List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7350057/publications.pdf Version: 2024-02-01

ALREPTO POLOAN

#	Article	IF	CITATIONS
1	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.	47.7	275
2	Bio-inspired CO ₂ conversion by iron sulfide catalysts under sustainable conditions. Chemical Communications, 2015, 51, 7501-7504.	4.1	188
3	A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe ₃ O ₄ . Physical Chemistry Chemical Physics, 2014, 16, 21082-21097.	2.8	178
4	CuO Surfaces and CO ₂ Activation: A Dispersion-Corrected DFT+ <i>U</i> Study. Journal of Physical Chemistry C, 2016, 120, 2198-2214.	3.1	165
5	Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation. Applied Catalysis A: General, 2017, 529, 20-31.	4.3	153
6	Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array. ACS Nano, 2016, 10, 1139-1146.	14.6	120
7	Lowâ€Valence Zn ^{δ+} (0<δ<2) Singleâ€Atom Material as Highly Efficient Electrocatalyst for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 22826-22832.	13.8	115
8	Critical Size for O ₂ Dissociation by Au Nanoparticles. ChemPhysChem, 2009, 10, 348-351.	2.1	108
9	A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces. Minerals (Basel, Switzerland), 2014, 4, 89-115.	2.0	105
10	Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles. Chemistry of Materials, 2014, 26, 6281-6292.	6.7	86
11	Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133, 024701.	3.0	83
12	Bulk and surface properties of metal carbides: implications for catalysis. Physical Chemistry Chemical Physics, 2018, 20, 6905-6916.	2.8	82
13	First-principles study of the inversion thermodynamics and electronic structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Fe </mml:mi> <mml:msub> <mml:< td=""><td>mi>M<td>ıl:mi><mmla< td=""></mmla<></td></td></mml:<></mml:msub></mml:mrow></mml:math 	mi>M <td>ıl:mi><mmla< td=""></mmla<></td>	ıl:mi> <mmla< td=""></mmla<>

#	Article	IF	CITATIONS
19	Density Functional Theory Study of the Adsorption of Hydrazine on the Perfect and Defective Copper (100), (110), and (111) Surfaces. Journal of Physical Chemistry C, 2014, 118, 26103-26114.	3.1	58
20	A density functional theory study of the adsorption behaviour of CO2 on Cu2O surfaces. Journal of Chemical Physics, 2016, 145, 044709.	3.0	55
21	p-Block Indium Single-Atom Catalyst with Low-Coordinated In–N Motif for Enhanced Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 7386-7395.	11.2	53
22	O2 adsorption and dissociation on neutral, positively and negatively charged Aun (n = 5–79) clusters. Physical Chemistry Chemical Physics, 2010, 12, 10723.	2.8	50
23	Structures and Properties of As(OH) ₃ Adsorption Complexes on Hydrated Mackinawite (FeS) Surfaces: A DFT-D2 Study. Environmental Science & Technology, 2017, 51, 3461-3470.	10.0	49
24	Influence of the exchange–correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theoretical Chemistry Accounts, 2009, 123, 119-126.	1.4	47
25	Activation and dissociation of CO2 on the (001), (011), and (111) surfaces of mackinawite (FeS): A dispersion-corrected DFT study. Journal of Chemical Physics, 2015, 143, 094703.	3.0	46
26	Adsorption of methylamine on mackinawite (FES) surfaces: A density functional theory study. Journal of Chemical Physics, 2013, 139, 124708.	3.0	45
27	Hydrogen adsorption on transition metal carbides: a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 5335-5343.	2.8	42
28	Catalytic Dissociation of Water on the (001), (011), and (111) Surfaces of Violarite, FeNi ₂ S ₄ : A DFT-D2 Study. Journal of Physical Chemistry C, 2014, 118, 1958-1967.	3.1	41
29	The surface chemistry of NO _x on mackinawite (FeS) surfaces: a DFT-D2 study. Physical Chemistry Chemical Physics, 2014, 16, 15444-15456.	2.8	40
30	Density functional theory study explaining the underperformance of copper oxides as photovoltaic absorbers. Physical Review B, 2019, 99, .	3.2	40
31	Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces. Physical Chemistry Chemical Physics, 2015, 17, 21533-21546.	2.8	39
32	The influence of support materials on the structural and electronic properties of gold nanoparticles $\hat{a} \in \hat{a}$ a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 19011-19025.	2.8	39
33	Structural tuning and catalysis of tungsten carbides for the regioselective cleavage of C O bonds. Journal of Catalysis, 2019, 369, 283-295.	6.2	38
34	Hydrogen production from formic acid decomposition in the liquid phase using Pd nanoparticles supported on CNFs with different surface properties. Sustainable Energy and Fuels, 2018, 2, 2705-2716.	4.9	37
35	Surface and shape modification of mackinawite (FeS) nanocrystals by cysteine adsorption: a first-principles DFT-D2 study. Physical Chemistry Chemical Physics, 2016, 18, 32007-32020.	2.8	35
36	Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 1583-1592.	10.3	35

