Laurel L Schafer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350190/publications.pdf

Version: 2024-02-01

66343 91884 5,888 143 42 69 citations h-index g-index papers 175 175 175 3167 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	21.2	277
2	Chiral Neutral Zirconium Amidate Complexes for the Asymmetric Hydroamination of Alkenes. Angewandte Chemie - International Edition, 2006, 46, 354-358.	13.8	264
3	Intramolecular Hydroamination of Unactived Olefins with Ti(NMe2)4as a Precatalyst. Organic Letters, 2005, 7, 1959-1962.	4.6	195
4	Selective $C\hat{a}$ Activation $\hat{l}\pm$ to Primary Amines. Bridging Metallaaziridines for Catalytic, Intramolecular $\hat{l}\pm$ -Alkylation. Journal of the American Chemical Society, 2009, 131, 2116-2118.	13.7	172
5	Scandium-Catalyzed Intramolecular Hydroamination. Development of a Highly Active Cationic Catalyst. Organometallics, 2004, 23, 2234-2237.	2.3	165
6	Broadening the Scope of Group 4 Hydroamination Catalysis Using a Tethered Ureate Ligand. Journal of the American Chemical Society, 2009, 131, 18246-18247.	13.7	156
7	Tantalum–Amidate Complexes for the Hydroaminoalkylation of Secondary Amines: Enhanced Substrate Scope and Enantioselective Chiral Amine Synthesis. Angewandte Chemie - International Edition, 2009, 48, 8361-8365.	13.8	152
8	Anti-Markovnikov Intermolecular Hydroamination:  A Bis(amidate) Titanium Precatalyst for the Preparation of Reactive Aldimines. Organic Letters, 2003, 5, 4733-4736.	4.6	147
9	A Pentagonal Pyramidal Zirconium Imido Complex for Catalytic Hydroamination of Unactivated Alkenes. Organometallics, 2006, 25, 4069-4071.	2.3	147
10	Amidate complexes of titanium and zirconium: a new class of tunable precatalysts for the hydroamination of alkynesElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b304176j/. Chemical Communications, 2003, , 2462.	4.1	126
11	Titanium catalysis for the synthesis of fine chemicals – development and trends. Chemical Society Reviews, 2020, 49, 6947-6994.	38.1	115
12	Hydroaminoalkylation: Early-Transition-Metal-Catalyzed $\hat{l}\pm$ -Alkylation of Amines. Synthesis, 2014, 46, 2884-2896.	2.3	107
13	An Easy-To-Use, Regioselective, and Robust Bis(amidate) Titanium Hydroamination Precatalyst: Mechanistic and Synthetic Investigations toward the Preparation of Tetrahydroisoquinolines and Benzoquinolizine Alkaloids. Chemistry - A European Journal, 2007, 13, 2012-2022.	3.3	106
14	<i>N</i> , <i>O</i> -Chelating Four-Membered Metallacyclic Titanium(IV) Complexes for Atom-Economic Catalytic Reactions. Accounts of Chemical Research, 2015, 48, 2576-2586.	15.6	106
15	Phosphoramidate Tantalum Complexes for Roomâ€Temperature CH Functionalization: Hydroaminoalkylation Catalysis. Angewandte Chemie - International Edition, 2013, 52, 9144-9148.	13.8	96
16	Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. Molecular Plant, 2020, 13, 144-156.	8.3	88
17	Early transition metal-catalyzed Câ \in "H alkylation: hydroaminoalkylation for C _{sp3} â \in "C _{sp3} bond formation in the synthesis of selectively substituted amines. Chemical Communications, 2018, 54, 12543-12560.	4.1	87
18	Mechanistic Elucidation of Intramolecular Aminoalkene Hydroamination Catalyzed by a Tethered Bis(ureate) Complex: Evidence for Proton-Assisted Câ€"N Bond Formation at Zirconium. Journal of the American Chemical Society, 2011, 133, 15453-15463.	13.7	84

