Mitsuo Sawamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7349602/publications.pdf

Version: 2024-02-01

256 papers 20,451 citations

22548 61 h-index 12638 137 g-index

263 all docs

263 docs citations

263 times ranked 8863 citing authors

#	Article	IF	CITATIONS
1	Molecular imprinting on amphiphilic folded polymers for selective molecular recognition in water. Journal of Polymer Science, 2020, 58, 215-224.	2.0	5
2	Synergistic Advances in Living Cationic and Radical Polymerizations. Macromolecules, 2020, 53, 6749-6753.	2.2	46
3	Unprecedented Sequence Control and Sequenceâ€Driven Properties in a Series of ABâ€Alternating Copolymers Consisting Solely of Acrylamide Units. Angewandte Chemie, 2020, 132, 5231-5239.	1.6	4
4	Unprecedented Sequence Control and Sequenceâ€Driven Properties in a Series of ABâ€Alternating Copolymers Consisting Solely of Acrylamide Units. Angewandte Chemie - International Edition, 2020, 59, 5193-5201.	7.2	36
5	Self-assembly of amphiphilic block pendant polymers as microphase separation materials and folded flower micelles. Polymer Chemistry, 2019, 10, 4954-4961.	1.9	30
6	Orthogonal Folding of Amphiphilic/Fluorous Random Block Copolymers for Double and Multicompartment Micelles in Water. ACS Macro Letters, 2019, 8, 320-325.	2.3	19
7	Design of maleimide monomer for higher level of alternating sequence in radical copolymerization with styrene. Journal of Polymer Science Part A, 2019, 57, 367-375.	2.5	19
8	"Smart―Catalysis with thermoresponsive ruthenium catalysts for miniemulsion ruâ€mediated reversible deactivation radical polymerization cocatalyzed by smart iron cocatalysts. Journal of Polymer Science Part A, 2019, 57, 305-312.	2.5	4
9	Selfâ€assembly of amphiphilic ABA random triblock copolymers in water. Journal of Polymer Science Part A, 2019, 57, 313-321.	2.5	6
10	Self-Sorting of Amphiphilic Copolymers for Self-Assembled Materials in Water: Polymers Can Recognize Themselves. Journal of the American Chemical Society, 2019, 141, 511-519.	6.6	43
11	Amphiphilic fluorous random copolymer selfâ€essembly for encapsulation of a fluorinated agrochemical. Journal of Polymer Science Part A, 2019, 57, 352-359.	2.5	14
12	Fluorous Gradient Copolymers via in-Situ Transesterification of a Perfluoromethacrylate in Tandem Living Radical Polymerization: Precision Synthesis and Physical Properties. Macromolecules, 2018, 51, 864-871.	2.2	15
13	Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and Thermoresponsive Micelles in Water. Macromolecules, 2018, 51, 398-409.	2.2	102
14	Sequence-controlled polymers via reversible-deactivation radical polymerization. Polymer Journal, 2018, 50, 83-94.	1.3	74
15	Acrylate-Selective Transesterification of Methacrylate/Acrylate Copolymers: Postfunctionalization with Common Acrylates and Alcohols. ACS Macro Letters, 2018, 7, 997-1002.	2.3	30
16	Control of the Alternating Sequence for N â€lsopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group. Angewandte Chemie, 2018, 130, 11071-11075.	1.6	12
17	Control of the Alternating Sequence for N â€lsopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group. Angewandte Chemie - International Edition, 2018, 57, 10905-10909.	7.2	59
18	Intramolecular Folding or Intermolecular Self-Assembly of Amphiphilic Random Copolymers: On-Demand Control by Pendant Design. Macromolecules, 2018, 51, 3738-3745.	2.2	50

#	Article	IF	Citations
19	Nanostructured Materials via the Pendant Self-Assembly of Amphiphilic Crystalline Random Copolymers. Journal of the American Chemical Society, 2018, 140, 8376-8379.	6.6	70
20	Amphiphilic PEG-Functionalized Gradient Copolymers via Tandem Catalysis of Living Radical Polymerization and Transesterification. Macromolecules, 2017, 50, 822-831.	2.2	29
21	Precision Synthesis of Imine-Functionalized Reversible Microgel Star Polymers via Dynamic Covalent Cross-Linking of Hydrogen-Bonding Block Copolymer Micelles. Macromolecules, 2017, 50, 587-596.	2.2	20
22	A Study on Physical Properties of Cyclic Poly(vinyl ether)s Synthesized via Ring-Expansion Cationic Polymerization. Macromolecules, 2017, 50, 841-848.	2.2	44
23	Synthesis of fluorinated gradient copolymers via in situ transesterification with fluoroalcohols in tandem living radical polymerization. Polymer Chemistry, 2017, 8, 2299-2308.	1.9	19
24	Expanding vinyl ether monomer repertoire for ringâ€expansion cationic polymerization: Various cyclic polymers with tailored pendant groups. Journal of Polymer Science Part A, 2017, 55, 3082-3089.	2.5	12
25	Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water. Journal of the American Chemical Society, 2017, 139, 7164-7167.	6.6	87
26	<i>>50th Anniversary Perspective</i> : Metal-Catalyzed Living Radical Polymerization: Discovery and Perspective. Macromolecules, 2017, 50, 2603-2614.	2.2	136
27	Self-Assembly of Hydrogen-Bonding Gradient Copolymers: Sequence Control via Tandem Living Radical Polymerization with Transesterification. Macromolecules, 2017, 50, 3215-3223.	2.2	27
28	Macromol. Chem. Phys. 18/2017. Macromolecular Chemistry and Physics, 2017, 218, .	1.1	1
29	Self-Folding Polymer Iron Catalysts for Living Radical Polymerization. ACS Macro Letters, 2017, 6, 830-835.	2.3	63
30	Selfâ€Assembly of Amphiphilic Random Copolyacrylamides into Uniform and Necklace Micelles in Water. Macromolecular Chemistry and Physics, 2017, 218, 1700230.	1.1	51
31	Fluorous Comonomer Modulates the Reactivity of Cyclic Ketene Acetal and Degradation of Vinyl Polymers. Macromolecules, 2017, 50, 9222-9232.	2.2	36
32	Self-assembly of PEG/dodecyl-graft amphiphilic copolymers in water: consequences of the monomer sequence and chain flexibility on uniform micelles. Polymer Chemistry, 2017, 8, 7248-7259.	1.9	86
33	Cyclopolymerization of Cleavable Acrylate-Vinyl Ether Divinyl Monomer via Nitroxide-Mediated Radical Polymerization: Copolymer beyond Reactivity Ratio. ACS Macro Letters, 2017, 6, 754-757.	2.3	28
34	Ring-expansion cationic polymerization of vinyl ethers. Polymer Chemistry, 2017, 8, 4970-4977.	1.9	29
35	Self-Assembly of Amphiphilic Random Copolymers: Precision Nanoaggregates Controlled by Primary Structure. Kobunshi Ronbunshu, 2017, 74, 265-277.	0.2	2
36	Precision Self-Assembly of Amphiphilic Random Copolymers into Uniform and Self-Sorting Nanocompartments in Water. Macromolecules, 2016, 49, 5084-5091.	2.2	139

