Seong-Ho Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7349328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Openâ€Ended, Nâ€Doped Carbon Nanotube–Graphene Hybrid Nanostructures as Highâ€Performance Catalyst Support. Advanced Functional Materials, 2011, 21, 999-1006.	14.9	358
2	KOH activation of carbon nanofibers. Carbon, 2004, 42, 1723-1729.	10.3	326
3	Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon, 2010, 48, 4248-4255.	10.3	211
4	Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon, 2005, 43, 2730-2736.	10.3	200
5	Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon, 2004, 42, 21-32.	10.3	168
6	Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-Polyol Method and Their Application to Fuel Cells. Langmuir, 2007, 23, 387-390.	3.5	132
7	KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC. Energy & Fuels, 2006, 20, 1680-1684.	5.1	120
8	Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon. Journal of Hazardous Materials, 2013, 260, 82-88.	12.4	109
9	Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch. Carbon, 2015, 94, 432-438.	10.3	109
10	Electrochemical Capacitances of Well-Defined Carbon Surfaces. Langmuir, 2006, 22, 9086-9088.	3.5	104
11	Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon, 2017, 114, 98-105.	10.3	97
12	Stepwise Growth of Decahedral and Icosahedral Silver Nanocrystals in DMF. Crystal Growth and Design, 2010, 10, 296-301.	3.0	93
13	Removal of formaldehyde at low concentration using various activated carbon fibers. Journal of Applied Polymer Science, 2007, 106, 2151-2157.	2.6	92
14	A conceptual model for the structure of catalytically grown carbon nano-fibers. Carbon, 2005, 43, 1828-1838.	10.3	91
15	Adsorption of ethanol onto parent and surface treated activated carbon powders. International Journal of Heat and Mass Transfer, 2014, 73, 445-455.	4.8	89
16	Activation of coal tar derived needle coke with K2CO3 into an active carbon of low surface area and its performance as unique electrode of electric double-layer capacitor. Carbon, 2005, 43, 2960-2967.	10.3	88
17	Study on biomass derived activated carbons for adsorptive heat pump application. International Journal of Heat and Mass Transfer, 2017, 110, 7-19.	4.8	85
18	Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon, 2014, 77, 747-755.	10.3	83

#	Article	IF	CITATIONS
19	Surface Modification of Carbon Nanofiber with High Degree of Graphitization. Journal of Physical Chemistry B, 2004, 108, 1533-1536.	2.6	81
20	Adsorption of ethanol onto phenol resin based adsorbents for developing next generation cooling systems. International Journal of Heat and Mass Transfer, 2015, 81, 171-178.	4.8	78
21	Platinum Nanoparticles Supported on Nitrogenâ€doped Carbon Nanofibers as Efficient Poisoning Catalysts for the Hydrogenation of Nitroarenes. ChemCatChem, 2011, 3, 1578-1581.	3.7	76
22	Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. Journal of Power Sources, 2004, 133, 298-301.	7.8	75
23	Preparation of highly crystalline nanofibers on Fe and Fe–Ni catalysts with a variety of graphene plane alignments. Carbon, 2004, 42, 591-597.	10.3	73
24	Carbon Nanofibers: A Novel Nanofiller for Nanofluid Applications. Small, 2007, 3, 1209-1213.	10.0	73
25	Isotherms and thermodynamics for the adsorption of n-butane on pitch based activated carbon. International Journal of Heat and Mass Transfer, 2008, 51, 1582-1589.	4.8	73
26	Ruthenium Nanoparticles on Nano‣evelâ€Controlled Carbon Supports as Highly Effective Catalysts for Arene Hydrogenation. Chemistry - an Asian Journal, 2007, 2, 1524-1533.	3.3	72
27	Pore Structure Analysis of Activated Carbon Fiber by Microdomain-Based Model. Langmuir, 2009, 25, 7631-7637.	3.5	72
28	Electrochemical surface oxidation of carbon nanofibers. Carbon, 2011, 49, 96-105.	10.3	72