#	Article	IF	CITATIONS
37	DFT-D2 Study of the Adsorption and Dissociation of Water on Clean and Oxygen-Covered {001} and {011} Surfaces of Mackinawite (FeS). Journal of Physical Chemistry C, 2016, 120, 21441-21450.	3.1	34
38	O ₂ Activation by Au ₅ Clusters Stabilized on Clean and Electron-Rich MgO Stepped Surfaces. Journal of Physical Chemistry C, 2010, 114, 16973-16978.	3.1	33
39	DFT-D2 simulations of water adsorption and dissociation on the low-index surfaces of mackinawite (FeS). Journal of Chemical Physics, 2016, 144, 174704.	3.0	33
40	Insight into the Nature of Iron Sulfide Surfaces During the Electrochemical Hydrogen Evolution and CO ₂ Reduction Reactions. ACS Applied Materials & Interfaces, 2018, 10, 32078-32085.	8.0	33
41	Origin of the size dependence of Au nanoparticles toward molecular oxygen dissociation. Theoretical Chemistry Accounts, 2011, 128, 675-681.	1.4	32
42	Early Oxidation Processes on the Greigite Fe ₃ S ₄ (001) Surface by Water: A Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 8616-8629.	3.1	32
43	On the effectiveness of partial oxidation of propylene by gold: A density functional theory study. Journal of Molecular Catalysis A, 2009, 306, 6-10.	4.8	31
44	The Role of Hydrogen Bonding and Proton Transfer in the Formation of Uracil Networks on the Gold (100) Surface: A Density Functional Theory Approach. Journal of Physical Chemistry C, 2013, 117, 3949-3957.	3.1	31
45	Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenation. Journal of Energy Chemistry, 2021, 52, 301-309.	12.9	31
46	Methanol formation from CO ₂ catalyzed by Fe ₃ S ₄ {111}: formate versus hydrocarboxyl pathways. Faraday Discussions, 2016, 188, 161-180.	3.2	29
47	A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets. Journal of Solid State Chemistry, 2016, 237, 192-203.	2.9	28
48	Reactivity of CO ₂ on the surfaces of magnetite (Fe ₃ O ₄), greigite (Fe ₃ S ₄) and mackinawite (FeS). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170065.	3.4	27
49	Gadolinium-Vacancy Clusters in the (111) Surface of Gadolinium-Doped Ceria: A Density Functional Theory Study. Chemistry of Materials, 2015, 27, 7910-7917.	6.7	26
50	Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies. Science and Technology of Advanced Materials, 2019, 20, 367-378.	6.1	26
51	Frontiers in first principles modelling of electrochemical simulations. Current Opinion in Electrochemistry, 2018, 10, 1-6.	4.8	25
52	Carbon dioxide and water co-adsorption on the low-index surfaces of TiC, VC, ZrC and NbC: a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 10750-10760.	2.8	25
53	DFT Modeling of the Adsorption of Trimethylphosphine Oxide at the Internal and External Surfaces of Zeolite MFI. Journal of Physical Chemistry C, 2016, 120, 19097-19106.	3.1	24
54	Mechanistic study of hydrazine decomposition on Ir(111). Physical Chemistry Chemical Physics, 2020, 22, 3883-3896.	2.8	24