#	Article	IF	CITATIONS
19	Efficient Antiâ€Markovnikovâ€Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014, 2014, 6825-6840.	2.4	84
20	Catalytic Asymmetric Synthesis of Substituted Morpholines and Piperazines. Angewandte Chemie - International Edition, 2012, 51, 12219-12223.	13.8	76
21	Bis- and Mono(amidate) Complexes of Yttrium: Synthesis, Characterization, and Use as Precatalysts for the Hydroamination of Aminoalkenes. Organometallics, 2009, 28, 3990-3998.	2.3	74
22	Bis(amidate)bis(amido) Titanium Complex: A Regioselective Intermolecular Alkyne Hydroamination Catalyst. Journal of Organic Chemistry, 2014, 79, 2015-2028.	3.2	70
23	Tantalum Catalyzed Hydroaminoalkylation for the Synthesis of \hat{l} ±- and \hat{l} 2-Substituted <i>N</i> +Heterocycles. Organic Letters, 2013, 15, 2182-2185.	4.6	67
24	Catalytic synthesis of amines and N-containing heterocycles: Amidate complexes for selective C–N and C–C bond-forming reactions. Pure and Applied Chemistry, 2010, 82, 1503-1515.	1.9	65
25	2-Pyridonate Tantalum Complexes for the Intermolecular Hydroaminoalkylation of Sterically Demanding Alkenes. Journal of the American Chemical Society, 2014, 136, 10898-10901.	13.7	65
26	Bis(amidate) titanium precatalyst for the intermolecular hydroamination of allenes. Inorganica Chimica Acta, 2006, 359, 3097-3102.	2.4	64
27	Capturing HBCy ₂ : Using N,Oâ€Chelated Complexes of Rhodium(I) and Iridium(I) for Chemoselective Hydroboration. Angewandte Chemie - International Edition, 2016, 55, 3181-3186.	13.8	63
28	Efficient Diastereoselective Syntheses of Chiral Macrocycles via Zirconocene Coupling. Synthetic Control of Size and Geometry. Journal of the American Chemical Society, 2001, 123, 2683-2684.	13.7	60
29	Isolation of Catalytic Intermediates in Hydroamination Reactions: Insertion of Internal Alkynes into a Zirconium–Amido Bond. Angewandte Chemie - International Edition, 2010, 49, 6382-6386.	13.8	60
30	Diamido-Ether Actinide Complexes as Catalysts for the Intramolecular Hydroamination of Aminoalkenes. Organometallics, 2012, 31, 6732-6740.	2.3	60
31	Titanium pyridonates and amidates: novel catalysts for the synthesis of random copolymers. Chemical Communications, 2013, 49, 57-59.	4.1	59
32	Enhanced Reactivity Results in Reduced Catalytic Performance:  Unexpected Ligand Reactivity of a Bis(<i>N</i> -2,6-diisopropylphenylperflourophenyl-amidate)titanium-bis(diethylamido) Hydroamination Precatalyst. Organometallics, 2007, 26, 6366-6372.	2.3	57
33	2-Pyridonate Titanium Complexes for Chemoselectivity. Accessing Intramolecular Hydroaminoalkylation over Hydroamination. Organic Letters, 2013, 15, 6002-6005.	4.6	56
34	Rare-Earth Amidate Complexes. Easily Accessed Initiators For Îμ-Caprolactone Ring-Opening Polymerization. Inorganic Chemistry, 2008, 47, 8062-8068.	4.0	55
35	Thermorheological properties of poly (εâ€caprolactone)/polylactide blends. Polymer Engineering and Science, 2012, 52, 2348-2359.	3.1	55
36	Structure, Bonding, and Reactivity of Ti and Zr Amidate Complexes:  DFT and X-Ray Crystallographic Studies. Inorganic Chemistry, 2005, 44, 8680-8689.	4.0	53

#	Article	IF	CITATIONS
37	Modular N , O â€Chelating Ligands: Groupâ€4 Amidate Complexes for Catalytic Hydroamination. European Journal of Inorganic Chemistry, 2007, 2007, 2245-2255.	2.0	53
38	Zirconium bis(pyridonate): a modified amidate complex for enhanced substrate scope in aminoalkene cyclohydroamination. Dalton Transactions, 2010, 39, 361-363.	3.3	53
