
Marca H M Wauben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7352993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
2	Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Frontiers in Oncology, 2022, 12, .	1.3	3
3	Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses. Journal of Extracellular Vesicles, 2021, 10, e12071.	5.5	50
4	Regular Industrial Processing of Bovine Milk Impacts the Integrity and Molecular Composition of Extracellular Vesicles. Journal of Nutrition, 2021, 151, 1416-1425.	1.3	37
5	Efficient Neutrophil Activation Requires Two Simultaneous Activating Stimuli. International Journal of Molecular Sciences, 2021, 22, 10106.	1.8	28
6	Secretion of proâ€angiogenic extracellular vesicles during hypoxia is dependent on the autophagyâ€related protein GABARAPL1. Journal of Extracellular Vesicles, 2021, 10, e12166.	5.5	14
7	Improved Flow Cytometric Light Scatter Detection of Submicron‣ized Particles by Reduction of Optical Background Signals. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 610-619.	1.1	17
8	AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Analytical Chemistry, 2020, 92, 10274-10282.	3.2	72
9	MIFlowCytâ€EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. Journal of Extracellular Vesicles, 2020, 9, 1713526.	5.5	243
10	Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Frontiers in Immunology, 2019, 10, 1699.	2.2	54
11	The generation and use of recombinant extracellular vesicles as biological reference material. Nature Communications, 2019, 10, 3288.	5.8	96
12	Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. Journal of Extracellular Vesicles, 2019, 8, 1684862.	5.5	177
13	Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1647027.	5.5	96
14	Picornavirus infection induces temporal release of multiple extracellular vesicle subsets that differ in molecular composition and infectious potential. PLoS Pathogens, 2019, 15, e1007594.	2.1	46
15	Augmented COlorimetric NANoplasmonic (CONAN) Method for Grading Purity and Determine Concentration of EV Microliter Volume Solutions. Frontiers in Bioengineering and Biotechnology, 2019, 7, 452.	2.0	29
16	The role of extracellular vesicles when innate meets adaptive. Seminars in Immunopathology, 2018, 40, 439-452.	2.8	66
17	Extracellular Vesicles in Joint Disease and Therapy. Frontiers in Immunology, 2018, 9, 2575.	2.2	34
18	Abundantly Present miRNAs in Milk-Derived Extracellular Vesicles Are Conserved Between Mammals. Frontiers in Nutrition, 2018, 5, 81.	1.6	110

MARCA H M WAUBEN

#	Article	IF	CITATIONS
19	Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cellular and Molecular Life Sciences, 2018, 75, 3857-3875.	2.4	57
20	Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. Journal of Extracellular Vesicles, 2018, 7, 1473707.	5.5	60
21	Natural Tâ€cell ligands that are created by genetic variants can be transferred between cells by extracellular vesicles. European Journal of Immunology, 2018, 48, 1621-1631.	1.6	7
22	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	5.5	561
23	EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 2017, 14, 228-232.	9.0	886
24	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	5.5	314
25	Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem Cells Translational Medicine, 2017, 6, 1730-1739.	1.6	247
26	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	5.5	38
27	Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells. Oncotarget, 2017, 8, 88845-88856.	0.8	27
28	Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury. Journal of Cardiovascular Translational Research, 2016, 9, 291-301.	1.1	59
29	Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles. Journal of Extracellular Vesicles, 2016, 5, 31751.	5.5	28
30	Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles, 2016, 5, 32945.	5.5	703
31	Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Molecular and Cellular Proteomics, 2016, 15, 3412-3423.	2.5	129
32	Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell–Specific Proteases. Journal of Immunology, 2016, 197, 3382-3392.	0.4	49
33	Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by highâ€resolution flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 135-147.	1.1	162
34	Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight, 2016, 1, e89631.	2.3	121
35	CBM-14GLIOBLASTOMA CELLS EXPOSED TO 5-ALA RELEASE PROTOPORPHYRIN IX CONTAINING EXTRACELLULAR VESICLES DETECTABLE BY HIGH-RESOLUTION FLOW CYTOMETRY. Neuro-Oncology, 2015, 17, v72.1-v72.	0.6	1
36	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973