3

#	Article	IF	CITATIONS
37	A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization. Nature Communications, 2016, 7, 11064.	5.8	97
38	Cationic Cp*â€"Ruthenium Catalysts for Metal-Catalyzed Living Radical Polymerization: Cocatalyst-Independent Catalysis Tuned by Counteranion. Macromolecules, 2016, 49, 2962-2970.	2.2	7
39	Terminal-Selective Transesterification of Chlorine-Capped Poly(Methyl Methacrylate)s: A Modular Approach to Telechelic and Pinpoint-Functionalized Polymers. Journal of the American Chemical Society, 2016, 138, 5012-5015.	6.6	26
40	Sequence Analysis for Alternating Copolymers by MALDIâ€TOFâ€MS: Importance of Initiator Selectivity for Comonomer Pair. Macromolecular Rapid Communications, 2016, 37, 1414-1420.	2.0	18
41	Amphiphilic Random Copolymers with Hydrophobic/Hydrogen-Bonding Urea Pendants: Self-Folding Polymers in Aqueous and Organic Media. Macromolecules, 2016, 49, 7917-7927.	2.2	77
42	Protein storage with perfluorinated PEG compartments in a hydrofluorocarbon solvent. Polymer Chemistry, 2016, 7, 6694-6698.	1.9	36
43	Polyacrylamide pseudo crown ethers via hydrogen bond-assisted cyclopolymerization. Journal of Polymer Science Part A, 2016, 54, 3294-3302.	2.5	10
44	Ferrocene cocatalysis for ruthenium-catalyzed radical miniemulsion polymerization. Polymer, 2016, 106, 313-319.	1.8	3
45	A convergent approach to ring polymers with narrow molecular weight distributions through post dilution in ring expansion cationic polymerization. Polymer Chemistry, 2016, 7, 6911-6917.	1.9	17
46	Periodic introduction of a Hamilton receptor into a polystyrene backbone for a supramolecular graft copolymer with regular intervals. Polymer Chemistry, 2016, 7, 7152-7160.	1.9	2
47	Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer. Angewandte Chemie - International Edition, 2016, 55, 14584-14589.	7.2	65
48	Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer. Angewandte Chemie, 2016, 128, 14804-14809.	1.6	20
49	Macromol. Rapid Commun. 17/2016. Macromolecular Rapid Communications, 2016, 37, 1476-1476.	2.0	0
50	Multimode Self-Folding Polymers via Reversible and Thermoresponsive Self-Assembly of Amphiphilic/Fluorous Random Copolymers. Macromolecules, 2016, 49, 4534-4543.	2.2	87
51	Iterative Radical Addition with a Special Monomer Carrying Bulky and Convertible Pendant: A New Concept toward Controlling the Sequence for Vinyl Polymers. ACS Macro Letters, 2016, 5, 745-749.	2.3	47
52	Design of a hydrophilic ruthenium catalyst for metal-catalyzed living radical polymerization: highly active catalysis in water. RSC Advances, 2016, 6, 6577-6582.	1.7	11
53	Ring-Expansion Living Cationic Polymerization of Vinyl Ethers. Kobunshi Ronbunshu, 2015, 72, 468-479.	0.2	0
54	Design and Functions of Fluorous Nanospaces with Microgel Star Polymers and Amphiphilic Random Copolymers. Kobunshi Ronbunshu, 2015, 72, 691-706.	0.2	1

#	Article	IF	Citations
55	Synthesis of Amphiphilic Threeâ€Armed Star Random Copolymers via Living Radical Polymerization and their Unimolecular Folding Properties in Water. Macromolecular Symposia, 2015, 350, 76-85.	0.4	29
56	Fluorinated microgel star polymers as fluorous nanocapsules for the encapsulation and release of perfluorinated compounds. Polymer Chemistry, 2015, 6, 5663-5674.	1.9	15
57	Shuttling Catalyst for Living Radical Miniemulsion Polymerization: Thermoresponsive Ligand for Efficient Catalysis and Removal. ACS Macro Letters, 2015, 4, 628-631.	2.3	11
58	Ferrocene Cocatalysis for Iron-Catalyzed Living Radical Polymerization: Active, Robust, and Sustainable System under Concerted Catalysis by Two Iron Complexes. Macromolecules, 2015, 48, 4294-4300.	2.2	29
59	Star Polymer Gels with Fluorinated Microgels via Star–Star Coupling and Cross-Linking for Water Purification. ACS Macro Letters, 2015, 4, 377-380.	2.3	23
60	Ringâ€Expansion Living Cationic Polymerization of Vinyl Ethers: Optimized Ring Propagation. Macromolecular Symposia, 2015, 350, 105-116.	0.4	17
61	A thermoresponsive polymer supporter for concerted catalysis of ferrocene with a ruthenium catalyst in living radical polymerization: high activity and efficient removal of metal residues. Polymer Chemistry, 2015, 6, 7821-7826.	1.9	10
62	Single-chain crosslinked star polymers via intramolecular crosslinking of self-folding amphiphilic copolymers in water. Polymer Journal, 2015, 47, 667-677.	1.3	50
63	LCST-Type Phase Separation of Poly[poly(ethylene glycol) methyl ether methacrylate]s in Hydrofluorocarbon. ACS Macro Letters, 2015, 4, 1366-1369.	2.3	21
64	Amphiphilic/fluorous random copolymers as a new class of non-cytotoxic polymeric materials for protein conjugation. Polymer Chemistry, 2015, 6, 240-247.	1.9	75
65	Sequence-Regulated Polymers via Living Radical Polymerization: From Design to Properties and Functions. ACS Symposium Series, 2014, , 255-267.	0.5	25
66	Understanding the catalytic activity of singleâ€chain polymeric nanoparticles in water. Journal of Polymer Science Part A, 2014, 52, 12-20.	2.5	101
67	Selective Single Monomer Radical Addition via Template-Assisted Ring Closure: A Feasibility Study toward Sequence Control in Vinyl Polymers with Peptide Templates. ACS Symposium Series, 2014, , 149-160.	0.5	4
68	Fluorous Microgel Star Polymers: Selective Recognition and Separation of Polyfluorinated Surfactants and Compounds in Water. Journal of the American Chemical Society, 2014, 136, 15742-15748.	6.6	86
69	Synthesis and Single-Chain Folding of Amphiphilic Random Copolymers in Water. Macromolecules, 2014, 47, 589-600.	2.2	211
70	Core-imprinted Star Polymers via Living Radical Polymerization: Precision Cavity Microgels for Selective Molecular Recognition. Chemistry Letters, 2014, 43, 1690-1692.	0.7	8
71	Synchronized Tandem Catalysis of Living Radical Polymerization and Transesterification: Methacrylate Gradient Copolymers with Extremely Broad Glass Transition Temperature. ACS Macro Letters, 2013, 2, 985-989.	2.3	37
72	Sequence-Controlled Polymers. Science, 2013, 341, 1238149.	6.0	1,097

