List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350710/publications.pdf Version: 2024-02-01



LIIANA EDIAS

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The future of lupin as a protein crop in Europe. Frontiers in Plant Science, 2015, 6, 705.                                                                                                                                        | 3.6  | 203       |
| 2  | Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of L. var. Multolupa. Food Chemistry, 2005, 92, 211-220.                                                                       | 8.2  | 183       |
| 3  | Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 2013, 136, 1030-1037.                                                                                                    | 8.2  | 173       |
| 4  | New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas.<br>European Food Research and Technology, 2002, 215, 472-477.                                                               | 3.3  | 172       |
| 5  | Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chemistry, 2008, 108, 571-581.                                                     | 8.2  | 171       |
| 6  | Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods, 2019, 8, 391.                                                                                                                                    | 4.3  | 157       |
| 7  | Effect of processing on some antinutritional factors of lentils. Journal of Agricultural and Food Chemistry, 1994, 42, 2291-2295.                                                                                                 | 5.2  | 154       |
| 8  | Immunoreactivity and Amino Acid Content of Fermented Soybean Products. Journal of Agricultural and Food Chemistry, 2008, 56, 99-105.                                                                                              | 5.2  | 152       |
| 9  | Alpha-Galactosides: Antinutritional Factors or Functional Ingredients?. Critical Reviews in Food<br>Science and Nutrition, 2008, 48, 301-316.                                                                                     | 10.3 | 140       |
| 10 | High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I<br>converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry, 2015, 171,<br>224-232.               | 8.2  | 140       |
| 11 | Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chemistry, 2015, 173, 298-304.                                                                                                   | 8.2  | 137       |
| 12 | Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna<br>radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chemistry, 2008, 111,<br>622-630.                  | 8.2  | 131       |
| 13 | Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes. Food Chemistry, 2004, 86, 537-545.                                                                 | 8.2  | 129       |
| 14 | Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 2015, 172, 343-352.                                                                                                             | 8.2  | 125       |
| 15 | Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory<br>evaluation. Food Chemistry, 2007, 101, 202-211.                                                                              | 8.2  | 124       |
| 16 | Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides<br>with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry, 2017,<br>221, 464-472. | 8.2  | 114       |
| 17 | Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food<br>Chemistry, 2006, 98, 291-299.                                                                                         | 8.2  | 107       |
| 18 | Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chemistry, 2014, 152, 407-414.                                                        | 8.2  | 106       |

IF # ARTICLE CITATIONS Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus'indica flowers obtained by different extraction methods. Industrial Crops and Products, 2014, 62, 412-420. Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. 20 3.3 90 European Food Research and Technology, 2000, 210, 340-345. Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis) Tj ETQq1 1 0.784314 ggBT /C Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. European Food 22 3.3 88 Research and Technology, 2002, 214, 226-231. High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. 8.2 Food Chemistry, 2011, 125, 423-429. Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. 24 3.5 85 Journal of the Science of Food and Agriculture, 2003, 83, 298-306. Nutrients and antinutritional factors in faba beans as affected by processing. European Food Research 0.6 84 and Technology, 1998, 207, 140-145. Food safety evaluation of broccoli and radish sprouts. Food and Chemical Toxicology, 2008, 46, 26 3.6 84 1635-1644. Influence of Fermentation Conditions on Glucosinolates, Ascorbigen, and Ascorbic Acid Content in White Cabbage (<i>Brassica oleracea</i> var. <i>capitata</i> cv. Taler) Cultivated in Different Seasons. 3.1 84 Journal of Food Science, 2009, 74, C62-7. Time dependence of bioactive compounds and antioxidant capacity during germination of different 28 8.2 81 cultivars of broccoli and radish seeds. Food Chemistry, 2010, 120, 710-716. Savinase, the Most Suitable Enzyme for Releasing Peptides from Lentil (<i>Lens culinaris</i> var.) Tj ETQq1 1 0.784314 rgBT /Overloc Chemistry, 2014, 62, 4166-4174. Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and  $\hat{I}^2$ -Carotene 30 5.2 75 Content of Carrots. Journal of Agricultural and Food Chemistry, 2010, 58, 10539-10544. Simple Method of Isolation and Purification of α-Galactosides from Legumes. Journal of Agricultural 5.2 and Food Chemistry, 2000, 48, 3120-3123. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of Functional Foods, 2015, 18, 319-332. 32 3.4 72 Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. European Food Research and Technology, 2006, 223, 495-502. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food 34 6.2 70 Research International, 2015, 70, 55-63. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods, 2020, 9, 296. 4.369 Nutritional Assessment of Raw, Heated, and Germinated Lentils. Journal of Agricultural and Food 36 5.2

JUANA FRIAS

Chemistry, 1995, 43, 1871-1877.