39	Zirconium catalyzed alkyne dimerization for selective Z-enyne synthesis. Chemical Communications, 2012, 48, 10609.	4.1	53
40	Zirconocene-Mediated, High-Yielding Macrocyclizations of Silyl-Terminated Diynes. Chemistry - A European Journal, 2002, 8, 74-83.	3.3	49
41	2-Aminopyridinate Titanium Complexes for the Catalytic Hydroamination of Primary Aminoalkenes. Organometallics, 2013, 32, 1858-1865.	2.3	46
42	Group 4 Bis(pyrimidinoxide) Complexes. Investigations of Electronic Effects in Catalytic Hydroamination. Organometallics, 2006, 25, 5249-5254.	2.3	45
43	1,3-N,O-Complexes of late transition metals. Ligands with flexible bonding modes and reaction profiles. Chemical Society Reviews, 2017, 46, 2913-2940.	38.1	44
44	Viscoelastic behaviour and flow instabilities of biodegradable poly ($\hat{l}\mu$ -caprolactone) polyesters. Rheologica Acta, 2012, 51, 179-192.	2.4	43
45	TaMe ₃ Cl ₂ â€Catalyzed Intermolecular Hydroaminoalkylation: A Simple Complex for Enhanced Reactivity and Expanded Substrate Scope. Chemistry - A European Journal, 2013, 19, 8751-8754.	3.3	42
46	Amidate ligand design effects in zirconium-catalyzed enantioselective hydroamination of aminoalkenes. Journal of Organometallic Chemistry, 2011, 696, 50-60.	1.8	40
47	An Editorial About Elemental Analysis. Organometallics, 2016, 35, 3255-3256.	2.3	40
48	Amidate Complexes of Tantalum and Niobium for the Hydroaminoalkylation of Unactivated Alkenes. ACS Catalysis, 2017, 7, 5921-5931.	11.2	40
49	Understanding Ni(II)-Mediated C(sp ³)–H Activation: Tertiary Ureas as Model Substrates. Journal of the American Chemical Society, 2018, 140, 12602-12610.	13.7	40
50	Catalytic and Atomâ€Economic Câ^'C Bond Formation: Alkyl Tantalum Ureates for Hydroaminoalkylation. Angewandte Chemie - International Edition, 2018, 57, 3469-3472.	13.8	38
51	$\langle i \rangle N \langle i \rangle$ -Silylenamines as Reactive Intermediates: Hydroamination for the Modular Synthesis of Selectively Substituted Pyridines. Organic Letters, 2018, 20, 6663-6667.	4.6	38
52	Tantallaaziridines: from synthesis to catalytic applications. Dalton Transactions, 2012, 41, 11539.	3.3	37
53	Titanium pyridonates for the homo- and copolymerization of rac-lactide and Îμ-caprolactone. Dalton Transactions, 2015, 44, 12411-12419.	3.3	36
54	Ligand Effects and Kinetic Investigations of Sterically Accessible 2-Pyridonate Tantalum Complexes for Hydroaminoalkylation. ACS Catalysis, 2017, 7, 6323-6330.	11.2	36

#	Article	IF	CITATIONS
55	Regio- and Stereoselective Hydroamination of Alkynes Using an Ammonia Surrogate: Synthesis of $\langle i\rangle N\langle ji\rangle$ -Silylenamines as Reactive Synthons. Journal of the American Chemical Society, 2018, 140, 4973-4976.	13.7	36
56	Zirconium Hydroaminoalkylation. An Alternative Disconnection for the Catalytic Synthesis of α-Arylated Primary Amines. Journal of the American Chemical Society, 2019, 141, 18944-18948.	13.7	36
57	Oxidation State Dependent Coordination Modes: Accessing an Amidateâ€Supported Nickel(I) δâ€bis(Câ^'H) Agostic Complex. Angewandte Chemie - International Edition, 2016, 55, 13290-13295.	13.8	34
58	Yttrium (amidate) complexes for catalytic C–N bond formation. Rapid, room temperature amidation of aldehydes. Dalton Transactions, 2012, 41, 7897.	3.3	32
59	Planarâ€Chiral [2.2]Paracyclophaneâ€Based Amides as Proligands for Titanium―and Zirconium atalyzed Hydroamination. European Journal of Organic Chemistry, 2017, 2017, 1760-1764.	2.4	32