29	The effect of carbon species on the properties of Fe/C composite for metal–air battery anode. Journal of Power Sources, 2005, 143, 256-264.	7.8	71
30	Preparation of pitch based carbon fibers using Hyper-coal as a raw material. Carbon, 2016, 106, 28-36.	10.3	69
31	Li+ storage sites in non-graphitizable carbons prepared from methylnaphthalene-derived isotropic pitches. Carbon, 2000, 38, 995-1001.	10.3	68
32	Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes. Journal of Power Sources, 2007, 168, 522-532.	7.8	68
33	Fe2O3-filled carbon nanotubes as a negative electrode for an Fe–air battery. Journal of Power Sources, 2008, 178, 393-401.	7.8	68
34	Evolution of Phosphorus-Containing Groups on Activated Carbons during Heat Treatment. Langmuir, 2017, 33, 3112-3122.	3.5	68
35	Highly graphitized carbon from non-graphitizable raw material and its formation mechanism based on domain theory. Carbon, 2017, 121, 301-308.	10.3	68
36	Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon, 2016, 99, 649-657.	10.3	67

#	Article	IF	CITATIONS
37	Rhodium Nanoparticles Supported on Carbon Nanofibers as an Arene Hydrogenation Catalyst Highly Tolerant to a Coexisting Epoxido Group. Organic Letters, 2009, 11, 5042-5045.	4.6	66
38	The electrochemical properties of Fe2O3-loaded carbon electrodes for iron–air battery anodes. Journal of Power Sources, 2005, 150, 261-271.	7.8	64
39	Adsorption characteristics of ethanol onto functional activated carbons with controlled oxygen content. Applied Thermal Engineering, 2014, 72, 211-218.	6.0	64
40	The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures. Carbon, 2015, 81, 694-701.	10.3	60
41	Carbon nano-rod as a structural unit of carbon nanofibers. Carbon, 2004, 42, 3087-3095.	10.3	59
42	Electric double-layer capacitance of microporous carbon nano spheres prepared through precipitation of aromatic resin pitch. Journal of Power Sources, 2005, 139, 379-383.	7.8	57
43	Direct Synthesis and Structural Analysis of Nitrogen-Doped Carbon Nanofibers. Langmuir, 2009, 25, 8268-8273.	3.5	57
44	The preparation of a novel Si–CNF composite as an effective anodic material for lithium–ion batteries. Carbon, 2009, 47, 3383-3391.	10.3	56
45	Structural features of polyacrylonitrile-based carbon fibers. Journal of Materials Science, 2012, 47, 919-928.	3.7	54
46	A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons. Applied Energy, 2020, 264, 114720.	10.1	53
47	Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analyses. Carbon, 1994, 32, 281-287.	10.3	51
48	Formation of fine Fe–Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers. Carbon, 2004, 42, 1291-1298.	10.3	50
49	The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature range of their spinning. Carbon, 1994, 32, 273-280.	10.3	48
50	Hydro-conversion of 1-methyl naphthalene into (alkyl)benzenes over alumina-coated USY zeolite-supported NiMoS catalysts. Fuel, 2011, 90, 182-189.	6.4	47
51	Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochimica Acta, 2013, 93, 236-240.	5.2	47
52	Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction. Journal of Applied Electrochemistry, 2013, 43, 387-397.	2.9	46
53	Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch. Carbon, 1996, 34, 83-88.	10.3	45
54	Mesoscopic Structure and Properties of Liquid Crystalline Mesophase Pitch and Its Transformation into Carbon Fiber. Chemical Record, 2002, 2, 81-101.	5.8	45

#	Article	IF	CITATIONS
55	Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF/BF3. Carbon, 1993, 31, 849-856.	10.3	44
56	Anode performance of boron-doped graphites prepared from shot and sponge cokes. Journal of Power Sources, 2010, 195, 1714-1719.	7.8	44
57	Catalytic activity and activation mechanism of potassium carbonate supported on perovskite oxide for coal char combustion. Fuel, 2012, 94, 516-522.	6.4	44