| #  | Article                                                                                                                                                                                                                                                | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Changes in the carbohydrate composition of legumes after soaking and cooking. Journal of the<br>American Dietetic Association, 1993, 93, 547-550.                                                                                                      | 1.1 | 65        |
| 38 | Effect of germination on the protein fraction composition of different lupin seeds. Food Chemistry, 2008, 107, 830-844.                                                                                                                                | 8.2 | 65        |
| 39 | Legume Processing Effects on Dietary Fiber Components. Journal of Food Science, 1991, 56, 1350-1352.                                                                                                                                                   | 3.1 | 64        |
| 40 | Chemical, biological and sensory evaluation of pasta products supplemented with α-galactoside-free<br>lupin flours. Journal of the Science of Food and Agriculture, 2007, 87, 74-81.                                                                   | 3.5 | 64        |
| 41 | Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 2005, 21, 230-239.                                                                                         | 2.4 | 63        |
| 42 | Influence of addition of raffinose family oligosaccharides on probiotic survival in fermented milk<br>during refrigerated storage. International Dairy Journal, 2006, 16, 768-774.                                                                     | 3.0 | 61        |
| 43 | Application of high-pressure treatment on alfalfa (Medicago sativa) and mung bean (Vigna radiata)<br>seeds to enhance the microbiological safety of their sprouts. Food Control, 2008, 19, 698-705.                                                    | 5.5 | 61        |
| 44 | Fermented Pigeon Pea (Cajanus cajan) Ingredients in Pasta Products. Journal of Agricultural and Food<br>Chemistry, 2006, 54, 6685-6691.                                                                                                                | 5.2 | 60        |
| 45 | Fermentation as a Bio-Process To Obtain Functional Soybean Flours. Journal of Agricultural and Food<br>Chemistry, 2007, 55, 8972-8979.                                                                                                                 | 5.2 | 59        |
| 46 | Optimization of germination time and temperature to maximize the content of bioactive compounds<br>and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food<br>Science and Technology, 2017, 76, 236-244. | 5.2 | 59        |
| 47 | Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chemistry, 2010, 123, 143-150.                                                                                          | 8.2 | 58        |
| 48 | Raffinose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chemistry, 2005, 91, 645-649.                                                                                                                               | 8.2 | 57        |
| 49 | Evolution of Trypsin Inhibitor Activity during Germination of Lentils. Journal of Agricultural and Food Chemistry, 1995, 43, 2231-2234.                                                                                                                | 5.2 | 56        |
| 50 | Antioxidant capacity and polyphenolic content of high-protein lupin products. Food Chemistry, 2009, 112, 84-88.                                                                                                                                        | 8.2 | 55        |
| 51 | Multifunctional Properties of Soy Milk Fermented by Enterococcus faecium Strains Isolated from Raw<br>Soy Milk. Journal of Agricultural and Food Chemistry, 2012, 60, 10235-10244.                                                                     | 5.2 | 54        |
| 52 | Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chemistry, 2003, 81, 233-239.                                                                                                                                     | 8.2 | 53        |
| 53 | Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT -<br>Food Science and Technology, 2011, 44, 1303-1308.                                                                                               | 5.2 | 53        |
| 54 | Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content,<br>antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chemistry, 2012,<br>132, 907-914.                                | 8.2 | 53        |

| #  | Article                                                                                                                                                                                                                                                                                                | IF                  | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
