
Michela Deleidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7351526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	12.4	444
2	Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15921-15926.	7.1	441
3	iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 2014, 5, 4028.	12.8	436
4	Successful Function of Autologous iPSC-Derived Dopamine Neurons following Transplantation in a Non-Human Primate Model of Parkinson's Disease. Cell Stem Cell, 2015, 16, 269-274.	11.1	271
5	The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson's Disease. Cell Reports, 2018, 23, 2976-2988.	6.4	239
6	Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain, 2008, 131, 2564-2578.	7.6	228
7	Immune aging, dysmetabolism, and inflammation in neurological diseases. Frontiers in Neuroscience, 2015, 9, 172.	2.8	211
8	Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neurosciences, 2010, 45, 258-266.	2.2	203
9	The role of inflammation in sporadic and familial Parkinson's disease. Cellular and Molecular Life Sciences, 2013, 70, 4259-4273.	5.4	153
10	Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/Â-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair. Journal of Neuroscience, 2012, 32, 2062-2085.	3.6	123
11	Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Research Reviews, 2005, 48, 211-219.	9.0	98
12	The Toll-Like Receptor-3 Agonist Polyinosinic:Polycytidylic Acid Triggers Nigrostriatal Dopaminergic Degeneration. Journal of Neuroscience, 2010, 30, 16091-16101.	3.6	89
13	Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Molecular Psychiatry, 2021, 26, 5733-5750.	7.9	79
14	Viral and Inflammatory Triggers of Neurodegenerative Diseases. Science Translational Medicine, 2012, 4, 121ps3.	12.4	77
15	The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. Scientific Reports, 2017, 7, 12702.	3.3	62
16	Interferon-Î ³ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nature Communications, 2020, 11, 5163.	12.8	60
17	Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy. Stem Cell Reports, 2018, 11, 1185-1198.	4.8	46
18	Development of Histocompatible Primateâ€Induced Pluripotent Stem Cells for Neural Transplantation. Stem Cells, 2011, 29, 1052-1063.	3.2	41

MICHELA DELEIDI

#	Article	IF	CITATIONS
19	Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons. PLoS ONE, 2011, 6, e19926.	2.5	39
20	Immunological patterns identifying disease course and evolution in multiple sclerosis patients. Journal of Neuroimmunology, 2005, 165, 192-200.	2.3	38
21	Combined Flow Cytometric Analysis of Surface and Intracellular Antigens Reveals Surface Molecule Markers of Human Neuropoiesis. PLoS ONE, 2013, 8, e68519.	2.5	37
22	Protein Clearance Mechanisms of Alpha-Synuclein and Amyloid-Beta in Lewy Body Disorders. International Journal of Alzheimer's Disease, 2012, 2012, 1-9.	2.0	31
23	Concise Review: Modeling Multiple Sclerosis With Stem Cell Biological Platforms: Toward Functional Validation of Cellular and Molecular Phenotypes in Inflammation-Induced Neurodegeneration. Stem Cells Translational Medicine, 2015, 4, 252-260.	3.3	20
24	Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE, 2018, 13, e0192497.	2.5	20
25	Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends in Molecular Medicine, 2021, 27, 47-59.	6.7	18
26	Genome editing in pluripotent stem cells: research and therapeutic applications. Biochemical and Biophysical Research Communications, 2016, 473, 665-674.	2.1	17
27	Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines, 2021, 9, 833.	3.2	17
28	Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease, 2019, 127, 1-12.	4.4	13
29	Mitochondrial Antigen Presentation: A Vacuolar Path to Autoimmunity in Parkinson's Disease. Trends in Immunology, 2016, 37, 719-721.	6.8	11
30	Progresses in both basic research and clinical trials of NAD+ in Parkinson's disease. Mechanisms of Ageing and Development, 2021, 197, 111499.	4.6	10
31	Reassessing neurodegenerative disease: immune protection pathways and antagonistic pleiotropy. Trends in Neurosciences, 2021, 44, 771-780.	8.6	10
32	Immune Senescence and Inflammaging in Neurological Diseases. , 2018, , 1-21.		0
33	Immune Senescence and Inflammaging in Neurological Diseases. , 2019, , 2283-2303.		0