#	Article	IF	CITATIONS
73	Phosphine–Ligand Decoration toward Active and Robust Iron Catalysts in LRP. Macromolecules, 2013, 46, 3342-3349.	2.2	46
74	Ring-Expansion Living Cationic Polymerization via Reversible Activation of a Hemiacetal Ester Bond. ACS Macro Letters, 2013, 2, 531-534.	2.3	62
75	Chain center-functionalized amphiphilic block polymers: Complementary hydrogen bond self-assembly in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 4498-4504.	2.5	7
76	Aqueous metal-catalyzed living radical polymerization: highly active water-assisted catalysis. Polymer Journal, 2012, 44, 51-58.	1.3	23
77	Consecutive living polymerization from cationic to radical: a straightforward yet versatile methodology for the precision synthesis of "cleavable―block copolymers with a hemiacetal ester junction. Polymer Chemistry, 2012, 3, 2193.	1.9	8
78	Ferrocene Cocatalysis in Metal-Catalyzed Living Radical Polymerization: Concerted Redox for Highly Active Catalysis. ACS Macro Letters, 2012, 1, 321-323.	2.3	15
79	Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification. Journal of the American Chemical Society, 2012, 134, 4373-4383.	6.6	140
80	Microgel-Core Star Polymers as Functional Compartments for Catalysis and Molecular Recognition. ACS Symposium Series, 2012, , 65-80.	0.5	15
81	Professor Fosong Wang on his 80th birthday: A great scientist and a great ambassador. Science China Chemistry, 2012, 55, 647-647.	4.2	1
82	Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers: microgel-core reaction space for active, versatile and recyclable catalysis. Polymer Journal, 2011, 43, 770-777.	1.3	30
83	Fluorinated Microgel-Core Star Polymers as Fluorous Compartments for Molecular Recognition. Macromolecules, 2011, 44, 4574-4578.	2.2	49
84	Design of AB divinyl "template monomers―toward alternating sequence control in metal-catalyzed living radical polymerization. Polymer Chemistry, 2011, 2, 341-347.	1.9	118
85	Single-chain technology using discrete synthetic macromolecules. Nature Chemistry, 2011, 3, 917-924.	6.6	348
86	Dicarbonyl pentaphenylcyclopentadienyl iron complex for living radical polymerization: Smooth generation of real active catalysts collaborating with phosphine ligand. Journal of Polymer Science Part A, 2011, 49, 537-544.	2.5	8
87	Oxidation of secâ€alcohols with Ru(II)â€bearing microgel star polymer catalysts via hydrogen transfer reaction: Unique microgelâ€core catalysis. Journal of Polymer Science Part A, 2011, 49, 1061-1069.	2.5	30
88	Starâ€Polymerâ€Catalyzed Living Radical Polymerization: Microgelâ€Core Reaction Vessel by Tandem Catalyst Interchange. Angewandte Chemie - International Edition, 2011, 50, 7892-7895.	7.2	74
89	Sequenceâ€Regulated Radical Polymerization with a Metal―Templated Monomer: Repetitive ABA Sequence by Double Cyclopolymerization. Angewandte Chemie - International Edition, 2011, 50, 7434-7437.	7.2	195
90	Thermoregulated phaseâ€transfer catalysis via PEGâ€armed Ru(II)â€bearing microgel core star polymers: Efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. Journal of Polymer Science Part A, 2010, 48, 373-379.	2.5	74