| 55 | Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT - Food Science and<br>Technology, 2014, 56, 328-334.                                                                                                                                                                | 5.2                 | 53                 |
| 56 | Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying.<br>Journal of Cereal Science, 2017, 73, 1-9.                                                                                                                                                       | 3.7                 | 53                 |
| 57 | Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control, 2010, 21, 82-88.                                                                                                             | 5.5                 | 52                 |
| 58 | High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting<br>Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. Journal of Agricultural and<br>Food Chemistry, 2016, 64, 1730-1740.                                                  | 5.2                 | 52                 |
| 59 | Changes in quantities of inositol phosphates during maturation and germination of legume seeds.<br>European Food Research and Technology, 1998, 206, 279-283.                                                                                                                                          | 0.6                 | 51                 |
| 60 | Fermentation of Vigna sinensis var. carilla Flours by Natural Microflora and Lactobacillus Species.<br>Journal of Food Protection, 2003, 66, 2313-2320.                                                                                                                                                | 1.7                 | 51                 |
| 61 | Effect of Processing on the Antioxidant Vitamins and Antioxidant Capacity ofVigna sinensisVar.<br>Carilla. Journal of Agricultural and Food Chemistry, 2005, 53, 1215-1222.                                                                                                                            | 5.2                 | 51                 |
| 62 | Changes in carbohydrates during germination of lentils. Zeitschrift Fur Lebensmittel-Untersuchung<br>Und -Forschung, 1992, 194, 461-464.                                                                                                                                                               | 0.6                 | 49                 |
| 63 | Changes of wheat dough and bread quality and structure as a result of germinated pea flour addition. European Food Research and Technology, 2003, 216, 46-50.                                                                                                                                          | 3.3                 | 47                 |
| 64 | Kinetics of free protein amino acids, free non-protein amino acids and trigonelline in soybean (Glycine) Tj ETQq<br>224, 177-186.                                                                                                                                                                      | 0 0 0 rgBT /<br>3.3 | Overlock 101<br>46 |
| 65 | Development of a multifunctional yogurt-like product from germinated brown rice. LWT - Food<br>Science and Technology, 2019, 99, 306-312.                                                                                                                                                              | 5.2                 | 46                 |
| 66 | Effect of Processing on the Soluble Carbohydrate Content of Lentils. Journal of Food Protection, 1992, 55, 301-304.                                                                                                                                                                                    | 1.7                 | 45                 |
| 67 | Natural Fermentation of Lentils: Influence of Time, Concentration and Temperature on the Kinetics of Hydrolysis of Inositol Phosphates. , 1996, 71, 367-375.                                                                                                                                           |                     | 44                 |
| 68 | Raffinose Family of Oligosaccharides from Lupin Seeds as Prebiotics: Application in Dairy Products.<br>Journal of Food Protection, 2005, 68, 1246-1252.                                                                                                                                                | 1.7                 | 44                 |
| 69 | High hydrostatic pressure can improve the microbial quality of sauerkraut during storage. Food<br>Control, 2010, 21, 524-528.                                                                                                                                                                          | 5.5                 | 44                 |
| 70 | Chemical Evaluation and Sensory Quality of Sauerkrauts Obtained by Natural and Induced<br>Fermentations at Different NaCl Levels from Brassica oleracea Var. <i>capitata</i> Cv. Bronco Grown<br>in Eastern Spain. Effect of Storage. Journal of Agricultural and Food Chemistry, 2010, 58, 3549-3557. | 5.2                 | 44                 |
