Nazif Alic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7351365/publications.pdf

Version: 2024-02-01

257450 265206 2,577 42 43 24 citations h-index g-index papers 53 53 53 3635 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Mendelian randomization analyses implicate biogenesis of translation machinery in human aging. Genome Research, 2022, 32, 258-265.	5.5	7
2	RNA Polymerase III, Ageing and Longevity. Frontiers in Genetics, 2021, 12, 705122.	2.3	11
3	Evolutionary Conservation of Transcription Factors Affecting Longevity. Trends in Genetics, 2020, 36, 373-382.	6.7	19
4	Increased mitochondrial and lipid metabolism is a conserved effect of Insulin/PI3K pathway downregulation in adipose tissue. Scientific Reports, 2020, 10, 3418.	3.3	6
5	Partial Inhibition of RNA Polymerase I Promotes Animal Health and Longevity. Cell Reports, 2020, 30, 1661-1669.e4.	6.4	22
6	The neuronal receptor tyrosine kinase Alk is a target for longevity. Aging Cell, 2020, 19, e13137.	6.7	20
7	identification of genes encoding RNA polymerase subunits. MicroPublication Biology, 2020, 2020, .	0.1	O
8	Longevity is determined by ETS transcription factors in multiple tissues and diverse species. PLoS Genetics, 2019, 15, e1008212.	3.5	23
9	Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Reports, 2017, 18, 299-306.	6.4	53
10	Intestinal Fork Head Regulates Nutrient Absorption and Promotes Longevity. Cell Reports, 2017, 21, 641-653.	6.4	41
11	A proteomic atlas of insulin signalling reveals tissueâ€specific mechanisms of longevity assurance. Molecular Systems Biology, 2017, 13, 939.	7.2	42
12	RNA polymerase III limits longevity downstream of TORC1. Nature, 2017, 552, 263-267.	27.8	83
13	Sexually dimorphic effects of dietary sugar on lifespan, feeding and starvation resistance in Drosophila. Aging, 2017, 9, 2521-2528.	3.1	29
14	Deletion of endogenous Tau proteins is not detrimental in Drosophila. Scientific Reports, 2016, 6, 23102.	3.3	38
15	Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1321-1326.	7.1	46
16	Could cancer drugs provide ammunition against aging?. Cell Cycle, 2016, 15, 153-155.	2.6	4
17	Of FOXes and Forgetful Worms. Cell Metabolism, 2016, 23, 403-404.	16.2	1
18	The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity. Cell, 2015, 162, 72-83.	28.9	180

#	Article	IF	Citations
19	Ablation of insulin-producing cells prevents obesity but not premature mortality caused by a high-sugar diet in Drosophila. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141720.	2.6	12
20	Myc mouse and anti-ageing therapy. Trends in Endocrinology and Metabolism, 2015, 26, 163-164.	7.1	2
21	Interplay of dFOXO and Two ETS-Family Transcription Factors Determines Lifespan in Drosophila melanogaster. PLoS Genetics, 2014, 10, e1004619.	3.5	60
22	Cell-Nonautonomous Effects of dFOXO/DAF-16 in Aging. Cell Reports, 2014, 6, 608-616.	6.4	50
23	Detrimental Effects of RNAi: A Cautionary Note on Its Use in Drosophila Ageing Studies. PLoS ONE, 2012, 7, e45367.	2.5	24
24	Using Answer Set Programming to Integrate RNA Expression with Signalling Pathway Information to Infer How Mutations Affect Ageing. PLoS ONE, 2012, 7, e50881.	2.5	13
25	Genomeâ€wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Molecular Systems Biology, 2011, 7, 502.	7.2	112
26	Lifespan extension by increased expression of the <i>Drosophila</i> homologue of the IGFBP7 tumour suppressor. Aging Cell, 2011, 10, 137-147.	6.7	92
27	Ageing in Drosophila: The role of the insulin/lgf and TOR signalling network. Experimental Gerontology, 2011, 46, 376-381.	2.8	255
28	Death and dessert: nutrient signalling pathways and ageing. Current Opinion in Cell Biology, 2011, 23, 738-743.	5.4	51
29	DILPâ€producing median neurosecretory cells in the <i>Drosophila</i> brain mediate the response of lifespan to nutrition. Aging Cell, 2010, 9, 336-346.	6.7	117
30	Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk. PLoS Genetics, 2010, 6, e1000881.	3.5	75
31	The endosymbiont <i>Wolbachia</i> increases insulin/IGF-like signalling in <i>Drosophila</i> Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3799-3807.	2.6	110
32	Stage debut for the elusive Drosophila insulin-like growth factor binding protein. Journal of Biology, 2008, 7, 18.	2.7	7
33	Oxidant-induced cell-cycle delay in Saccharomyces cerevisiae: the involvement of the SWI6 transcription factor. FEMS Yeast Research, 2008, 8, 386-399.	2.3	17
34	Reduction of DILP2 in Drosophila Triages a Metabolic Phenotype from Lifespan Revealing Redundancy and Compensation among DILPs. PLoS ONE, 2008, 3, e3721.	2.5	184
35	Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10400-10405.	7.1	48
36	Antagonizing Methuselah to extend life span. Genome Biology, 2007, 8, 222.	9.6	6

#	Article	lF	Citations
37	A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO Journal, 2006, 25, 118-128.	7.8	119
38	Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6564-6569.	7.1	401
39	Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses. Free Radical Biology and Medicine, 2004, 37, 23-35.	2.9	40
40	Lipid Hydroperoxides Activate the Mitogen-activated Protein Kinase Mpk1p in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 41849-41855.	3.4	36
41	Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast, 2002, 19, 203-214.	1.7	67
42	Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast, 2002, 19, 203.	1.7	2
43	Identification of a <i>Saccharomyces cerevisiae</i> Gene that Is Required for G1 Arrest in Response to the Lipid Oxidation Product Linoleic Acid Hydroperoxide [*] . Molecular Biology of the Cell, 2001, 12, 1801-1810.	2.1	51