#	Article	IF	Citations
91	Living cationic polymerization of an azideâ€containing vinyl ether toward addressable functionalization of polymers. Journal of Polymer Science Part A, 2010, 48, 1449-1455.	2.5	12
92	Selective single monomer addition in living cationic polymerization: Sequential double end-functionalization in combination with capping agent. Journal of Polymer Science Part A, 2010, 48, 3375-3381.	2.5	9
93	Carbonyl-phosphine hetero-ligated half-metallocene iron(II) catalysts for living radical polymerization: concomitant activity and stability. Polymer Journal, 2010, 42, 17-24.	1.3	23
94	Template-Assisted Selective Radical Addition toward Sequence-Regulated Polymerization: Lariat Capture of Target Monomer by Template Initiator. Journal of the American Chemical Society, 2010, 132, 14748-14750.	6.6	137
95	Bisphosphine Monoxide-Ligated Ruthenium Catalysts: Active, Versatile, Removable, and Cocatalyst-Free in Living Radical Polymerization. Macromolecules, 2010, 43, 5989-5995.	2.2	36
96	Carbonylâ^'Phosphine Heteroligation for Pentamethylcyclopentadienyl (Cp*)â^'Iron Complexes: Highly Active and Versatile Catalysts for Living Radical Polymerization. Macromolecules, 2010, 43, 920-926.	2.2	41
97	Antithetic function of alcohol in living cationic polymerization: From terminator/inhibitor to useful initiator. Journal of Polymer Science Part A, 2009, 47, 4194-4201.	2.5	9
98	Concurrent Tandem Living Radical Polymerization: Gradient Copolymers via In Situ Monomer Transformation with Alcohols. Journal of the American Chemical Society, 2009, 131, 13600-13601.	6.6	84
99	Selective Radical Addition with a Designed Heterobifunctional Halide: A Primary Study toward Sequence-Controlled Polymerization upon Template Effect. Journal of the American Chemical Society, 2009, 131, 10808-10809.	6.6	171
100	Active, Versatile, and Removable Iron Catalysts with Phosphazenium Salts for Living Radical Polymerization of Methacrylates. Macromolecules, 2009, 42, 188-193.	2.2	78
101	Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis. Chemical Reviews, 2009, 109, 4963-5050.	23.0	1,208
102	Evolution of iron catalysts for effective living radical polymerization: P–N chelate ligand for enhancement of catalytic performances. Journal of Polymer Science Part A, 2008, 46, 6819-6827.	2.5	39
103	Highly Active and Removable Ruthenium Catalysts for Transitionâ€Metalâ€Catalyzed Living Radical Polymerization: Design of Ligands and Cocatalysts. Chemistry - an Asian Journal, 2008, 3, 1358-1364.	1.7	31
104	Precision Control of Radical Polymerization via Transition Metal Catalysis: From Dormant Species to Designed Catalysts for Precision Functional Polymers. Accounts of Chemical Research, 2008, 41, 1120-1132.	7.6	192
105	Evolution of Iron Catalysts for Effective Living Radical Polymerization:Â Design of Phosphine/Halogen Ligands in FeX2(PR3)21. Macromolecules, 2007, 40, 8658-8662.	2.2	65
106	Metal-complex-bearing star polymers by metal-catalyzed living radical polymerization: Synthesis and characterization of poly(methyl methacrylate) star polymers with Ru(II)-embedded microgel cores. Journal of Polymer Science Part A, 2006, 44, 4966-4980.	2.5	55
107	Living Radical Polymerization Catalyzed with Hydrophilic and Thermosensitive Ruthenium(II) Complexes in Aqueous Media. ACS Symposium Series, 2006, , 14-25.	0.5	13
108	Effect of Tacticity of Poly(N-isopropylacrylamide) on the Phase Separation Temperature of Its Aqueous Solutions. Polymer Journal, 2005, 37, 234-237.	1.3	180

#	Article	IF	CITATIONS
109	Amino alcohol additives for the fast living radical polymerization of methyl methacrylate with RuCl2(PPh3)3. Journal of Polymer Science Part A, 2003, 41, 3597-3605.	2.5	26
110	Controlled Cationic Polymerization of p-(Chloromethyl)styrene:  BF3-Catalyzed Selective Activation of a Câ^'O Terminal from Alcohol. Macromolecules, 2003, 36, 3540-3544.	2.2	30
111	Living Radical Polymerization with Designed Metal Complexes. ACS Symposium Series, 2003, , 102-115.	0.5	6
112	Living radical and cationic polymerizations in water and organic media. Macromolecular Symposia, 2002, 177, 17-24.	0.4	10
113	A New Ruthenium Complex with an Electron-Donating Aminoindenyl Ligand for Fast Metal-Mediated Living Radical Polymerizations. Journal of the American Chemical Society, 2002, 124, 9994-9995.	6.6	97
114	Amine Additives for Fast Living Radical Polymerization of Methyl Methacrylate with RuCl2(PPh3)31. Macromolecules, 2002, 35, 2934-2940.	2.2	69
115	Iron-Catalyzed Suspension Living Radical Polymerizations of Acrylates and Styrene in Water1. Macromolecules, 2002, 35, 2949-2954.	2,2	59
116	A highly active Fe(i) catalyst for radical polymerisation and taming the polymerisation with iodine. Chemical Communications, 2002, , 2694-2695.	2.2	35
117	Synthesis of star-shaped copolymers with methyl methacrylate andn-butyl methacrylate by metal-catalyzed living radical polymerization: Block and random copolymer arms and microgel cores. Journal of Polymer Science Part A, 2002, 40, 633-641.	2.5	52
118	Ruthenium-catalyzed fast living radical polymerization of methyl methacrylate: The R?Cl/Ru(Ind)Cl(PPh3)2/n-Bu2NH initiating system. Journal of Polymer Science Part A, 2002, 40, 617-623.	2. 5	30
119	Star poly(methyl methacrylate) with end-functionalized arm chains by ruthenium-catalyzed living radical polymerization. Journal of Polymer Science Part A, 2002, 40, 1972-1982.	2.5	47
120	Synthesis of end-functionalized poly(methyl methacrylate) by ruthenium-catalyzed living radical polymerization with functionalized initiators. Journal of Polymer Science Part A, 2002, 40, 1937-1944.	2.5	45
121	Iron-catalyzed living radical polymerization of acrylates: Iodide-based initiating systems and block and random copolymerizations. Journal of Polymer Science Part A, 2002, 40, 2033-2043.	2.5	41
122	Controlled radical polymerization of 2-hydroxyethyl methacrylate with a hydrophilic ruthenium complex and the synthesis of amphiphilic random and block copolymers with methyl methacrylate. Journal of Polymer Science Part A, 2002, 40, 2055-2065.	2.5	20
123	Star-shaped polymers by Ru(II)-catalyzed living radical polymerization. II. Effective reaction conditions and characterization by multi-angle laser light scattering/size exclusion chromatography and small-angle X-ray scattering. Journal of Polymer Science Part A, 2002, 40, 2245-2255.	2.5	43
124	Metal-Catalyzed Living Radical Polymerization. Chemical Reviews, 2001, 101, 3689-3746.	23.0	3,247
125	Ru(Cp*)Cl(PPh3)2:Â A Versatile Catalyst for Living Radical Polymerization of Methacrylates, Acrylates, and Styrene1. Macromolecules, 2001, 34, 4370-4374.	2.2	131
126	Star-Shaped Polymers by Metal-Catalyzed Living Radical Polymerization. 1. Design of Ru(II)-Based Systems and Divinyl Linking Agents. Macromolecules, 2001, 34, 215-221.	2.2	201