| 71 | Natural Fermentation of Lentils. Influence of Time, Flour Concentration, and Temperature on the<br>Kinetics of Monosaccharides, Disaccharide, and α-Galactosides. Journal of Agricultural and Food<br>Chemistry, 1996, 44, 579-584.                                                                    | 5.2                 | 42                 |
| 72 | Effect of Germination on Physico-chemical Properties of Lentil Starch and its Components. LWT - Food<br>Science and Technology, 1998, 31, 228-236.                                                                                                                                                     | 5.2                 | 42                 |

36

| #  | Article                                                                                                                                                                                                                     | IF         | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 73 | Lentil Starch Content and its Microscopical Structure as Influenced by Natural Fermentation.<br>Starch/Staerke, 1999, 51, 152-156.                                                                                          | 2.1        | 42             |
| 74 | Correlations between some nitrogen fractions, lysine, histidine, tyrosine, and ornithine contents during the germination of peas, beans, and lentils. Food Chemistry, 2008, 108, 245-252.                                   | 8.2        | 41             |
| 75 | Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties.<br>Food Chemistry, 2021, 338, 127972.                                                                                | 8.2        | 41             |
| 76 | Effect of natural fermentation on carbohydrates, riboflavin and trypsin inhibitor activity of lentils.<br>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 449-452.                                     | 0.6        | 40             |
| 77 | Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. European Food<br>Research and Technology, 2005, 220, 176-181.                                                                        | 3.3        | 40             |
| 78 | White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT - Food Science and Technology, 2012, 46, 77-83.                         | 5.2        | 40             |
| 79 | Non-Nutritive Compounds in Fabaceae Family Seeds and the Improvement of Their Nutritional Quality<br>by Traditional Processing – a Review. Polish Journal of Food and Nutrition Sciences, 2014, 64, 75-89.                  | 1.7        | 40             |
| 80 | Improved Methods of Oligosaccharide Analysis for Genetic Studies of Legume Seeds. Journal of Liquid<br>Chromatography and Related Technologies, 1994, 17, 2469-2483.                                                        | 1.0        | 39             |
| 81 | Microstructural and biochemical changes in raw and germinated cowpea seeds upon high-pressure treatment. Food Research International, 2007, 40, 415-423.                                                                    | 6.2        | 39             |
| 82 | Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science and Technology, 2018, 53, 516-524. | 2.7        | 39             |
| 83 | Dietary Fiber in Processed Lentils. Journal of Food Science, 1992, 57, 1161-1163.                                                                                                                                           | 3.1        | 38             |
| 84 | Assessment of protein fractions of three cultivars of Pisum sativum L.: effect of germination.<br>European Food Research and Technology, 2008, 226, 1465-1478.                                                              | 3.3        | 38             |
| 85 | Semolina supplementation with processed lupin and pigeon pea flours improve protein quality of pasta. LWT - Food Science and Technology, 2010, 43, 617-622.                                                                 | 5.2        | 38             |
| 86 | Determination, by NMR spectroscopy, of the structure of ciceritol, a pseudotrisaccharide isolated from lentils. Journal of Agricultural and Food Chemistry, 1993, 41, 870-872.                                              | 5.2        | 37             |
| 87 | Nutritional Evaluation of Pea (Pisum sativumL.) Protein Diets after Mild Hydrothermal Treatment and without Added Phytase. Journal of Agricultural and Food Chemistry, 2003, 51, 2415-2420.                                 | 5.2        | 37             |
| 88 | An Assessment of Variation for Nutritional and Non-nutritional Carbohydrates in Lentil Seeds (Lens) Tj ETQq0 0 C                                                                                                            | ) rgBT /Ov | erlgçk 10 Tf 5 |
| 89 | Biological Activity of α-Galactoside Preparations from Lupinus angustifolius L. and Pisum sativum L.<br>Seeds. Journal of Agricultural and Food Chemistry, 2002, 50, 384-389.                                               | 5.2        | 36             |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Changes in chemical composition of lupin seeds (Lupinus angustifolius) after selective α-galactoside extraction. Journal of the Science of Food and Agriculture, 2005, 85, 2468-2474.                                                              | 3.5 | 35        |
