List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7352510/publications.pdf Version: 2024-02-01

ALOKE V FINN

#	Article	IF	CITATIONS
1	Effects of Simulated COVID-19 Cytokine Storm on Stent Thrombogenicity. Cardiovascular Revascularization Medicine, 2022, 35, 129-138.	0.8	9
2	COBRA PzFâ,,¢ coronary stent in clinical and preclinical studies: setting the stage for new antithrombotic strategies?. Future Cardiology, 2022, 18, 207-217.	1.2	7
3	Sex Differences in Coronary Atherosclerosis. Current Atherosclerosis Reports, 2022, 24, 23-32.	4.8	14
4	Characterization of Cerebral Embolic Capture Using the SENTINEL Device During Transcatheter Aortic Valve Implantation in Low to Intermediate-Risk Patients: The SENTINEL-LIR Study. Circulation: Cardiovascular Interventions, 2022, , CIRCINTERVENTIONS121011358.	3.9	7
5	Clinical Trial Design Principles and Outcomes Definitions for Device-Based Therapies for Hypertension: A Consensus Document From the Hypertension Academic Research Consortium. Circulation, 2022, 145, 847-863.	1.6	28
6	COVID-19–Associated cardiac pathology at the postmortem evaluation: a collaborative systematic review. Clinical Microbiology and Infection, 2022, 28, 1066-1075.	6.0	30
7	Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nature Reviews Cardiology, 2022, 19, 684-703.	13.7	106
8	ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) Expression and Localization of SARS-CoV-2 Infection in the Human Heart. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 542-544.	2.4	27
9	Comparison of Endothelial Barrier Functional Recovery After Implantation of a Novel Biodegradable-Polymer Sirolimus-Eluting Stent in Comparison to Durable- and Biodegradable-Polymer Everolimus-Eluting Stents. Cardiovascular Revascularization Medicine, 2021, 24, 1-10.	0.8	8
10	Co-Registration of Peripheral Atherosclerotic Plaques Assessed by Conventional CT Angiography, MicroCT and Histology in Patients with Chronic Limb Threatening Ischaemia. European Journal of Vascular and Endovascular Surgery, 2021, 61, 146-154.	1.5	7
11	Thromboresistance and endothelial healing in polymer-coated versus polymer-free drug-eluting stents: Implications for short-term dual anti-platelet therapy. International Journal of Cardiology, 2021, 327, 52-57.	1.7	11
12	Calcified nodule: A rare but important cause of acute coronary syndrome with worse clinical outcomes. Atherosclerosis, 2021, 318, 40-42.	0.8	5
13	Risk prediction of in-stent restenosis among patients with coronary drug-eluting stents: current clinical approaches and challenges. Expert Review of Cardiovascular Therapy, 2021, 19, 801-816.	1.5	8
14	Histopathologic analysis of extracted thrombi from deep venous thrombosis and pulmonary embolism: Mechanisms and timing. Catheterization and Cardiovascular Interventions, 2021, 97, 1422-1429.	1.7	14
15	Comprehensive Assessment of Human Accessory Renal Artery Periarterial Renal Sympathetic Nerve Distribution. JACC: Cardiovascular Interventions, 2021, 14, 304-315.	2.9	13
16	Microthrombi as a Major Cause of Cardiac Injury in COVID-19. Circulation, 2021, 143, 1031-1042.	1.6	196
17	Eruptive Calcified Nodules as a Potential Mechanism of Acute Coronary Thrombosis and Sudden Death. Journal of the American College of Cardiology, 2021, 77, 1599-1611.	2.8	64
18	Anticytomegalovirus CD4 + T Cells Are Associated With Subclinical Atherosclerosis in Persons With HIV. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1459-1473.	2.4	7

#	Article	IF	CITATIONS
19	Smooth Muscle Cell–Specific PKM2 (Pyruvate Kinase Muscle 2) Promotes Smooth Muscle Cell Phenotypic Switching and Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1724-1737.	2.4	19
20	Vascular Response of a Polymer-Free Paclitaxel-Coated Stent (Zilver PTX) versus a Polymer-Coated Paclitaxel-Eluting Stent (Eluvia) in Healthy Swine Femoropopliteal Arteries. Journal of Vascular and Interventional Radiology, 2021, 32, 792-801.e5.	0.5	15