60	<i>In Situ</i> Generation of a Regio- and Diastereoselective Hydroaminoalkylation Catalyst Using Commercially Available Starting Materials. Organic Letters, 2017, 19, 5720-5723.	4.6	32
61	Intermolecular hydroamination of oxygen-substituted allenes. New routes for the synthesis of N,O-chelated zirconium and titanium amido complexes. Dalton Transactions, 2011, 40, 7769.	3.3	31
62	Toward anti-Markovnikov 1-Alkyne O-Phosphoramidation: Exploiting Metal–Ligand Cooperativity in a 1,3-N,O-Chelated Cp*Ir(III) Complex. Journal of the American Chemical Society, 2016, 138, 8396-8399.	13.7	31
63	Zirconium-Catalyzed Hydroaminoalkylation of Alkynes for the Synthesis of Allylic Amines. Journal of the American Chemical Society, 2020, 142, 20566-20571.	13.7	31
64	N,Oâ€Chelates of Group 4 Metals: Contrasting the Use of Amidates and Ureates in the Synthesis of Metal Dichlorides. European Journal of Inorganic Chemistry, 2009, 2009, 2691-2701.	2.0	30
65	Disproportionation Reactions of an Organometallic Ni(I) Amidate Complex: Scope and Mechanistic Investigations. Organometallics, 2018, 37, 1392-1399.	2.3	30
66	Synthesis, Structure, and Insertion Reactivity of Zirconium and Hafnium Amidate Benzyl Complexes. Organometallics, 2010, 29, 3546-3555.	2.3	28
67	Cyclic Ureate Tantalum Catalyst for Preferential Hydroaminoalkylation with Aliphatic Amines: Mechanistic Insights into Substrate Controlled Reactivity. Journal of the American Chemical Society, 2020, 142, 15740-15750.	13.7	28
68	Catalytic Asymmetric Synthesis of Morpholines. Using Mechanistic Insights To Realize the Enantioselective Synthesis of Piperazines. Journal of Organic Chemistry, 2016, 81, 8696-8709.	3.2	27
69	Hydroaminoalkylation for the Catalytic Addition of Amines to Alkenes or Alkynes: Diverse Mechanisms Enable Diverse Substrate Scope. Journal of the American Chemical Society, 2022, 144, 11459-11481.	13.7	27
70	Intramolecular hydroamination catalysis using trans-N,N′-dibenzylcyclam zirconium complexes. Journal of Organometallic Chemistry, 2011, 696, 2-6.	1.8	26
71	Synthesis, structure, and reactivity of tris(amidate) mono(amido) and tetrakis(amidate) complexes of group 4 transition metals. Dalton Transactions, 2013, 42, 15670.	3.3	26
72	Easily assembled, modular N,O-chelating ligands for Ta(V) complexation: a comparative study of ligand effects in hydroaminoalkylation with N-methylaniline and 4-methoxy-N-methylaniline. Tetrahedron, 2013, 69, 5737-5743.	1.9	26

#	Article	IF	CITATIONS
73	Reactivity of an Unsaturated Iridium(III) Phosphoramidate Complex, [Cp*Ir{îº ² - <i>N</i> , <i>O</i> }][BAr ^F ₄]. Organometallics, 2015, 34, 3849-3856.	2.3	26
74	Direct, Catalytic \hat{l} ±-Alkylation of <i>N</i> -Heterocycles by Hydroaminoalkylation: Substrate Effects for Regiodivergent Product Formation. Journal of the American Chemical Society, 2021, 143, 11243-11250.	13.7	26
75	Zirconium Alkyl Complexes Supported by Ureate Ligands: Synthesis, Characterization, and Precursors to Metalâ^'Element Multiple Bonds. Organometallics, 2010, 29, 5162-5172.	2.3	25
76	Ta-Catalyzed Hydroaminoalkylation of Alkenes: Insights into Ligand-Modified Reactivity Using DFT. Organometallics, 2018, 37, 4387-4394.	2.3	24
77	Earth abundant element compounds in homogeneous catalysis. Dalton Transactions, 2015, 44, 12027-12028.	3.3	23
78	Facile Synthesis and Isolation of Secondary Amines <i>via</i> a Sequential Titanium(IV) atalyzed Hydrogenation. Advanced Synthesis and Catalysis, 2016, 358, 713-718.	4.3	23