| 92  | Bioactive Compounds, Myrosinase Activity, and Antioxidant Capacity of White Cabbages Grown in Different Locations of Spain. Journal of Agricultural and Food Chemistry, 2011, 59, 3772-3779.                                                       | 5.2 | 35        |
| 93  | Evaluation of bioprocesses to improve the antioxidant properties of chickpeas. LWT - Food Science and Technology, 2009, 42, 885-892.                                                                                                               | 5.2 | 34        |
| 94  | Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains. Polish Journal of Food and Nutrition Sciences, 2018, 68, 289-297.                                                     | 1.7 | 34        |
| 95  | Evolution and kinetics of monosaccharides, disaccharides and ?-galactosides during germination of lentils. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 35-39.                                                             | 0.6 | 33        |
| 96  | A Multistrategic Approach in the Development of Sourdough Bread Targeted Towards Blood Pressure<br>Reduction. Plant Foods for Human Nutrition, 2015, 70, 97-103.                                                                                   | 3.2 | 32        |
| 97  | pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chemistry, 2018, 248, 262-271.                                                    | 8.2 | 31        |
| 98  | The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. Journal of Functional Foods, 2019, 55, 229-237.                                                                      | 3.4 | 31        |
| 99  | Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant<br>Foods for Human Nutrition, 2015, 70, 401-407.                                                                                           | 3.2 | 30        |
| 100 | Wheat and Oat Brans as Sources of Polyphenol Compounds for Development of Antioxidant<br>Nutraceutical Ingredients. Foods, 2021, 10, 115.                                                                                                          | 4.3 | 30        |
| 101 | Extruded Flaxseed Meal Enhances the Nutritional Quality of Cereal-based Products. Plant Foods for<br>Human Nutrition, 2013, 68, 131-136.                                                                                                           | 3.2 | 29        |
| 102 | Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chemistry, 2018, 257, 341-349.                                                                       | 8.2 | 29        |
| 103 | Nutritional evaluation of lentil flours obtained after short-time soaking processes. European Food<br>Research and Technology, 2002, 215, 138-144.                                                                                                 | 3.3 | 28        |
| 104 | Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile<br>glucosinolate hydrolysis compounds of sauerkrauts. LWT - Food Science and Technology, 2012, 48,<br>16-23.                                            | 5.2 | 28        |
| 105 | Biogenic amines and HL60 citotoxicity of alfalfa and fenugreek sprouts. Food Chemistry, 2007, 105, 959-967.                                                                                                                                        | 8.2 | 25        |
| 106 | Influence of Germination with Different Selenium Solutions on Nutritional Value and Cytotoxicity of<br>Lupin Seeds. Journal of Agricultural and Food Chemistry, 2009, 57, 1319-1325.                                                               | 5.2 | 25        |
| 107 | Optimizing germination conditions to enhance the accumulation of bioactive compounds and the<br>antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT -<br>Food Science and Technology, 2017, 76, 245-252. | 5.2 | 25        |
| 108 | Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants, 2020, 9, 984.                                                            | 5.1 | 25        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-Inflammatory Properties of Wheat. Antioxidants, 2020, 9, 426.                                                                                    | 5.1 | 25        |
| 110 | Assessment on Proximate Composition, Dietary Fiber, Phytic Acid and Protein Hydrolysis of Germinated Ecuatorian Brown Rice. Plant Foods for Human Nutrition, 2014, 69, 261-267.                                                                 | 3.2 | 24        |
| 111 | Sauerkraut. , 2017, , 557-576.                                                                                                                                                                                                                  |     | 24        |
| 112 | 2â€Furoylmethyl amino acids, hydroxymethylfurfural, carbohydrates and β arotene as quality markers of dehydrated carrots. Journal of the Science of Food and Agriculture, 2009, 89, 267-273.                                                    | 3.5 | 23        |