21	Comparison of acute thrombogenicity and albumin adsorption in three different durable polymer coronary drug-eluting stents. EuroIntervention, 2021, 17, 248-256.	3.2	7
22	Efficacy and safety of cerebral embolic protection systems during transcatheter aortic valve replacement: a review of current clinical findings. Expert Review of Cardiovascular Therapy, 2021, 19, 725-737.	1.5	5
23	<i>APOL1</i> Genetic Variants Are Associated With Increased Risk of Coronary Atherosclerotic Plaque Rupture in the Black Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2201-2214.	2.4	8
24	Response by Pellegrini et al to Letter Regarding Article, "Microthrombi as a Major Cause of Cardiac Injury in COVID-19: A Pathologic Study― Circulation, 2021, 144, e158-e159.	1.6	4
25	Endothelial Recovery in Bare Metal Stents and Drug-Eluting Stents on a Single-Cell Level. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2277-2292.	2.4	7
26	Acute thrombogenicity of fluoropolymer coated stents versus competitive drug-eluting stents under single antiplatelet therapy. International Journal of Cardiology, 2021, 338, 42-49.	1.7	3
27	Paradiseâ,"¢ÂUltrasound Renal Denervation System for the treatment of hypertension. Future Cardiology, 2021, 17, 931-944.	1.2	1
28	Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis. Journal of the American College of Cardiology, 2021, 77, 314-325.	2.8	177
29	Definitions and Clinical Trial Design Principles for Coronary Artery Chronic Total Occlusion Therapies: CTO-ARC Consensus Recommendations. Circulation, 2021, 143, 479-500.	1.6	132
30	Overcoming challenges in refining the current generation of coronary stents. Expert Review of Cardiovascular Therapy, 2021, 19, 1013-1028.	1.5	1
31	Drug-eluting coronary stents: insights from preclinical and pathology studies. Nature Reviews Cardiology, 2020, 17, 37-51.	13.7	150
32	Diversity of macrophage phenotypes and responses in atherosclerosis. Cellular and Molecular Life Sciences, 2020, 77, 1919-1932.	5.4	118
33	What atherosclerosis findings can CT see in sudden coronary death: Plaque rupture versus plaque erosion. Journal of Cardiovascular Computed Tomography, 2020, 14, 214-218.	1.3	10
34	Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. European Heart Journal, 2020, 41, 786-796.	2.2	41
35	Imaging Human Platelet Adhesion and Albumin Retention to Coronary Stents in Real Time. Cardiovascular Revascularization Medicine, 2020, 21, 245-248.	0.8	0
36	Cause of Stent Failure in Patients on Hemodialysis. Journal of the American Heart Association, 2020, 9, e018621.	3.7	3

#	Article	IF	CITATIONS
37	Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circulation Research, 2020, 127, 1552-1565.	4.5	60
38	Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis, 2020, 306, 85-95.	0.8	94
39	Microthrombi and ST-Segment–Elevation Myocardial Infarction in COVID-19. Circulation, 2020, 142, 804-809.	1.6	68
40	Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies. Journal of the American College of Cardiology, 2020, 76, 1226-1243.	2.8	140
41	Healthy Strut Coverage After Coronary Stent Implantation. Circulation: Cardiovascular Interventions, 2020, 13, e008869.	3.9	14
42	Advances in mammalian target of rapamycin kinase inhibitors: application to devices used in the treatment of coronary artery disease. Future Medicinal Chemistry, 2020, 12, 1181-1195.	2.3	2
43	Histopathologic and physiologic effect of bifurcation stenting: current status and future prospects. Expert Review of Medical Devices, 2020, 17, 189-200.	2.8	5
44	Pathology and Multimodality Imaging ofÂAcute and Chronic Femoral Stenting inÂHumans. JACC: Cardiovascular Interventions, 2020, 13, 418-427.	2.9	8
45	Calcification in human vessels and valves: from pathological point of view. AIMS Molecular Science, 2020, 7, 183-210.	0.5	6
46	Basic Pathology of Arterial and Valvular Calcification in Humans. Contemporary Cardiology, 2020, , 13-45.	0.1	0
47	Pathology of stent implantation in internal mammary artery. Cardiovascular Intervention and Therapeutics, 2019, 34, 1-8.	2.3	4