79	Phosphoramidateâ€6upported Cp*Ir ^{III} Aminoborane H ₂ B=NR ₂ Complexes: Synthesis, Structure, and Solution Dynamics. Chemistry - A European Journal, 2016, 22, 6793-6797.	3.3	22
80	Catalytic Synthesis of Secondary Amine-Containing Polymers: Variable Hydrogen Bonding for Tunable Rheological Properties. Macromolecules, 2016, 49, 4423-4430.	4.8	22
81	Highly Active and Diastereoselective <i>N,O</i> ―and <i>N,N</i> ‥ttrium Complexes for Intramolecular Hydroamination. Advanced Synthesis and Catalysis, 2011, 353, 1384-1390.	4.3	20
82	A Process for Developing Introductory Science Laboratory Learning Goals To Enhance Student Learning and Instructional Alignment. Journal of Chemical Education, 2013, 90, 1144-1150.	2.3	20
83	Oxygenextrusion from amidate ligands to generate terminal Taî€O units under reducing conditions. How to successfully use amidate ligands in dinitrogen coordination chemistry. Dalton Transactions, 2012, 41, 1609-1616.	3.3	19
84	Exploiting Natural Complexity: Synthetic Terpenoidâ€Alkaloids by Regioselective and Diastereoselective Hydroaminoalkylation Catalysis. ChemCatChem, 2019, 11, 3871-3876.	3.7	19
85	Synthesis, characterization, and reactivity of the first hafnium alkyl complex stabilized by amidate ligands. Canadian Journal of Chemistry, 2005, 83, 1037-1042.	1.1	18
86	Amidate-Ligated Complexes of Rhodium(I): A Showcase of Coordination Flexibility. Organometallics, 2015, 34, 1783-1786.	2.3	18
87	Tethered Bis(amidate) and Bis(ureate) Supported Zirconium Precatalysts for the Intramolecular Hydroamination of Aminoalkenes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 128-135.	1.2	17
88	Planarâ€Chiral [2.2]Paracyclophaneâ€Based Pyridonates as Ligands for Tantalumâ€Catalyzed Hydroaminoalkylation. ChemCatChem, 2019, 11, 5264-5268.	3.7	17
89	Alkene hydroamination with a chiral zirconium catalyst. Connecting ligand design, precatalyst structure and reactivity trends. Inorganica Chimica Acta, 2014, 422, 14-20.	2.4	16
90	Accessing Î-Bâ€"H Coordinated Complexes of Rh(I) and Ir(I) Using Mono- and Dihydroboranes: Cooperative Stabilization by a Phosphoramidate Coligand. Organometallics, 2017, 36, 331-341.	2.3	16

#	Article	IF	Citations
91	Early Transition Metal-Catalyzed Hydroaminoalkylation. Trends in Chemistry, 2021, 3, 428-429.	8.5	16
92	Modular, efficient synthesis of asymmetrically substituted piperazine scaffolds as potent calcium channel blockers. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3257-3261.	2.2	15
93	Fourâ€Membered Heterometallacyclic d ⁰ and d ¹ Complexes of Groupâ€4 Metallocenes with Amidato Ligands. Chemistry - A European Journal, 2014, 20, 7752-7758.	3.3	15
94	Tiâ€Catalyzed Hydroamination for the Synthesis of Amineâ€Containing Ï€â€Conjugated Materials. Chemistry - A European Journal, 2018, 24, 5562-5568.	3.3	15
95	Ureate Titanium Catalysts for Hydroaminoalkylation: Using Ligand Design to Increase Reactivity and Utility. ACS Catalysis, 2021, 11, 4550-4560.	11.2	15
96	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Journal of Organic Chemistry, 2021, 86, 16213-16219.	3.2	15
97	Facile Access to Tuneable Schwartz's Reagents: Oxidative Addition Products from the Reaction of Amide NH Bonds with Reduced Zirconocene Complexes. Angewandte Chemie - International Edition, 2013, 52, 11415-11419.	13.8	14