#	Article	lF	Citations
127	MALDIâ^'TOFâ^'MS Analysis of Ruthenium(II)-Mediated Living Radical Polymerizations of Methyl Methacrylate, Methyl Acrylate, and Styrene1. Macromolecules, 2001, 34, 2083-2088.	2.2	80
128	Local Chain Dynamics of Poly(N-vinylcarbazole) Studied by the Fluorescence Depolarization Method. Polymer Journal, 2001, 33, 464-468.	1.3	9
129	MALDI-TOF-MS analysis of living cationic polymerization of vinyl ethers. II. Living nature of growing end and side reactions. Journal of Polymer Science Part A, 2001, 39, 1249-1257.	2.5	21
130	MALDI-TOF-MS analysis of living cationic polymerization of vinyl ethers. III. Polymerization with SnCl4 and TiCl4 in the absence of additives. Journal of Polymer Science Part A, 2001, 39, 1258-1267.	2.5	7
131	Synthesis of end-functionalized polymers and copolymers of cyclopentadiene with vinyl ethers by cationic polymerization. Journal of Polymer Science Part A, 2001, 39, 398-407.	2.5	8
132	Stereoregulation in cationic polymerization by designed Lewis acids. II. Effects of alkyl vinyl ether structure. Journal of Polymer Science Part A, 2001, 39, 1060-1066.	2.5	45
133	Stereoregulation in cationic polymerization. III. High isospecificity with the bulky phosphoric acid [(RO)2PO2H]/SnCl4 initiating systems: Design of counteranions via initiators. Journal of Polymer Science Part A, 2001, 39, 1067-1074.	2.5	32
134	Cationic Polymerization of Cyclopentadiene with SnCl4:  Control of Molecular Weight and Narrow Molecular Weight Distribution. Macromolecules, 2001, 34, 3176-3181.	2.2	28
135	Control of Regioselectivity and Main-Chain Microstructure in Cationic Polymerization of Cyclopentadiene1. Macromolecules, 2001, 34, 6586-6591.	2.2	16
136	Living Radical Polymerization of Styrene: RuCl2(PPh3)3 and Alkyl Iodide-Based Initiating Systems. ACS Symposium Series, 2000, , 168-181.	0.5	7
137	Comments on ?Living Polymerization: Rationale for Uniform Terminology? by Darling et al Journal of Polymer Science Part A, 2000, 38, 1748-1749.	2.5	0
138	Sulfonic acids as water-soluble initiators for cationic polymerization in aqueous media with Yb(OTf)3. Journal of Polymer Science Part A, 2000, 38, 2728-2733.	2.5	46
139	Matrix-assisted laser desorption ionization time of flight mass spectrometry analysis of living cationic polymerization of vinyl ethers. I. Optimization of measurement conditions for poly(isobutyl) Tj ETQq1 1	0.72854314	rg & ∏ Overlo
140	Quenching of metal-catalyzed living radical polymerization with silyl enol ethers. Journal of Polymer Science Part A, 2000, 38, 4735-4748.	2.5	27
141	Metal Alkoxides as Additives for Ruthenium(II)-Catalyzed Living Radical Polymerization. Macromolecules, 2000, 33, 6732-6737.	2.2	50
142	Living Radical Polymerization of Acrylates with Rhenium(V)-Based Initiating Systems: ReO ₂ 1(PPh ₃) ₂ /Alkyl Iodide. ACS Symposium Series, 2000, , 196-206.	0.5	14
143	Ru(II)-mediated living radical polymerization: block and random copolymerizations of N,N-dimethylacrylamide and methyl methacrylate. Macromolecular Symposia, 2000, 157, 193-200.	0.4	5
144	Lanthanide Triflates-Mediated Emulsion Cationic Polymerization of p-Alkoxystyrenes in Aqueous Media 1. Macromolecules, 2000, 33, 4660-4666.	2.2	63

#	Article	IF	CITATIONS
145	Catalytic Activities of Ruthenium(II) Complexes in Transition-Metal-Mediated Living Radical Polymerization:Â Polymerization, Model Reaction, and Cyclic Voltammetry1. Macromolecules, 2000, 33, 5825-5829.	2.2	112
146	Direct Living Cationic Polymerization of p-Hydroxystyrene with Boron Trifluoride Etherate in the Presence of Water1. Macromolecules, 2000, 33, 5405-5410.	2.2	49
147	Living Radical Polymerization of Styrene by Half-Metallocene Iron Carbonyl Complexes1. Macromolecules, 2000, 33, 3543-3549.	2.2	78
148	Living Radical Polymerization of Para-Substituted Styrenes and Synthesis of Styrene-Based Copolymers with Rhenium and Iron Complex Catalysts. Macromolecules, 2000, 33, 6746-6751.	2.2	58
149	Direct Synthesis of Amphiphilic Random and Block Copolymers ofp-Hydroxystyrene andp-Methoxystyrene via Living Cationic Polymerization with BF3OEt2/ROH Systems1. Macromolecules, 2000, 33, 5830-5835.	2.2	50
150	Aromatic Acetals as New Initiators for Cationic Polymerization of Isobutyl Vinyl Ether 1. Macromolecules, 2000, 33, 748-753.	2.2	19
151	Matrix-assisted laser desorption ionization time of flight mass spectrometry analysis of living cationic polymerization of vinyl ethers. I. Optimization of measurement conditions for poly(isobutyl) Tj ETQq1 1	0.784314	ł rgBT /Over <mark>l</mark> o
152	Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3)41. Journal of Polymer Science Part A, 1999, 37, 3003-3009.	2.5	76
153	FeCp(CO)2I:Â A Phosphine-Free Half-Metallocene-Type Iron(II) Catalyst for Living Radical Polymerization of Styrene1. Macromolecules, 1999, 32, 6877-6880.	2.2	129
154	Half-Metallocene-Type Ruthenium Complexes as Active Catalysts for Living Radical Polymerization of Methyl Methacrylate and Styrene1. Macromolecules, 1999, 32, 3820-3823.	2.2	123
155	Living Radical Polymerization of N,N-Dimethylacrylamide with RuCl2(PPh3)3-Based Initiating Systems. Macromolecules, 1999, 32, 8005-8009.	2.2	75
156	Living Radical Polymerization in Water and Alcohols:Â Suspension Polymerization of Methyl Methacrylate with RuCl2(PPh3)3Complex1. Macromolecules, 1999, 32, 2204-2209.	2.2	91
157	Re(V)-Mediated Living Radical Polymerization of Styrene:1ReO2I(PPh3)2/Râ^'l Initiating Systems. Macromolecules, 1999, 32, 2420-2424.	2.2	140
158	Stereoregulation in Cationic Polymerization by Designed Lewis Acids. 1. Highly Isotactic Poly(isobutyl) Tj ETQq0	0 0 rgBT /	Overlock 10 T
159	Amphiphilic 3-Arm Star Block Polymers by Living Cationic Polymerization. Polymer Journal, 1999, 31, 995-1000.	1.3	6
160	Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3). , 1999, 37, 3003.		2
161	Living Random Copolymerization of Styrene and Methyl Methacrylate with a Ru(II) Complex and Synthesis of ABC-Type "Block-Random―Copolymers. Macromolecules, 1998, 31, 5582-5587.	2.2	84
162	Silyl Enol Ethers:Â End-Capping Agents for Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex1. Macromolecules, 1998, 31, 6708-6711.	2.2	117