48	New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine, 2019, 47, 598-606.	6.1	96
49	Types and pathology of vascular calcification. , 2019, , 1-25.		0
50	Evaluation and Management of the Vulnerable Plaque. Current Cardiovascular Risk Reports, 2019, 13, 1.	2.0	3
51	Calcified Plaques in Patients WithÂAcuteÂCoronary Syndromes. JACC: Cardiovascular Interventions, 2019, 12, 531-540.	2.9	92
52	<p>IN.PACTTM AdmiralTM drug-coated balloons in peripheral artery disease: current perspectives</p> . Medical Devices: Evidence and Research, 2019, Volume 12, 53-64.	0.8	8
53	Comparison of Biologic Effect and Particulate Embolization after Femoral Artery Treatment with Three Drug-Coated Balloons in Healthy Swine Model. Journal of Vascular and Interventional Radiology, 2019, 30, 103-109.	0.5	38
54	Histopathologic Characterization of Peripheral Arteries in Subjects With Abundant Risk Factors. JACC: Cardiovascular Imaging, 2019, 12, 1501-1513.	5.3	53

#	Article	IF	CITATIONS
55	Fully bioresorbable vascular scaffolds: lessons learned and future directions. Nature Reviews Cardiology, 2019, 16, 286-304.	13.7	143
56	Smooth muscle cell–specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia. Journal of Clinical Investigation, 2019, 130, 295-314.	8.2	45
57	What are the Pathological Concerns and Limitations of Current Drug-coated Balloon Technology?. Heart International, 2019, 13, 15.	1.4	12
58	Acute thrombogenicity of fluoropolymer-coated versus biodegradable and polymer-free stents. EuroIntervention, 2019, 14, 1685-1693.	3.2	27
59	Thromboresistance and functional healing in the COBRA PzF stent versus competitor DES: implications for dual antiplatelet therapy. EuroIntervention, 2019, 15, e342-e353.	3.2	23
60	Coronary Artery Calcification andÂitsÂProgression. JACC: Cardiovascular Imaging, 2018, 11, 127-142.	5.3	282
61	A new category stent with novel polyphosphazene surface modification. Future Cardiology, 2018, 14, 225-235.	1.2	11
62	The Authors Reply:. JACC: Cardiovascular Imaging, 2018, 11, 518.	5.3	0
63	The Stress of Plaque Prognostication. JACC: Cardiovascular Imaging, 2018, 11, 472-475.	5.3	2
64	Safety of Zilver PTX Drug-Eluting Stent Implantation Following Drug-Coated Balloon Dilation in a Healthy Swine Model. Journal of Endovascular Therapy, 2018, 25, 118-126.	1.5	15
65	Coronary artery calcification. Current Opinion in Cardiology, 2018, 33, 645-652.	1.8	15
66	Micro–Computed Tomography Demonstration of Multiple Plaque Ruptures in a Single Individual Presenting With Sudden Cardiac Death. Circulation: Cardiovascular Imaging, 2018, 11, e008331.	2.6	7
67	Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View. Bioengineering, 2018, 5, 71.	3.5	66
68	Pathological mechanisms of left main stent failure. International Journal of Cardiology, 2018, 263, 9-16.	1.7	20
69	Direct Targeting of the mTOR (Mammalian Target of Rapamycin) Kinase Improves Endothelial Permeability in Drug-Eluting Stents—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2217-2224.	2.4	30
70	Biologic Drug Effect and Particulate Embolization of Drug-Eluting Stents versus Drug-Coated Balloons in Healthy Swine Femoropopliteal Arteries. Journal of Vascular and Interventional Radiology, 2018, 29, 1041-1049.e3.	0.5	22
71	Pathologic intimal thickening: Are we any closer to understand early transitional plaques that lead to symptomatic disease?. Atherosclerosis, 2018, 274, 227-229.	0.8	9
72	Histopathologic and physiologic effect of overlapping vs single coronary stents: impact of stent evolution. Expert Review of Medical Devices, 2018, 15, 665-682.	2.8	9

#	Article	IF	CITATIONS
73	An uncommon but important cause of stent thrombosis: Kounis syndrome. Cardiovascular Revascularization Medicine, 2018, 19, 818-819.	0.8	2
74	CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. Journal of Clinical Investigation, 2018, 128, 1106-1124.	8.2	209