98	Dynamics of partially miscible polylactide-poly($\hat{l}\mu$ -caprolactone) blends in the presence of cold crystallization. Rheologica Acta, 2016, 55, 657-671.	2.4	14
99	Zirconium Catalyzed Hydroaminoalkylation for the Synthesis of αâ€Arylated Amines and Nâ€Heterocycles. Chemistry - A European Journal, 2021, 27, 6334-6339.	3.3	14
100	Asymmetric hydroamination catalyzed by in situ generated chiral amidate and ureate complexes of zirconium— Probing the role of the tether in ligand design. Canadian Journal of Chemistry, 2011, 89, 1222-1229.	1.1	13
101	Bis(<i>tert</i> -butylimido)bis(<i>N,O</i> -chelate)tungsten(VI) Complexes: Probing Amidate and Pyridonate Hemilability. Inorganic Chemistry, 2017, 56, 5553-5566.	4.0	13
102	Catalytic and Atomâ€Economic Câ^C Bond Formation: Alkyl Tantalum Ureates for Hydroaminoalkylation. Angewandte Chemie, 2018, 130, 3527-3530.	2.0	13
103	Dynamic Cross-Linking of Catalytically Synthesized Poly(Aminonorbornenes). Macromolecules, 2020, 53, 2649-2661.	4.8	13
104	Catalytic Amine Functionalization and Polymerization of Cyclic Alkenes Creates Adhesive and Self-Healing Materials. ACS Applied Polymer Materials, 2021, 3, 2330-2335.	4.4	13
105	Mono, bis, and tris(phosphoramidate) titanium complexes: synthesis, structure, and reactivity investigations. Dalton Transactions, 2019, 48, 9782-9790.	3.3	12
106	Metal–Ligand Cooperativity in Titanium-Catalyzed Anti-Markovnikov Hydroamination. ACS Catalysis, 2020, 10, 7100-7111.	11.2	12
107	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Inorganic Chemistry, 2021, 60, 17419-17425.	4.0	12
108	Isocyanate deinsertion from \hat{l}^2 (sup>1-O amidates: facile access to perfluoroaryl rhodium(<scp>i</scp>) complexes. Dalton Transactions, 2015, 44, 19487-19493.	3.3	11

#	Article	IF	CITATIONS
109	Pyridonate-Supported Titanium(III). Benzylamine as an Easy-To-Use Reductant. Organometallics, 2015, 34, 4941-4945.	2.3	10
110	Vanadium Pyridonate Catalysts: Isolation of Intermediates in the Reductive Coupling of Alcohols. Inorganic Chemistry, 2020, 59, 5256-5260.	4.0	10
111	Capturing HBCy ₂ : Using N,Oâ€Chelated Complexes of Rhodium(I) and Iridium(I) for Chemoselective Hydroboration. Angewandte Chemie, 2016, 128, 3233-3238.	2.0	9
112	Titanium catalyzed synthesis of amines and N-heterocycles. Advances in Organometallic Chemistry, 2020, 74, 405-468.	1.0	9
113	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Organic Letters, 2021, 23, 9013-9019.	4.6	9
114	Phosphoramidate-Assisted Alkyne Activation: Probing the Mechanism of Proton Shuttling in a N,O-Chelated Cp*Ir(III) Complex. Organometallics, 2018, 37, 4630-4638.	2.3	8
115	Reversible C–N Bond Formation in the Zirconium-Catalyzed Intermolecular Hydroamination of 2-Vinylpyridine. Organometallics, 2019, 38, 1011-1016.	2.3	8
116	Mechanistic insight into organic and industrial transformations: general discussion. Faraday Discussions, 2019, 220, 282-316.	3.2	8
117	Oxidation State Dependent Coordination Modes: Accessing an Amidateâ€Supported Nickel(I) δâ€bis(Câ^'H) Agostic Complex. Angewandte Chemie, 2016, 128, 13484-13489.	2.0	7
118	Dehydrogenation of cyclic amines by a coordinatively unsaturated Cp*Ir(iii) phosphoramidate complex. Dalton Transactions, 2017, 46, 8621-8625.	3.3	7
119	Intramolecular Rearrangements on Ultrafast Timescales: Femtosecond Infrared Studies of Ring Slip in (η1-C5Cl5)Mn(CO)5. Journal of the American Chemical Society, 2001, 123, 7425-7426.	13.7	6