Marca H M Wauben

#	Article	IF	CITATIONS
37	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
38	Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity, 2014, 22, 1296-1308.	1.5	142
39	Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity, 2014, 22, 2216-2223.	1.5	128
40	Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. Journal of Extracellular Vesicles, 2014, 3, .	5.5	219
41	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064
42	Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Research, 2012, 40, 9272-9285.	6.5	595
43	Identification of Distinct Populations of Prostasomes That Differentially Express Prostate Stem Cell Antigen, Annexin A1, and GLIPR2 in Humans1. Biology of Reproduction, 2012, 86, 82.	1.2	183
44	Immune Cell-derived Vesicles: Modulators and Mediators of Inflammation. Current Pharmaceutical Design, 2012, 18, 2357-2368.	0.9	35
45	CD4 ⁺ T cell activation promotes the differential release of distinct populations of nanosized vesicles. Journal of Extracellular Vesicles, 2012, 1, .	5.5	78
46	Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocols, 2012, 7, 1311-1326.	5.5	453
47	Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 712-720.	1.7	221
48	Dynamics of dendritic cell-derived vesicles: high-resolution flow cytometric analysis of extracellular vesicle quantity and quality. Journal of Leukocyte Biology, 2012, 93, 395-402.	1.5	48
49	Modulation of T Cell Responses after Cross-Talk between Antigen Presenting Cells and T Cells: A Give-And-Take Relationship. Novartis Foundation Symposium, 2008, , 211-225.	1.2	1
50	Modulation of T cell responses after cross-talk between antigen presenting cells and T cells: a give-and-take relationship. Novartis Foundation Symposium, 2003, 252, 211-20; discussion 220-5, 257-67.	1.2	2
51	Searching for the Cartilage-associated Mimicry Epitope in Adjuvant Arthritis. Autoimmunity, 2002, 35, 201-210.	1.2	11
52	Beneficial effect of modified peptide inhibitor of α4 integrins on experimental allergic encephalomyelitis in Lewis rats. Journal of Neuroscience Research, 2002, 67, 191-199.	1.3	34
53	Artificial antigen-presenting cells as a tool to exploit the immune `synapse'. Nature Medicine, 2000, 6, 1406-1410.	15.2	117
54	Induction of T cell anergy by liposomes with incorporated major histocompatibility complex (MHC) II/peptide complexes. Pharmaceutical Research, 2000, 17, 720-726.	1.7	8

MARCA H M WAUBEN

#	Article	IF	CITATIONS
55	Selection of T-cell epitopes from foot-and-mouth disease virus reflects the binding affinity to different cattle MHC class II molecules. Immunogenetics, 2000, 51, 733-742.	1.2	17
56	Nasal application of a naturally processed and presented T cell epitope derived from TCR AV11 protects against adjuvant arthritis. International Immunology, 2000, 12, 1715-1721.	1.8	3
57	Liposomes with incorporated MHC class II/peptide complexes as antigen presenting vesicles for specific T cell activation. Pharmaceutical Research, 1999, 16, 198-204.	1.7	15
58	Antigen presentation by T cells versus professional antigen-presenting cells (APC): differential consequences for T cell activation and subsequent T cell-APC interactions. European Journal of Immunology, 1999, 29, 1543-1550.	1.6	51
59	Coimmunization of MHC Class II Competitor Peptides during Experimental Autoimmune Myasthenia Gravis Induction Resulted Not Only in a Suppressed, but Also in an Altered Immune Responsea. Annals of the New York Academy of Sciences, 1998, 841, 338-341.	1.8	2
60	Anergic T cells actively suppress T cell responses via the antigen-presenting cell. European Journal of Immunology, 1998, 28, 2902-2912.	1.6	160
61	Inhibition of experimental autoimmune myasthenia gravis by major histocompatibility complex class II competitor peptides results not only in a suppressed but also in an altered immune response. European Journal of Immunology, 1996, 26, 2866-2875.	1.6	19
62	(Altered) Self Peptides and the Regulation of Self Reactivity in the Peripheral T cell Pool. Immunological Reviews, 1996, 149, 55-73.	2.8	28
63	Inhibition of entire myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats by major histocompatibility complex class II-binding competitor peptides. European Journal of Immunology, 1994, 24, 1053-1060.	1.6	9
64	Heat-shock proteins as antigens in autoimmunity. Biochemical Society Transactions, 1991, 19, 171-175.	1.6	8
65	T cell reactivity to an epitope of the mycobacterial 65-kDa heat-shock protein (hsp 65) corresponds with arthritis susceptibility in rats and is regulated by hsp 65-specific cellular responses. European Journal of Immunology, 1991, 21, 1289-1296.	1.6	51