75	Nonatherosclerotic Vascular Disease in Women. Texas Heart Institute Journal, 2018, 45, 233-235.	0.3	2
76	Covering our tracks – optical coherence tomography to assess vascular healing. EuroIntervention, 2018, 14, e1247-e1251.	3.2	5
77	9-Month Clinical and Angiographic Outcomes of the COBRA Polyzene-F NanoCoated Coronary Stent System. JACC: Cardiovascular Interventions, 2017, 10, 160-167.	2.9	35
78	Pathology of Chronic Total Occlusion in Bare-Metal Versus Drug-Eluting Stents. JACC: Cardiovascular Interventions, 2017, 10, 367-378.	2.9	16
79	Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 191-204.	2.4	352
80	Metallic Coronary Stents. JACC: Cardiovascular Interventions, 2017, 10, 1175-1177.	2.9	12
81	Comparison of a Drugâ€Free Early Programmed Dismantling PDLLA Bioresorbable Scaffold and a Metallic Stent in a Porcine Coronary Artery Model at 3â€Year Followâ€Up. Journal of the American Heart Association, 2017, 6, .	3.7	14
82	Linking Hemorrhage, Angiogenesis, Macrophages, and Iron Metabolism in Atherosclerotic Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e33-e39.	2.4	38
83	Revisiting the role of durable polymers in cardiovascular devices. Expert Review of Cardiovascular Therapy, 2017, 15, 835-846.	1.5	15
84	Endothelial Barrier Protein Expression inÂBiodegradable Polymer Sirolimus-Eluting VersusÂDurable PolymerÂEverolimus-Eluting Metallic Stents. JACC: Cardiovascular Interventions, 2017, 10, 2375-2387.	2.9	27
85	Avances reveladores sobre la trombosis del stent. Revista Espanola De Cardiologia, 2017, 70, 1036-1038.	1.2	0
86	Bioresorbable vascular scaffolds. Coronary Artery Disease, 2017, 28, 533-538.	0.7	5
87	Catastrophic Consequence of Gauze During Percutaneous CoronaryÂIntervention. JACC: Cardiovascular Interventions, 2017, 10, e141-e142.	2.9	0
88	Illuminating Insights Into Stent Thrombosis. Revista Espanola De Cardiologia (English Ed), 2017, 70, 1036-1038.	0.6	0
89	Clinical implications of blood-material interaction and drug eluting stent polymers in review. Expert Review of Medical Devices, 2017, 14, 707-716.	2.8	14
90	Very Late Pathological Responses to Cobalt–Chromium Everolimusâ€Eluting, Stainless Steel Sirolimusâ€Eluting, and Cobalt–Chromium Bare Metal Stents in Humans. Journal of the American Heart Association, 2017, 6, .	3.7	34

#	Article	IF	CITATIONS
91	Calcified Nodule. JACC: Cardiovascular Interventions, 2016, 9, e125-e126.	2.9	44
92	Stenting of Spontaneous Coronary Artery Dissection From a Pathological Point of View. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	9
93	Preclinical evaluation of a novel polyphosphazene surface modified stent. International Journal of Cardiology, 2016, 222, 217-225.	1.7	24
94	Histopathological Differential Diagnosis ofÂOptical Coherence Tomographic ImageÂInterpretation After Stenting. JACC: Cardiovascular Interventions, 2016, 9, 2511-2523.	2.9	50
95	Biodegradable polymer drug-eluting stents: non-inferiority waiting for superiority?. Lancet, The, 2016, 388, 2567-2568.	13.7	0
96	The clinical challenge of disappearing stents. Lancet, The, 2016, 387, 510-512.	13.7	11
97	Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nature Reviews Cardiology, 2016, 13, 79-98.	13.7	399
98	Endothelialization of drug eluting stents and its impact on dual anti-platelet therapy duration. Pharmacological Research, 2015, 93, 22-27.	7.1	45
99	Illuminating Culprit Plaque Histology byÂOptical Coherence Tomography. JACC: Cardiovascular Interventions, 2015, 8, 1177-1179.	2.9	0
100	Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: AÂpathology study. Atherosclerosis, 2015, 241, 772-782.	0.8	151
101	Hepcidin-ferroportin axis controls toll-like receptor 4 dependent macrophage inflammatory responses in human atherosclerotic plaques. Atherosclerosis, 2015, 241, 692-700.	0.8	29
102	Embolic Myocardial Infarction as a Consequence of Atrial Fibrillation. Circulation, 2015, 132, 223-226.	1.6	31
103	Eosinophils. Coronary Artery Disease, 2015, 26, 99-100.	0.7	3