#	Article	IF	Citations
163	Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate:Â Di- and Trifunctional Dichloroacetates for Synthesis of Multiarmed Polymers1. Macromolecules, 1998, 31, 557-562.	2.2	150
164	In-Situ Direct Analysis of the Growing Species by 119Sn NMR Spectroscopy: Â Living Cationic Polymerization of Isobutyl Vinyl Ether with HCl/SnCl4/nBu4NCl1. Macromolecules, 1998, 31, 4703-4709.	2.2	18
165	Living Radical Polymerization Mediated by Transition Metals: Recent Advances. ACS Symposium Series, 1998, , 296-304.	0.5	4
166	The propagating species in living cationic polymerization: Living nature and steric structure of polymers. Macromolecular Symposia, 1998, 132, 75-84.	0.4	7
167	Living Cationic Polymerization with Yb(OSO2CF3)3 as a Water-Resistant, Recoverable Lewis Acid. ACS Symposium Series, 1997, , 106-112.	0.5	11
168	Metal Complex-Mediated Living Radical Polymerization: Features, Scope, and Precision Polymer Synthesis. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 1803-1814.	1.2	37
169	Iron(II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate1. Macromolecules, 1997, 30, 4507-4510.	2.2	452
170	Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate1. Macromolecules, 1997, 30, 2249-2253.	2.2	293
171	Living Cationic Isomerization Polymerization of β-Pinene. 1. Initiation with HClâ^²2-Chloroethyl Vinyl Ether Adduct/TiCl3(OiPr) in Conjunction withnBu4NCl1. Macromolecules, 1997, 30, 22-26.	2.2	86
172	Living cationic isomerization polymerization of ?-pinene. III. Synthesis of end-functionalized polymers and graft copolymers. Journal of Polymer Science Part A, 1997, 35, 1423-1430.	2.5	28
173	Cationic polymerization with titanium(iv) compounds: Living polymerization and possibility of stereoregulation. Macromolecular Symposia, 1996, 107, 43-51.	0.4	3
174	Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymers. Macromolecules, 1996, 29, 6979-6982.	2.2	158
175	Multifunctional Coupling Agents for Living Cationic Polymerization. 7. Synthesis of Amphiphilic Tetraarmed Star Block Polymers with α-Methylstyrene and 2-Hydroxyethyl Vinyl Ether Segments by Coupling Reactions with Tetrafunctional Silyl Enol Ether. Macromolecules, 1996, 29, 1862-1866.	2.2	36
176	Multifunctional Coupling Agents for Living Cationic Polymerization. 6. Synthesis of Multiarmed and End-Functionalized Poly(I±-methylstyrene) with Multifunctional Silyl Enol Ethers. Macromolecules, 1996, 29, 1131-1137.	2.2	17
177	Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex:Â Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions1. Macromolecules, 1996, 29, 1070-1072.	2.2	254
178	Sulfonyl chlorides as initiators for the ruthenium-mediated living radical polymerization of methyl methacrylate. Journal of Polymer Science Part A, 1996, 34, 3585-3589.	2.5	47
179	Cationic polymerization of ?-pinene with the AlCl3/SbCl3 binary catalyst: Comparison with ?-pinene polymerization. Journal of Applied Polymer Science, 1996, 61, 1011-1016.	1.3	45
180	Titaniumâ€based lewis acids for living cationic polymerizations of vinyl ethers and styrene: Control of lewis acidity in design of initiating systems. Macromolecular Symposia, 1995, 98, 153-161.	0.4	3

#	Article	IF	CITATIONS
181	Living cationic polymerization of isobutyl vinyl ether by the CF3CO2H-SnCl4-nBu4NCl system:In situ direct analysis of the growing species by1H,13C and19F NMR spectroscopy. Journal of Physical Organic Chemistry, 1995, 8, 282-292.	0.9	10
182	Star-shaped polymers by living cationic polymerization. VIII. Size and shape of star poly(vinyl ether)s determined by dynamic light scattering and computer simulation. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 527-535.	2.4	7
183	Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721-1723.	2.2	2,942
184	Living Cationic Polymerization of α-Methylstyrene. 2. Synthesis of Block and Random Copolymers with 2-Chloroethyl Vinyl Ether and End-Functionauzed Polymersâ€. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 937-951.	1.2	2
185	Synthesis of end-functionalized polystyrenes with organosilicon end-capping reagents via living cationic polymerization. Journal of Polymer Science Part A, 1994, 32, 2531-2542.	2.5	23
186	Multifunctional coupling agents for living cationic polymerization. IV. Synthesis of end-functionalized multiarmed poly(vinyl ethers) with multifunctional silyl enol ethers. Journal of Polymer Science Part A, 1994, 32, 2699-2708.	2.5	20
187	Preparation and characterization of stereoisomeric trimers of N-vinylcarbazole by living cationic oligomerization. Macromolecular Rapid Communications, 1994, 15, 475-478.	2.0	2
188	The nature of the growing species in living cationic polymerization: Principles, stereochemistry, and inâ€situ NMR analysis. Macromolecular Symposia, 1994, 85, 33-43.	0.4	12
189	"Total―analysis of the growing species in living cationic polymerizations by in-situ multinucleate NMR spectroscopy. Macromolecular Symposia, 1994, 88, 105-115.	0.4	2
190	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 727-738.	1.1	16
191	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 2035-2046.	1.1	21
192	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3441-3453.	1.1	27
193	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3455-3465.	1.1	14
194	Multifunctional coupling agents for living cationic polymerization. I. Sodiomalonate anions for vinyl ethers. Journal of Polymer Science Part A, 1993, 31, 1531-1542.	2.5	19
195	Star-shaped polymers by living cationic polymerization. VII. Amphiphilic graft polymers of vinyl ethers with hydroxyl groups: Synthesis and host–guest interaction. Journal of Polymer Science Part A, 1993, 31, 2513-2521.	2.5	19
196	Sequence-regulated oligomers and polymers by living cationic polymerization. III. Synthesis and reactions of sequence-regulated oligomers with a polymerizable group. Journal of Polymer Science Part A, 1993, 31, 2789-2797.	2.5	13
197	Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. XII. Phosphoric and phosphinic acids/zinc chloride initiating systems for isobutyl vinyl ether. Journal of Polymer Science Part A, 1993, 31, 2987-2994.	2.5	10
198	Principles and design of living cationic polymerization of vinyl monomers: The nature of the growing species based on in-situ 1 H NMR analysis. Makromolekulare Chemie Macromolecular Symposia, 1993, 67, 299-309.	0.6	5