| 113 | Efficacy of combinations of high pressure treatment, temperature and antimicrobial compounds to improve the microbiological quality of alfalfa seeds for sprout production. Food Control, 2009, 20, 31-39.                                      | 5.5 | 23        |
| 114 | Bioactive Peptides in Fermented Foods. , 2017, , 23-47.                                                                                                                                                                                         |     | 23        |
| 115 | Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. Frontiers in Plant Science, 2021, 12, 790898.                                                              | 3.6 | 23        |
| 116 | Influence of Processing on Trypsin Inhibitor Activity of Faba Beans and Its Physiological Effect.<br>Journal of Agricultural and Food Chemistry, 1997, 45, 3559-3564.                                                                           | 5.2 | 22        |
| 117 | Stability of Thiamine and Vitamins E and A during Storage of Enteral Feeding Formula. Journal of Agricultural and Food Chemistry, 2001, 49, 2313-2317.                                                                                          | 5.2 | 22        |
| 118 | The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chemistry, 2006, 99, 516-520.                                                                      | 8.2 | 22        |
| 119 | Effect of fermentation conditions on the antioxidant compounds and antioxidant capacity of Lupinus angustifolius cv. zapaton. European Food Research and Technology, 2008, 227, 979-988.                                                        | 3.3 | 22        |
| 120 | A Novel Strategy to Produce a Soluble and Bioactive Wheat Bran Ingredient Rich in Ferulic Acid.<br>Antioxidants, 2021, 10, 969.                                                                                                                 | 5.1 | 22        |
| 121 | Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat<br>Flour. Foods, 2021, 10, 139.                                                                                                                 | 4.3 | 21        |
| 122 | Nutritional Value. , 2007, , 47-93.                                                                                                                                                                                                             |     | 21        |
| 123 | Natural fermentation of lentils. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1995, 201, 587-591.                                                                                                                                  | 0.6 | 20        |
| 124 | Application of Autoclave Treatment for Development of a Natural Wheat Bran Antioxidant Ingredient.<br>Foods, 2020, 9, 781.                                                                                                                      | 4.3 | 20        |
| 125 | Evolution of soluble carbohydrates during the development of pea, faba bean and lupin seeds.<br>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 203, 27-32.                                                                     | 0.6 | 19        |
| 126 | Improved method for the analysis of α-galactosides in pea seeds by capillary zone electrophoresis comparison with high-performance liquid chromatography-triple-pulsed amperometric detection. Journal of Chromatography A, 1996, 719, 213-219. | 3.7 | 18        |

| #   | Article                                                                                                                                                                                                                                           | IF              | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| 127 | Ca and P bioavailability of processed lentils as affected by dietary fiber and phytic acid content.<br>Nutrition Research, 1999, 19, 49-64.                                                                                                       | 2.9             | 18             |
| 128 | Kinetics of soluble carbohydrates by action of endo/exo α-galactosidase enzyme in lentils and peas.<br>European Food Research and Technology, 2003, 216, 199-203.                                                                                 | 3.3             | 18             |
| 129 | Improved Method To Obtain Pure $\hat{l}\pm$ -Galactosides from Lupin Seeds. Journal of Agricultural and Food Chemistry, 2004, 52, 6920-6922.                                                                                                      | 5.2             | 18             |
| 130 | Effect of storage on the content of indole-glucosinolate breakdown products and vitamin C of sauerkrauts treated by high hydrostatic pressure. LWT - Food Science and Technology, 2013, 53, 285-289.                                              | 5.2             | 18             |
| 131 | Effect of Light on Carbohydrates and Hydrosoluble Vitamins of Lentils during Soaking. Journal of<br>Food Protection, 1995, 58, 692-695.                                                                                                           | 1.7             | 17             |