120	Titanium amidate complexes as active catalysts for the synthesis of high molecular weight polyethylene. Canadian Journal of Chemistry, 2015, 93, 775-783.	1,1	6
121	Amine-Containing Monomers for Ring-Opening Metathesis Polymerization: Understanding Chelate Effects in Aryl- and Alkylamine-Functionalized Polyolefins. Macromolecules, 0, , .	4.8	6
122	A Sequential C-N, C-C Bond-Forming Reaction: Direct Synthesis of \hat{l}_{\pm} -Amino Acids from Terminal Alkynes. Synlett, 2006, 2006, 2973-2976.	1.8	5
123	The Direct Synthesis of Unsymmetrical Vicinal Diamines from Terminal Alkynes: A Tandem Sequential Approach for the Synthesis of Imidazolidinones. Synthesis, 2009, 2009, 97-104.	2.3	5
124	Direct metal–carbon bonding in symmetric bis(C–H) agostic nickel(<scp>i</scp>) complexes. Chemical Science, 2021, 12, 15298-15307.	7.4	5
125	C(sp3)-H Bond Activation Induced by Monohydroborane Coordination at an Iridium(III)-Phosphoramidate Complex. European Journal of Inorganic Chemistry, 2017, 2017, 2639-2642.	2.0	4
126	Organometallic Complexes of Electrophilic Elements for Selective Synthesis. Organometallics, 2018, 37, 4311-4312.	2.3	4

#	Article	IF	CITATIONS
127	Using Catalysts To Make Catalysts: Titanium-Catalyzed Hydroamination To Access <i>P,N</i> -Ligands for Assembling Catalysts in One Pot. Organic Letters, 2021, 23, 1974-1979.	4.6	4
128	Commodity Polymers to Functional Aminated Materials: Single-Step and Atom-Economic Synthesis by Hydroaminoalkylation. ACS Macro Letters, 2021, 10, 1266-1272.	4.8	4
129	PCB cleanup using an oxygen/fuel-fired mobile incinerator. Environmental Progress, 1994, 13, 188-191.	0.7	3
130	Computational and theoretical approaches for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 464-488.	3.2	3
131	Reversible C–H Activation in Zirconaaziridine Species: Characterization and Bonding of a Bridging (Amino)alkylidene Complex Active in Alkyne Hydroaminoalkylation. Organometallics, 0, , .	2.3	3
132	Guanidinate Early-Transition-Metal Complexes: Efficient and Selective Hydroaminoalkylation of Alkenes. Organometallics, 2022, 41, 1816-1822.	2.3	3
133	Organometallics—A Foundation for Catalysis Research. Organometallics, 2017, 36, 2053-2053.	2.3	2
134	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Organometallics, 0, , .	2.3	2
135	Titanium-Catalyzed Hydroamination of an Organometallic Acetylide to Access Copper Enamides. Organometallics, 2021, 40, 3235-3239.	2.3	1
136	Amidate Complexes of Titanium and Zirconium: A New Class of Tunable Precatalysts for the Hydroamination of Alkynes ChemInform, 2004, 35, no.	0.0	0
137	Anti-Markovnikov Intermolecular Hydroamination: A Bis(amidate) Titanium Precatalyst for the Preparation of Reactive Aldimines ChemInform, 2004, 35, no.	0.0	0
138	Scandium-Catalyzed Intramolecular Hydroamination. Development of a Highly Active Cationic Catalyst ChemInform, 2004, 35, no.	0.0	0
139	Intramolecular Hydroamination of Unactived Olefins with Ti(NMe2)4 as a Precatalyst ChemInform, 2005, 36, no.	0.0	0
140	Biodegradable polymers: Wall slip, melt fracture, and processing aids. AIP Conference Proceedings, 2015, , .	0.4	0
141	C(sp3)-H Bond Activation Induced by Monohydroborane Coordination at an Iridium(III)-Phosphoramidate Complex. European Journal of Inorganic Chemistry, 2017, 2017, 2638-2638.	2.0	0
142	Physical methods for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 144-178.	3.2	0
143	Missing out on talent. C&EN Global Enterprise, 2020, 98, 2-2.	0.0	0