#	Article	IF	CITATIONS
199	New initiating systems for living cationic polymerization: Design and mechanism. Makromolekulare Chemie Macromolecular Symposia, 1992, 54-55, 41-50.	0.6	5
200	Living cationic polymerization of vinyl ethers and styrene derivatives: Design of initiating systems based on added salts with halogen anions. Makromolekulare Chemie Macromolecular Symposia, 1992, 60, 47-56.	0.6	9
201	Living cationic polymerization of isobutyl vinyl ether by protonic acid/zinc halide initiating systems: evidence for the halogen exchange with zinc halide in the growing species. Macromolecules, 1992, 25, 2587-2591.	2.2	80
202	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 1783-1792.	1.1	16
203	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 2027-2035.	1.1	30
204	Cationic polymerization of \hat{l}_{\pm} -pinene with the binary catalyst AlCl3/SbCl3. Die Makromolekulare Chemie, 1992, 193, 2311-2321.	1.1	40
205	Ionic Polymerization And Block And Graft Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 1991, 15, 197-206.	1.8	6
206	Living cationic polymerization of isobutyl vinyl ether by RCOOH/Lewis acid initiating systems: effects of carboxylate ions and Lewis acid activators. Macromolecules, 1991, 24, 3988-3992.	2.2	85
207	Living cationic polymerization of vinyl monomers: New initiators and functional polymer synthesis. Makromolekulare Chemie Macromolecular Symposia, 1991, 47, 67-81.	0.6	6
208	Modern cationic vinyl polymerization. Progress in Polymer Science, 1991, 16, 111-172.	11.8	421
208	Modern cationic vinyl polymerization. Progress in Polymer Science, 1991, 16, 111-172. Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare Chemie, 1991, 192, 2317-2331.	11.8	19
	Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare		
209	Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare Chemie, 1991, 192, 2317-2331.	1.1	19
209	Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare Chemie, 1991, 192, 2317-2331. Title is missing!. Die Makromolekulare Chemie, 1991, 192, 2479-2486. Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. IV. New initiating systems for selective and living polymerization of p-isopropenylphenyl glycidyl ether. Journal of Polymer Science Part A, 1991, 29, 339-346. Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. VII. Living cationic polymerization of isobutyl vinyl ether by trimethylsilyl halide/zinc halide initiating systems in the presence of p-methoxybenzaldehyde: Effects of halide anions and zinc halides. Journal of Polymer	1.1	19
209 210 211	Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare Chemie, 1991, 192, 2317-2331. Title is missing!. Die Makromolekulare Chemie, 1991, 192, 2479-2486. Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. IV. New initiating systems for selective and living polymerization of p-isopropenylphenyl glycidyl ether. Journal of Polymer Science Part A, 1991, 29, 339-346. Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. VII. Living cationic polymerization of isobutyl vinyl ether by trimethylsilyl halide/zinc halide initiating systems in	1.1 1.1 2.5	19 4 3
209 210 211 212	Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare Chemie, 1991, 192, 2317-2331. Title is missing!. Die Makromolekulare Chemie, 1991, 192, 2479-2486. Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. IV. New initiating systems for selective and living polymerization of p-isopropenylphenyl glycidyl ether. Journal of Polymer Science Part A, 1991, 29, 339-346. Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. VII. Living cationic polymerization of isobutyl vinyl ether by trimethylsilyl halide/zinc halide initiating systems in the presence of p-methoxybenzaldehyde: Effects of halide anions and zinc halides. Journal of Polymer Science Part A, 1991, 29, 1909-1915. Design and initiators of living cationic polymerization of vinyl monomers. Makromolekulare Chemie	1.1 1.1 2.5 2.5	19 4 3 14
209 210 211 212 213	Living cationic polymerization of vinyl ethers with a bifunctional initiator. Die Makromolekulare Chemie, 1991, 192, 2317-2331. Title is missing!. Die Makromolekulare Chemie, 1991, 192, 2479-2486. Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. IV. New initiating systems for selective and living polymerization of p-isopropenylphenyl glycidyl ether. Journal of Polymer Science Part A, 1991, 29, 339-346. Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. VII. Living cationic polymerization of isobutyl vinyl ether by trimethylsilyl halide/zinc halide initiating systems in the presence of p-methoxybenzaldehyde: Effects of halide anions and zinc halides. Journal of Polymer Science Part A, 1991, 29, 1909-1915. Design and initiators of living cationic polymerization of vinyl monomers. Makromolekulare Chemie Macromolecular Symposia, 1990, 32, 131-144. Amphiphilic block copolymers of vinyl ethers by living cationic polymerization. II. Synthesis and surface activity of macromolecular amphiphiles with pendant amino groups. Journal of Polymer	1.1 1.1 2.5 2.5	19 4 3 14 30