58	Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. Journal of Industrial and Engineering Chemistry, 2016, 34, 397-404.	5.8	44
59	Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons. Applied Thermal Engineering, 2017, 122, 389-397.	6.0	44
60	Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon, 2020, 158, 922-929.	10.3	43
61	Adsorption Rate of Ethanol on Activated Carbon Fiber. Journal of Chemical & Engineering Data, 2006, 51, 1587-1592.	1.9	42
62	Catalysts in syntheses of carbon and carbon precursors. Journal of the Brazilian Chemical Society, 2006, 17, 1059-1073.	0.6	41
63	(<i>Z</i>)â€Selective Partial Hydrogenation of Internal Alkynes by Using Palladium Nanoparticles Supported on Nitrogenâ€Doped Carbon Nanofiber. ChemCatChem, 2012, 4, 778-781.	3.7	41
64	C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon, 2016, 103, 28-35.	10.3	40
65	Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. F1B NMR study of the cmmirmath altimg="si1.gif" display="inline" overflow="scroll"	4.4	39
66	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	10.3	38
67	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevie. Carbon Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature. Applied Catalysis B: Environmental, 2011, 110, 273-278.	20.2	37
68	Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 2021, 183, 735-742.	10.3	37
69	Preparation of Novel Isotropic Pitch with High Softening Point and Solvent Solubility for Pitch-based Electrospun Carbon Nanofiber. Current Organic Chemistry, 2013, 17, 1463-1468.	1.6	37
70	Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil. Scientific Reports, 2013, 3, 2902.	3.3	35
71	Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chemical Communications, 2011, 47, 9429.	4.1	34
72	Synthesis and characterization of high-softening-point methylene-bridged pitches by visible light irradiation assisted free-radical bromination. Carbon, 2015, 95, 780-788.	10.3	34

#	Article	IF	CITATIONS
73	Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride. Journal of Industrial and Engineering Chemistry, 2018, 67, 276-283.	5.8	34
74	Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environmental Science: Nano, 2019, 6, 916-924.	4.3	34
75	Highly-dispersed and Size-controlled Ruthenium Nanoparticles on Carbon Nanofibers: Preparation, Characterization, and Catalysis. Chemistry Letters, 2006, 35, 876-877.	1.3	33
76	Mild hydrocracking of 1-methyl naphthalene (1-MN) over alumina modified zeolite. Journal of Industrial and Engineering Chemistry, 2013, 19, 627-632.	5.8	33
77	Correlation between Fluidity Properties and Local Structures of Three Typical Asian Coal Ashes. Energy & Fuels, 2012, 26, 2136-2144.	5.1	31
78	Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries. Electrochimica Acta, 2016, 213, 432-438.	5.2	31
79	Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition. Carbon Letters, 2016, 19, 72-78.	5.9	31
80	Molecular simulation aided nanoporous carbon design for highly efficient low-concentrated formaldehyde capture. Carbon, 2017, 124, 152-160.	10.3	30
81	Microstructural transformations of two representative slags at high temperatures and effects on the viscosity. Journal of Industrial and Engineering Chemistry, 2014, 20, 1338-1345.	5.8	29
82	Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers. Journal of Power Sources, 2021, 482, 228903.	7.8	28
83	Pitch based carbon fibers for automotive body and electrodes. Carbon Letters, 2014, 15, 162-170.	5.9	28
84	Plugging problems observed in severe hydrocracking of vacuum residue. Fuel, 2009, 88, 663-669.	6.4	26
85	Preparation of isotropic spinnable pitch and carbon fiber by the bromination–dehydrobromination of biotar and ethylene bottom oil mixture. Journal of Materials Science, 2017, 52, 1165-1171.	3.7	26