104	CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nature Communications, 2015, 6, 7792.	12.8	75
105	Everolimus-Eluting Stents Improve Vascular Response in a Diabetic Animal Model. Circulation: Cardiovascular Interventions, 2014, 7, 526-532.	3.9	11
106	The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Frontiers in Pharmacology, 2014, 5, 195.	3.5	54
107	Pathology of Second-Generation Everolimus-Eluting Stents Versus First-Generation Sirolimus- and Paclitaxel-Eluting Stents in Humans. Circulation, 2014, 129, 211-223.	1.6	422
108	2-deoxy-2-[18F]fluoro-d-mannose positron emission tomography imaging in atherosclerosis. Nature Medicine, 2014, 20, 215-219.	30.7	159

#	Article	IF	CITATIONS
109	Causes of Early Stent Thrombosis in Patients Presenting With Acute Coronary Syndrome. Journal of the American College of Cardiology, 2014, 63, 2510-2520.	2.8	102
110	Comparison of pathology of chronic total occlusion with and without coronary artery bypass graft. European Heart Journal, 2014, 35, 1683-1693.	2.2	119
111	Clinical and Angiographic Results After Hybrid Coronary Revascularization. Annals of Thoracic Surgery, 2014, 97, 484-490.	1.3	51
112	Early clinical and angiographic outcomes after robotic-assisted coronary artery bypass surgery. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 179-185.	0.8	83
113	Update on acute coronary syndromes: the pathologists' view. European Heart Journal, 2013, 34, 719-728.	2.2	849
114	Do vulnerable and ruptured plaques hide in heavily calcified arteries?. Atherosclerosis, 2013, 229, 34-37.	0.8	47
115	Metformin Impairs Vascular Endothelial Recovery After Stent Placement in the Setting of Locally Eluted Mammalian Target of Rapamycin Inhibitors Via S6 Kinase-Dependent Inhibition of Cell Proliferation. Journal of the American College of Cardiology, 2013, 61, 971-980.	2.8	35
116	Histopathologic Characteristics of Atherosclerotic Coronary Disease and Implications of the Findings for the Invasive and Noninvasive Detection of Vulnerable Plaques. Journal of the American College of Cardiology, 2013, 61, 1041-1051.	2.8	438
117	Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. European Heart Journal, 2013, 34, 3304-3313.	2.2	100
118	Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion. Cardiovascular Engineering and Technology, 2013, 4, 464-473.	1.6	20
119	Sirolimus-FKBP12.6 Impairs Endothelial Barrier Function Through Protein Kinase C-α Activation and Disruption of the p120–Vascular Endothelial Cadherin Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2425-2431.	2.4	53
120	Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis. BMJ, The, 2013, 347, f6530-f6530.	6.0	194
121	Pharmacological Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 299-307.	2.4	129
122	Hemoglobin Directs Macrophage Differentiation and Prevents Foam Cell Formation in Human Atherosclerotic Plaques. Journal of the American College of Cardiology, 2012, 59, 166-177.	2.8	265
123	Pathology of Drug-Eluting Versus Bare-Metal Stents in Saphenous Vein Bypass Graft Lesions. JACC: Cardiovascular Interventions, 2012, 5, 666-674.	2.9	54
124	Ex Vivo Assessment of Vascular Response to Coronary Stents by Optical Frequency Domain Imaging. JACC: Cardiovascular Imaging, 2012, 5, 71-82.	5.3	113
125	Lessons Learned from Robotic-Assisted Coronary Artery Bypass Surgery: Risk Factors for Conversion to Median Sternotomy. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2012, 7, 323-327.	0.9	11
126	The importance of the endothelium in atherothrombosis and coronary stenting. Nature Reviews Cardiology, 2012, 9, 439-453.	13.7	314

#	Article	IF	CITATIONS
127	Coronary Responses and Differential Mechanisms of Late Stent Thrombosis Attributed to First-Generation Sirolimus- and Paclitaxel-Eluting Stents. Journal of the American College of Cardiology, 2011, 57, 390-398.	2.8	283
128	The Pathology of Neoatherosclerosis in Human Coronary Implants. Journal of the American College of Cardiology, 2011, 57, 1314-1322.	2.8	834