#	Article	IF	CITATIONS
55	Ni Deposition on Yttria-Stabilized ZrO ₂ (111) Surfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2015, 119, 6581-6591.	3.1	22
56	Hydrazine network on Cu(111) surface: A Density Functional Theory approach. Surface Science, 2015, 637-638, 140-148.	1.9	21
57	Role of defects in carbon materials during metal-free formic acid dehydrogenation. Nanoscale, 2020, 12, 22768-22777.	5.6	19
58	Kinetic and mechanistic analysis of NH ₃ decomposition on Ru(0001), Ru(111) and Ir(111) surfaces. Nanoscale Advances, 2021, 3, 1624-1632.	4.6	19
59	How to go beyond C ₁ products with electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2021, 5, 5893-5914.	4.9	19
60	Dynamics at Polarized Carbon Dioxide–Iron Oxyhydroxide Interfaces Unveil the Origin of Multicarbon Product Formation. ACS Catalysis, 2022, 12, 411-430.	11.2	19
61	Catalytic water dissociation by greigite Fe ₃ S ₄ surfaces: density functional theory study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160080.	2.1	17
62	Adsorption of Methyl Acetoacetate at Ni{111}: Experiment and Theory. Journal of Physical Chemistry C, 2016, 120, 27490-27499.	3.1	17
63	Density functional theory study of the interaction of H2O, CO2 and CO with the ZrO2 (111), Ni/ZrO2 (111), YSZ (111) and Ni/YSZ (111) surfaces. Surface Science, 2016, 653, 153-162.	1.9	17
64	The influence of oxygen vacancy and Ce3+ ion positions on the properties of small gold clusters supported on CeO2â^x(111). Journal of Materials Chemistry A, 2020, 8, 15695-15705.	10.3	17
65	A kinetic model of water adsorption, clustering and dissociation on the Fe ₃ S ₄ {001} surface. Physical Chemistry Chemical Physics, 2017, 19, 12045-12055.	2.8	16
66	Density Functional Theory Study of Ni Clusters Supported on the ZrO ₂ (111) Surface. Fuel Cells, 2017, 17, 125-131.	2.4	16
67	Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: Effect of support functionalization. Catalysis Today, 2021, 382, 61-70.	4.4	16
68	Disclosing the Role of Gold on Palladium – Gold Alloyed Supported Catalysts in Formic Acid Decomposition. ChemCatChem, 2021, 13, 4210-4222.	3.7	16
69	CO ₂ and H ₂ Adsorption and Reaction at Ni _{<i>n</i>} /YSZ(111) Interfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2018, 122, 19463-19472.	3.1	15
70	CO ₂ interaction with violarite (FeNi ₂ S ₄) surfaces: a dispersion-corrected DFT study. Physical Chemistry Chemical Physics, 2018, 20, 20439-20446.	2.8	15
71	Tuning the electronic band gap of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Cu</mml:mi> <mml: mathvariant="normal">O </mml: </mml:msub></mml:mrow> via transition metal doping for</mml:math 	nn>22.4	nl:mn>
72	improved photovoltaic applications. Physical Review Materials, 2019, 3, . Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol. Molecular Catalysis, 2017, 433, 334-345.	2.0	14