| 132 | Natural fermentation of lentils. Functional properties and potential in breadmaking of fermented<br>lentil flour. Molecular Nutrition and Food Research, 1999, 43, 396-401.                                                                       | 0.0             | 17             |
| 133 | Effect of natural and controlled fermentation on flatus-producing compounds of beans (Phaseolus) Tj ETQq1 1                                                                                                                                       | 0.784314<br>3.5 | rgBT /Overloci |
| 134 | Changes in Nutritional Value and Cytotoxicity of Garden Cress Germinated with Different Selenium<br>Solutions. Journal of Agricultural and Food Chemistry, 2010, 58, 2331-2336.                                                                   | 5.2             | 17             |
| 135 | Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by<br>Savinase to improve metabolic health-promoting properties of lentil. Journal of Functional Foods,<br>2018, 48, 9-18.                           | 3.4             | 17             |
| 136 | Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained<br>from hulled and dehulled oat varieties as affected by germination conditions. LWT - Food Science and<br>Technology, 2020, 134, 109955. | 5.2             | 17             |
| 137 | Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and<br>Bioactivity of Resistant Peptides. Frontiers in Plant Science, 2021, 12, 754287.                                                              | 3.6             | 17             |
| 138 | Nutritional Evaluation of Ethanol-Extracted Lentil Flours. Journal of Agricultural and Food<br>Chemistry, 2001, 49, 1854-1860.                                                                                                                    | 5.2             | 16             |
| 139 | Fermented Pulses in Nutrition and Health Promotion. , 2017, , 385-416.                                                                                                                                                                            |                 | 16             |
| 140 | Pasta products enriched with moringa sprout powder as nutritive dense foods with bioactive potential. Food Chemistry, 2021, 360, 130032.                                                                                                          | 8.2             | 16             |
| 141 | Improvement in food intake and nutritive utilization of protein from Lupinus albus var. multolupa protein isolates supplemented with ascorbic acid. Food Chemistry, 2007, 103, 944-951.                                                           | 8.2             | 15             |
| 142 | Changes in vitamin content of powder enteral formulas as a consequence of storage. Food Chemistry, 2009, 115, 1411-1416.                                                                                                                          | 8.2             | 15             |
| 143 | Fermented soyabean products as hypoallergenic food. Proceedings of the Nutrition Society, 2008, 67, .                                                                                                                                             | 1.0             | 12             |
| 144 | Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different<br>Nitrogen Treatments Combined with Selenium. Polish Journal of Food and Nutrition Sciences, 2018, 68,<br>179-186.                              | 1.7             | 12             |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Effect of flour extraction rate and baking process on vitamin B1 and B2 contents and antioxidant activity of ginger-based products. European Food Research and Technology, 2009, 230, 119-124.                                                                                 | 3.3 | 11        |
| 146 | Evaluation of refrigerated storage in nitrogen-enriched atmospheres on the microbial quality,<br>content of bioactive compounds and antioxidant activity of sauerkrauts. LWT - Food Science and<br>Technology, 2015, 61, 463-470.                                              | 5.2 | 11        |
| 147 | Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa (Moringa oleifera L.). Foods, 2020, 9, 1639.                                                                                                                    | 4.3 | 11        |
| 148 | Genetic analysis of the raffinose oligosaccharide pathway in lentil seeds. Journal of Experimental<br>Botany, 1999, 50, 469-476.                                                                                                                                               | 4.8 | 11        |
| 149 | A Rapid HPLC Method for the Determination of Raffinose Family of Oligosaccharides in Pea Seeds.<br>Journal of Liquid Chromatography and Related Technologies, 1996, 19, 135-147.                                                                                               | 1.0 | 10        |
| 150 | Pilot-scale produced fermented lentil protects against t-BHP-triggered oxidative stress by activation of Nrf2 dependent on SAPK/JNK phosphorylation. Food Chemistry, 2019, 274, 750-759.                                                                                       | 8.2 | 10        |
