrimination Experimental and Clinical Psychopharmacology, 2018, 26, 541-548.	1.8	5
101	Potential Contribution of 7â€Hydroxymitragynine, a Metabolite of the Primary Kratom (Mitragyna) Tj ETQq1 1 1-1.	0.784314 0.5	rgBT /Overlo <mark>c</mark> 5
102	The Adrenergic a 2 Receptorâ€Mediated Discriminative‣timulus Effects of Mitragynine, the Primary Alkaloid in Kratom (Mitragyna Speciosa) in Rats. FASEB Journal, 2020, 34, 1-1.	0.5	5
103	Effects of Ephedrine Enantiomers on Conditioned Taste Aversion and Kaolin Intake in Rats. Pharmacology Biochemistry and Behavior, 1999, 63, 119-124.	2.9	4
104	Efficacy and the Discriminative Stimulus Effects of Negative GABAA Modulators, or Inverse Agonists, in Diazepam-Treated Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 907-913.	2.5	3
105	Quantification of Rimonabant (SR 141716A) in Monkey Plasma Using HPLC with UV Detection. Journal of Chromatographic Science, 2010, 48, 491-495.	1.4	3
106	Attenuated nicotineâ€like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily. British Journal of Pharmacology, 2016, 173, 3454-3466.	5.4	3
107	Differential cross-tolerance to the effects of nicotinic acetylcholine receptor drugs in C57BL/6J mice following chronic varenicline. Behavioural Pharmacology, 2019, 30, 412-421.	1.7	3
108	Oral Pharmacokinetics in Beagle Dogs of the Mitragynine Metabolite, 7-Hydroxymitragynine. European Journal of Drug Metabolism and Pharmacokinetics, 2021, 46, 459-463.	1.6	3

#	Article	IF	CITATIONS
109	Assessment of the Role of Oxytocin Receptors in Phenylpropanolamine-Induced Anorexia in Rats. Pharmacology Biochemistry and Behavior, 1997, 57, 767-770.	2.9	2
110	Nicotine-like discriminative stimulus effects of acetylcholinesterase inhibitors and a muscarinic receptor agonist in Rhesus monkeys. Drug Development and Industrial Pharmacy, 2019, 45, 861-867.	2.0	2
111	Unexpected loss of sensitivity to the nicotinic acetylcholine receptor antagonist activity of mecamylamine and dihydroâ€Î²â€erythroidine in nicotineâ€tolerant mice. Brain and Behavior, 2020, 10, e01581.	2.2	2
112	Conditioned taste aversion in rats induced by the α1-adrenoceptor agonist cirazoline. Pharmacology Biochemistry and Behavior, 1994, 48, 601-604.	2.9	1
113	Characterization of a mouse neuropathic pain model caused by the highly active antiviral therapy (HAART) Stavudine. Pharmacological Reports, 2021, 73, 1457-1464.	3.3	1
114	Neurosteroids in Alcohol and Substance Use. , 2008, , 509-538.		1
115	Discriminative stimulus effects of the synthetic cannabinoid JWHâ€018 in rhesus monkeys. FASEB Journal, 2013, 27, 1097.6.	0.5	1
116	Basic Measures of Food Intake. Current Protocols in Neuroscience, 1998, 3, 8.6B.1-8.6B.8.	2.6	0
117	Evaluation of the Terpenes β aryophyllene, αâ€ŧerpineol, and γâ€ŧerpinene in the Mouse Chronic Constriction Injury Model of Neuropathic Pain: Possible Cannabinoid Receptor Involvement. FASEB Journal, 2021, 35, .	0.5	0
118	Pharmacological Characterization of Mitragynine: Antinociception, Respiratory Depression, Selfâ€Administration, Drug Discrimination, Tolerance, and withdrawal in Rats. FASEB Journal, 2021, 35, .	0.5	0
119	Quantification of rimonabant (SR 141716A) in plasma using HPLC with UV detection. FASEB Journal, 2007, 21, A417.	0.5	0
120	Nicotine and varenicline share discriminative stimulus properties and act through mecamylamineâ€sensitive receptors in rhesus monkeys FASEB Journal, 2010, 24, .	0.5	0
121	Tolerance and crossâ€ŧolerance produced by deltaâ€9â€ŧetrahydrocannabinol treatment in rhesus monkeys. FASEB Journal, 2012, 26, 660.6.	0.5	0
122	Inhibition of both FAAH and MAGL, but not either separately, produces deltaâ€9â€THC like discriminative stimulus effects. FASEB Journal, 2013, 27, 1097.7.	0.5	0
123	Hypothermic Effects of Δ 9 â€THC and Nicotine in Kynurenineâ€3â€Monooxygenase (KMO) Knockout Mice. FASEB Journal, 2015, 29, LB491.	0.5	0
124	Characterization of a Nicotine Discriminative Stimulus in Rhesus Monkeys. FASEB Journal, 2015, 29, 1019.5.	0.5	0
125	The Discriminative Stimulus Effects of Nicotine, Epibatidine, and Varenicline in Mice: Involvement of β2 Containing Nicotinic Acetylcholine Receptor Subtypes. FASEB Journal, 2015, 29, 1019.3.	0.5	0

Pharmacological Characterization of Mitragynine, the Primary Constituent in Kratom (Mitragyna) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
127	The discriminative stimulus effects of epibatidine in C57BL/6J mice. Behavioural Pharmacology, 2020, 31, 565-573.	1.7	0
128	Effects of Mitragynine and its Active Metabolites on the Reinforcing Effects of Remifentanil and Cocaine in Rats Selfâ€Administering Remifentanil. FASEB Journal, 2022, 36, .	0.5	0
129	Mitragynine Reverses Paclitaxel Chemotherapyâ€Induced Peripheral Neuropathy and is Mediated via Opioid Receptor Involvement. FASEB Journal, 2022, 36, .	0.5	0