#	Article	IF	CITATIONS
73	Micro-kinetic simulations of the catalytic decomposition of hydrazine on the Cu(111) surface. Faraday Discussions, 2017, 197, 41-57.	3.2	14
74	Theoretical Simulation of Temperature Programmed Desorption of Molecular Oxygen on Isolated Au Nanoparticles from Density Functional Calculations and Microkinetics Models. Journal of Physical Chemistry C, 2010, 114, 5101-5106.	3.1	13
75	New Insights into the Structure of the C-Terminated β-Mo ₂ C (001) Surface from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 19224-19231.	3.1	13
76	Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition. Journal of Carbon Research, 2018, 4, 26.	2.7	13
77	Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catalysis Today, 2022, 384-386, 197-208.	4.4	13
78	CO ₂ reduction to acetic acid on the greigite Fe ₃ S ₄ {111} surface. Faraday Discussions, 2021, 229, 35-49.	3.2	12
79	Lowâ€Valence Zn ^{Î′+} (0<Î′<2) Singleâ€Atom Material as Highly Efficient Electrocatalyst for CO ₂ Reduction. Angewandte Chemie, 2021, 133, 23008-23014.	2.0	12
80	Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study. Catalysis Science and Technology, 2022, 12, 843-854.	4.1	12
81	Periodic modeling of zeolite Ti-LTA. Journal of Chemical Physics, 2017, 147, 074701.	3.0	11
82	Chemoselective Lactonization of Renewable Succinic Acid with Heterogeneous Nanoparticle Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16341-16351.	6.7	10
83	Are Carbon-Based Materials Good Supports for the Catalytic Reforming of Ammonia?. Journal of Physical Chemistry C, 2021, 125, 15950-15958.	3.1	10
84	The chemistry of chlorine on Ag(1 1 1) over the sub-monolayer range: A density functional theory investigation. Surface Science, 2008, 602, 2639-2642.	1.9	9
85	Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials, 2018, 8, 542.	4.1	8
86	Biomass hydrodeoxygenation catalysts innovation from atomistic activity predictors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200056.	3.4	8
87	Selective hydrogenation of CO on Fe ₃ S ₄ {111}: a computational study. Faraday Discussions, 2017, 197, 325-336.	3.2	7
88	Designing new catalysts for synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 353-388.	3.2	7
89	Stability and mobility of supported Nin (nÂ= 1–10) clusters on ZrO2(111) and YSZ(111) surfaces: a density functional theory study. Faraday Discussions, 2018, 208, 87-104.	3.2	7
90	Tautomerization of Phenol at the External Lewis Acid Sites of Scandium-, Iron- and Gallium-Substituted Zeolite MFI. Journal of Physical Chemistry C, 2019, 123, 7604-7614.	3.1	7

#	Article	IF	CITATIONS
91	Mechanisms and Trends of Guaiacol Hydrodeoxygenation on Transition Metal Catalysts. Frontiers in Catalysis, 2022, 2, .	3.9	7
92	The Effect of Pristine and Hydroxylated Oxide Surfaces on the Guaiacol HDO Process: A DFT Study. ChemPhysChem, 2022, 23, .	2.1	6
93	Stability and Quenching of Plasmon Resonance Absorption in Magnetic Gold Nanoparticles. Journal of Physical Chemistry Letters, 2011, 2, 2996-3001.	4.6	5
94	Growth and properties of Au nanowires. Molecular Simulation, 2009, 35, 1051-1056.	2.0	4
95	Designing new catalysts: synthesis of new active structures: general discussion. Faraday Discussions, 2016, 188, 131-159.	3.2	4
96	A density functional theory study of the hydrogenation and reduction of the thio-spinel Fe ₃ S ₄ {111} surface. Physical Chemistry Chemical Physics, 2019, 21, 2426-2433.	2.8	4
97	DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4781-4790.	3.1	4
98	Stable and Antisintering Tungsten Carbides with Controllable Active Phase for Selective Cleavage of Aryl Ether C–O Bonds. ACS Applied Materials & Interfaces, 2021, 13, 8274-8284.	8.0	4
99	Ammonia from Steelworks. Green Energy and Technology, 2020, , 69-80.	0.6	3
100	Selective decomposition of hydrazine over metal free carbonaceous materials. Physical Chemistry Chemical Physics, 2022, 24, 3017-3029.	2.8	3
101	Catalyst design from theory to practice: general discussion. Faraday Discussions, 2016, 188, 279-307.	3.2	2
102	Ostwald ripening microkinetic simulation of Au clusters on MgO(0 0 1). Applied Surface Science, 2022, 572, 151317.	6.1	2
103	DFT+U Study of the Electronic, Magnetic and Mechanical Properties of Co, CoO, and Co3O4. South African Journal of Chemistry, 2021, 74, .	0.6	2
104	Highlights from Faraday Discussion: Designing New Heterogeneous Catalysts, London, UK, April 2016. Chemical Communications, 2016, 52, 8335-8341.	4.1	1
105	Novel photocatalysts: general discussion. Faraday Discussions, 2017, 197, 533-546.	3.2	1
106	Controlling the Selectivity of Supported Ru Nanoparticles During Glycerol Hydrogenolysis: Câ^'O <i>vs</i> Câ^'C Cleavage. ChemCatChem, 2021, 13, 1595-1606.	3.7	1