| 151 | Development of Antioxidant and Nutritious Lentil (Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods, 2021, 10, 2924.                                                                                                                         | 4.3 | 10        |
| 152 | Processing peas for producing macaroni. European Food Research and Technology, 1997, 204, 66-71.                                                                                                                                                                               | 0.6 | 9         |
| 153 | Inositol phosphate content and trypsin inhibitor activity in ready-to-eat cruciferous sprouts. Food<br>Chemistry, 2005, 93, 331-336.                                                                                                                                           | 8.2 | 9         |
| 154 | Effect of treatment with α-galactosidase, tannase or a cell-wall-degrading enzyme complex on the<br>nutritive utilisation of protein and carbohydrates from pea (Pisum sativum L.) flour. Journal of the<br>Science of Food and Agriculture, 2007, 87, 1356-1363.              | 3.5 | 9         |
| 155 | Fermented Phaseolus vulgaris: acceptability and intestinal effects. European Food Research and Technology, 2005, 220, 182-186.                                                                                                                                                 | 3.3 | 8         |
| 156 | Influence of Lupin (Lupinus luteusL. cv. 4492 andLupinus angustifoliusL. var.zapaton) and Fenugreek<br>(Trigonella foenum-graecumL.) Germination on Microbial Population and Biogenic Amines. Journal of<br>Agricultural and Food Chemistry, 2006, 54, 7391-7398.              | 5.2 | 8         |
| 157 | Total Chemically Available (Free and Intrachain) Lysine and Furosine in Pea, Bean, and Lentil Sprouts.<br>Journal of Agricultural and Food Chemistry, 2007, 55, 10275-10280.                                                                                                   | 5.2 | 8         |
| 158 | Protein Quality of Traditional Rye Breads and Ginger Cakes as Affected by the Incorporation of Flour with Different Extraction Rates. Polish Journal of Food and Nutrition Sciences, 2013, 63, 5-10.                                                                           | 1.7 | 8         |
| 159 | Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods, 2022, 11, 1957.                                                                                                        | 4.3 | 8         |
| 160 | A Novel Sprouted Oat Fermented Beverage: Evaluation of Safety and Health Benefits for Celiac<br>Individuals. Nutrients, 2021, 13, 2522.                                                                                                                                        | 4.1 | 7         |
| 161 | Synthesis of [77Se]-methylselenocysteine when preparing sauerkraut in the presence of [77Se]-selenite.<br>Metabolic transformation of [77Se]-methylselenocysteine in Wistar rats determined by<br>LC–IDA–ICP–MS. Analytical and Bioanalytical Chemistry, 2014, 406, 7949-7958. | 3.7 | 6         |
| 162 | A comparative study on the phenolic bioaccessibility, antioxidant and inhibitory effects on<br>carbohydrate-digesting enzymes of maca and mashua powders. LWT - Food Science and Technology,<br>2020, 131, 109798.                                                             | 5.2 | 6         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Inositol Phosphate Profiling of Fermented Cowpeas by1H NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2005, 53, 4714-4721.                                                           | 5.2 | 5         |
| 164 | Proximate Composition of "Mocan" (Visnea mocanera L.f.): A Fruit Consumed by Canary Natives. Journal of Food Composition and Analysis, 1994, 7, 203-207.                                            | 3.9 | 4         |
| 165 | Effect of phytic acid degradation by soaking and exogenous phytase on the bioavailability of<br>magnesium and zinc from Pisum sativum, L European Food Research and Technology, 2007, 226, 105-111. | 3.3 | 4         |
| 166 | Electrochemical Determination of Ascorbigen in Sauerkrauts. Food Analytical Methods, 2012, 5, 487-494.                                                                                              | 2.6 | 4         |
| 167 | Consumption of Sprouts and Perceptions of Their Health Properties in a Region of Northwestern<br>Mexico. Foods, 2021, 10, 3098.                                                                     | 4.3 | 4         |
| 168 | Impact of storage under ambient conditions on the vitamin content of dehydrated vegetables. Food<br>Science and Technology International, 2013, 19, 133-141.                                        | 2.2 | 2         |
| 169 | CHAPTER 17. The Assay of Thiamine in Food. Food and Nutritional Components in Focus, 2012, , 252-270.                                                                                               | 0.1 | 2         |
| 170 | Manufacture of healthy snack bars supplemented with moringa sprout powder. LWT - Food Science and Technology, 2022, 154, 112828.                                                                    | 5.2 | 2         |