Geetanjali Chawla Ph D

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350251/publications.pdf Version: 2024-02-01

<u>CEETANIALI CHAMIA PH D</u>

#	Article	IF	CITATIONS
1	Evaluation of lifespan promoting effects of biofortified wheat in Drosophila melanogaster. Experimental Gerontology, 2022, 160, 111697.	2.8	5
2	miR-125-chinmo pathway regulates dietary restriction-dependent enhancement of lifespan in Drosophila. ELife, 2021, 10, .	6.0	13
3	From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Molecular Aspects of Medicine, 2021, 81, 101003.	6.4	13
4	Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metabolism, 2021, 33, 2142-2173.	16.2	27
5	<i>let-7-Complex</i> MicroRNAs Regulate Broad-Z3, Which Together with Chinmo Maintains Adult Lineage Neurons in an Immature State. G3: Genes, Genomes, Genetics, 2020, 10, 1393-1401.	1.8	6
6	Drosophila TRIM32 cooperates with glycolytic enzymes to promote cell growth. ELife, 2020, 9, .	6.0	24
7	Molecular Approaches for Analysis of Drosophila MicroRNAs. Springer Protocols, 2020, , 169-188.	0.3	0
8	Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during <i>Drosophila melanogaster</i> larval development. Development (Cambridge), 2019, 146, .	2.5	28
9	Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. ELife, 2019, 8, .	6.0	92
10	Healthy Aging Research in India. , 2019, 2, .		0
11	<i>Drosophila</i> larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1353-1358.	7.1	64
12	A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila. PLoS Genetics, 2016, 12, e1006247.	3.5	58
13	Analysis of MicroRNA Function in Drosophila. Methods in Molecular Biology, 2016, 1478, 79-94.	0.9	9
14	Drosha-independent DGCR8/Pasha pathway regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1421-1426.	7.1	38
15	ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids Research, 2014, 42, 5245-5255.	14.5	34
16	MicroRNAs as Components of Systemic Signaling Pathways in Drosophila melanogaster. Current Topics in Developmental Biology, 2013, 105, 97-123.	2.2	24
17	Hormonal activation of <i>let-7-C</i> microRNAs via EcR is required for adult <i>Drosophila melanogaster</i> morphology and function. Development (Cambridge), 2012, 139, 1788-1797.	2.5	80
18	PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nature Neuroscience, 2012, 15, 381-388.	14.8	212

#	Article	IF	CITATIONS
19	MicroRNA Pathways in Drosophila. , 2012, , 611-627.		Ο
20	MicroRNAs in Drosophila Development. International Review of Cell and Molecular Biology, 2011, 286, 1-65.	3.2	44
21	Regulation of the Mutually Exclusive Exons 8a and 8 in the CaV1.2 Calcium Channel Transcript by Polypyrimidine Tract-binding Protein. Journal of Biological Chemistry, 2011, 286, 10007-10016.	3.4	64
22	Sam68 Regulates a Set of Alternatively Spliced Exons during Neurogenesis. Molecular and Cellular Biology, 2009, 29, 201-213.	2.3	105
23	MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes and Development, 2007, 21, 71-84.	5.9	280
24	A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes and Development, 2007, 21, 1636-1652.	5.9	464
25	Dependence of pre-mRNA introns on PRP17, a non-essential splicing factor: implications for efficient progression through cell cycle transitions. Nucleic Acids Research, 2003, 31, 2333-2343.	14.5	20
26	The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function. Rna, 2000, 6, 1289-1305.	3.5	9
27	Molecular Dissection of a Conserved Cluster of miRNAs Identifies Critical Structural Determinants That Mediate Differential Processing, Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2