129	Concept of Vulnerable/Unstable Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1282-1292.	2.4	982
130	Pathological Findings at Bifurcation Lesions. Journal of the American College of Cardiology, 2010, 55, 1679-1687.	2.8	228
131	Pharmacotherapy of coronary atherosclerosis. Expert Opinion on Pharmacotherapy, 2009, 10, 1587-1603.	1.8	26
132	Differential Healing After Sirolimus, Paclitaxel, and Bare Metal Stent Placement in Combination With Peroxisome Proliferator-Activator Receptor Î ³ Agonists. Circulation Research, 2009, 105, 1003-1012.	4.5	24
133	Predictive factors for in-stent late loss and coronary lesion progression in patients with type 2 diabetes mellitus randomized to rosiglitazone or placebo. American Heart Journal, 2009, 157, 383.e1-383.e8.	2.7	9
134	Incidence and Predictors of Drug-Eluting Stent Fracture in Human Coronary Artery. Journal of the American College of Cardiology, 2009, 54, 1924-1931.	2.8	229
135	Differential Healing Responses in Polymer- and Nonpolymer-Based Sirolimus-Eluting Stents. JACC: Cardiovascular Interventions, 2008, 1, 535-544.	2.9	48
136	Endothelial Cell Recovery Between Comparator Polymer-Based Drug-Eluting Stents. Journal of the American College of Cardiology, 2008, 52, 333-342.	2.8	594
137	Delayed Arterial Healing and Increased Late Stent Thrombosis at Culprit Sites After Drug-Eluting Stent Placement for Acute Myocardial Infarction Patients. Circulation, 2008, 118, 1138-1145.	1.6	818
138	Drug-eluting stent safety: findings from preclinical studies. Expert Review of Cardiovascular Therapy, 2008, 6, 1379-1391.	1.5	72
139	Herman Kalman Gold, MD. Circulation, 2008, 118, 1212-1213.	1.6	0
140	Total erythrocyte membrane cholesterol: a marker of plaque instability?. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 646-647.	3.3	0
141	Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 491-502.	3.3	104
142	Controversies Surrounding the Use of Drug-Eluting Stents. The American Heart Hospital Journal, 2007, 5, 141-145.	0.2	0
143	Pathological Correlates of Late Drug-Eluting Stent Thrombosis. Circulation, 2007, 115, 2435-2441.	1.6	1,200
144	Response to Letter Regarding Article, "Pathological Correlates of Late Drug-Eluting Stent Thrombosis: Strut Coverage as a Marker of Endothelialization― Circulation, 2007, 116, .	1.6	2

#	Article	IF	CITATIONS
145	Vascular Responses to Drug Eluting Stents. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1500-1510.	2.4	826
146	Frequency and Distribution of Thin-Cap Fibroatheroma and Ruptured Plaques in Human Coronary Arteries. Journal of the American College of Cardiology, 2007, 50, 940-949.	2.8	326
147	Pathology of drug-eluting stents: implications for coronary intervention. Indian Heart Journal, 2007, 59, B41-9.	0.5	1
148	Pathology of Drug-Eluting Stents in Humans. Journal of the American College of Cardiology, 2006, 48, 193-202.	2.8	2,537
149	Everolimus eluting stents: beyond targeting restenosis!. EuroIntervention, 2006, 2, 277-9.	3.2	1
150	Differential Response of Delayed Healing and Persistent Inflammation at Sites of Overlapping Sirolimus- or Paclitaxel-Eluting Stents. Circulation, 2005, 112, 270-278.	1.6	560
151	Atherosclerotic Plaque Progression and Vulnerability to Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2054-2061.	2.4	1,197
152	Drug-eluting stents for diabetes mellitus. Journal of the American College of Cardiology, 2005, 45, 479-483.	2.8	45
153	Intraplaque Hemorrhage and Progression of Coronary Atheroma. New England Journal of Medicine, 2003, 349, 2316-2325.	27.0	1,319
154	Isolated Right Ventricular Infarction. New England Journal of Medicine, 2003, 349, 1636-1636.	27.0	32
155	The thin-cap fibroatheroma: a type of vulnerable plaque: The major precursor lesion to acute coronary syndromes. Current Opinion in Cardiology, 2001, 16, 285-292.	1.8	584
156	Vulnerable Plaque in Patients with Acute Coronary Syndrome: Identification, Importance, and Management. US Cardiology Review, 0, 16, .	0.5	4