#	Article	IF	Citations
217	Lifetime of living polymers in cationic polymerization. III. Living polymerization of isobutyl vinyl ether initiated by a cationogen/etalcl2 system in the presence of 1,4-dioxane as an added base. Journal of Polymer Science Part A, 1990, 28, 2937-2948.	2.5	4
218	Living cationic polymerization of p-methylstyrene by hydrogen iodide/zinc halide initiating systems. Journal of Polymer Science Part A, 1990, 28, 3007-3017.	2.5	25
219	Living cationic polymerization of 4-tert-butoxystyrene and synthesis of poly(4-vinylphenol) with narrow molecular weight distribution. Die Makromolekulare Chemie, 1989, 15, 127-136.	1.1	35
220	Synthesis of end-functionalized polymers by living cationic polymerization of isobutyl vinyl ether with EtAlCl2. Polymer Bulletin, 1989, 21, 357-363.	1.7	20
221	Living cationic polymerization of ethyl 2-(vinyloxy)ethoxyacetate: A vinyl ether with an ether and an ester function in the pendant. Journal of Polymer Science Part A, 1989, 27, 3303-3314.	2.5	17
222	Living cationic polymerization of 2-vinyloxyethyl phthalimide: Synthesis of poly(vinyl ether) with pendant primary amino functions. Journal of Polymer Science Part A, 1988, 26, 3361-3374.	2.5	43
223	Synthesis of new functional polymers by living cationic polymerization. Makromolekulare Chemie Macromolecular Symposia, 1988, 13-14, 513-526.	0.6	54
224	New initiators for living cationic polymerization of vinyl compounds. Makromolekulare Chemie Macromolecular Symposia, 1988, 13-14, 457-471.	0.6	112
225	Living Cationic Homo- and Copolymerizations of Vinyl Ethers Bearing a Perfluoroalkyl Pendant. Polymer Journal, 1988, 20, 201-206.	1.3	29
226	Living Cationic Polymerization of 2-Phenoxyethyl Vinyl Ether and Its Ring-Substituted Derivatives: Effects of para-Substituents. Polymer Journal, 1987, 19, 889-896.	1.3	12
227	Living Cationic Polymerization of a Vinyl Ether with a Malonic Ester Function. Polymer Journal, 1987, 19, 515-521.	1.3	29
228	End-functionalized polymers by living cationic polymerization. Polymer Bulletin, 1987, 18, 117.	1.7	29
229	Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. I. p-isopropenylphenyl glycidyl ether: An epoxy-functionalized \hat{l}_{\pm} -methylstyrene. Journal of Polymer Science Part A, 1987, 25, 1073-1084.	2.5	7
230	Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. III. 2-vinyloxyethyl glycidyl ether: An epoxy-functionalized vinyl ether. Journal of Polymer Science Part A, 1987, 25, 2717-2727.	2.5	6
231	Selective vinyl cationic polymerization of monomers with two cationically polymerizable groups. II. p-vinylphenyl glycidyl ether: An epoxy-functionalized styrene. Journal of Polymer Science Part A, 1987, 25, 2827-2838.	2.5	4
232	Vinyl ethers with a functional group: Living cationic polymerization and synthesis of monodisperse polymers. Makromolekulare Chemie Macromolecular Symposia, 1986, 3, 99-111.	0.6	47
233	Cationic polymerization of p-methylstyrene initiated by acetyl perchlorate: An approach to living polymerization. Journal of Polymer Science Part A, 1986, 24, 87-96.	2.5	16
234	Living polymerization of isobutyl vinyl ether by HI/I2 initiator in polar solvents. Journal of Polymer Science Part A, 1986, 24, 2261-2270.	2.5	22

#	Article	IF	Citations
235	Living cationic polymerization of cis- and trans-ethyl propenyl ethers and synthesis of block copolymers with isobutyl vinyl ether. Journal of Polymer Science Part A, 1986, 24, 2919-2926.	2.5	13
236	End-functionalized polymers by living cationic polymerization. Polymer Bulletin, 1986, 16, 117-123.	1.7	32
237	Cationic Polymerization of p-Methoxystyrene by the Triphenylmethyl Bromide/Iodine Initiating System: Formation of Long-Lived Polymers in Polar Solvent. Polymer Journal, 1985, 17, 1085-1090.	1.3	6
238	Living Cationic Copolymerization of Isobutyl Vinyl Ether with P-Methoxystyrene by Hydrogen lodide/lodine Initiating System. Polymer Journal, 1985, 17, 929-933.	1.3	17
239	Living Cationic Polymerization of 2-Chloroethyl Vinyl Ether with Iodine and Hydrogen Iodide/Iodine Initiators. Polymer Journal, 1984, 16, 401-406.	1.3	20
240	Living cationic polymerization of isobutyl propenyl ether as \hat{l}^2 -substituted vinyl ether. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3173-3181.	0.8	22
241	Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules, 1984, 17, 265-268.	2.2	456
242	Synthesis of Living Cationic Poly(N-vinylcarbazole) with Low Molecular Weight. Polymer Journal, 1983, 15, 385-388.	1.3	28
243	C3 Cyclopolymerization VI1. Direct Observation of the Propagating Species in the Cationic Polymerization of 1,3-Bis(P-vinylphenyl)propane in 1,2-Dichloroethane. Polymer Journal, 1983, 15, 303-307.	1.3	7
244	Quasiliving Carbocationic Polymerization. VI. Quasiliving Polymerization of Isobutyl Vinyl Ether. Journal of Macromolecular Science Part A, Chemistry, 1982, 18, 1275-1291.	0.4	24
245	Quasiliving Carbocationic Polymerization. VII. Block Polymerization of $\hat{I}\pm$ -Methylstyrene from Quasiliving Poly(isobutyl Vinyl Ether) Dication. Journal of Macromolecular Science Part A, Chemistry, 1982, 18, 1293-1300.	0.4	14
246	Quasiliving Carbocationic Polymerization. VIII. Quasiliving Polymerization of Methyl Vinyl Ether and Its Blocking from Quasiliving Poly(isobutyl Vinyl Ether) Dication. Journal of Macromolecular Science Part A, Chemistry, 1982, 18, 1301-1313.	0.4	16
247	Living Cationic Polymerization of N-Vinylcarbazole with Iodine. Polymer Journal, 1980, 12, 393-398.	1.3	37
248	Conductance stopped-flow study of cationic polymerizations of p-methoxystyrene and styrene. Polymer Bulletin, 1980, 2, 309-313.	1.7	8
249	Studies on propagating species in cationic polymerization of styrene derivatives by acetyl perchlorate or iodine. IV. Common-ion salt effect on the polymerization rate and the steric structure of the polymer obtained by acetyl perchlorate. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16, 503-510.	0.8	4
250	Cationic polymerization of styrene by metal halide and nonmetal halide initiators: Difference between the propagating species derived from the two categories of initiators. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16, 2675-2678.	0.8	5
251	Transfer Reaction of the Two Propagating Species in Cationic Polymerization of Styrene by Acetyl Perchlorate or Trifluoromethanesulfonic Acid. Polymer Journal, 1977, 9, 377-380.	1.3	1
252	Title is missing!. Die Makromolekulare Chemie, 1977, 178, 389-399.	1.1	21

#	Article	IF	CITATIONS
253	Title is missing!. Die Makromolekulare Chemie, 1977, 178, 1497-1505.	1.1	6
254	Title is missing!. Die Makromolekulare Chemie, 1976, 177, 2981-2993.	1.1	29
255	Title is missing!. Die Makromolekulare Chemie, 1976, 177, 2995-3007.	1.1	38
256	Selective dimerization of styrene to 1,3-diphenyl-1-butene catalyzed by trifluoromethanesulfonic acid or acetyl perchlorate. Journal of Polymer Science, Polymer Letters Edition, 1975, 13, 279-282.	0.4	33