86	Correlation between the carbon structures and their tolerance to carbon corrosion as catalyst supports for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2018, 43, 6406-6412.	7.1	26
87	Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde. Journal of Industrial and Engineering Chemistry, 2019, 80, 98-105.	5.8	26
88	An urchin-like graphite-based anode material for lithium ion batteries. Electrochimica Acta, 2010, 55, 5519-5522.	5.2	24
89	Fabrication of Uniform Graphene Discs <i>via</i> Transversal Cutting of Carbon Nanofibers. ACS Nano, 2011, 5, 6254-6261.	14.6	24
90	Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal–air batteries: A fundamental reason. Carbon, 2014, 80, 698-707.	10.3	24

#	Article	IF	CITATIONS
91	Chemoselective Hydrogenation of Functionalized Nitroarenes and Imines by Using Carbon Nanofiber-Supported Iridium Nanoparticles. Chemistry - an Asian Journal, 2014, 9, 71-74.	3.3	22
92	Adsorption of Difluoromethane (HFC-32) onto phenol resin based adsorbent: Theory and experiments. International Journal of Heat and Mass Transfer, 2018, 127, 348-356.	4.8	22
93	Influence of surface functionalities on ethanol adsorption characteristics in activated carbons for adsorption heat pumps. Applied Thermal Engineering, 2014, 72, 160-165.	6.0	21
94	Low-temperature catalytic conversion of lignite: 1. Steam gasification using potassium carbonate supported on perovskite oxide. Journal of Industrial and Engineering Chemistry, 2014, 20, 216-221.	5.8	20
95	Preparation and characterization of high-spinnability isotropic pitch from 1-methylnaphthalene-extracted low-rank coal by co-carbonization with petroleum residue. Carbon, 2019, 155, 186-194.	10.3	20
96	Nitrogen-doped ordered porous carbon catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Solid State Electrochemistry, 2013, 17, 2567-2577.	2.5	19
97	Low-temperature catalytic conversion of lignite: 3. Tar reforming using the supported potassium carbonate. Journal of Industrial and Engineering Chemistry, 2014, 20, 9-12.	5.8	19
98	Shortening Stabilization Time Using Pressurized Air Flow in Manufacturing Mesophase Pitch-Based Carbon Fiber. Polymers, 2019, 11, 1911.	4.5	19
99	Kinetics and Mechanism Study of Low-Temperature Selective Catalytic Reduction of NO with Urea Supported on Pitch-Based Spherical Activated Carbon. Industrial & Engineering Chemistry Research, 2011, 50, 6017-6027.	3.7	18
100	Electrochemical Catalytic Activity for Oxygen Reduction Reaction of Nitrogen-Doped Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 6350-6358.	0.9	18
101	An EVS (electrochemical voltage spectroscopy) study for the comparison of graphitization behaviors of two petroleum needle cokes. Carbon, 2000, 38, 1261-1269.	10.3	17
102	Effects of oxidation and heat treatment of acetylene blacks on their electrochemical double layer capacitances. Carbon, 2009, 47, 226-233.	10.3	17
103	Environmental-friendly production of carbon fiber from isotropic hybrid pitches synthesized from waste biomass and polystyrene with ethylene bottom oil. Journal of Cleaner Production, 2019, 239, 118025.	9.3	17
104	Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride. Journal of Industrial and Engineering Chemistry, 2018, 67, 358-364.	5.8	16
105	Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells. Nanomaterials, 2016, 6, 148.	4.1	15
106	Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery. New Carbon Materials, 2010, 25, 89-96.	6.1	14
107	Meso-channel Development in Graphitic Carbon Nanofibers with Various Structures. Chemistry of Materials, 2011, 23, 4141-4148.	6.7	14
108	Studying Rotational Mobility of Vâ•O Complexes in Atmospheric Residues and Their Resins and Asphaltenes by Electron Spin Resonance. Energy & Fuels, 2017, 31, 4748-4757.	5.1	14

#	Article	IF	CITATIONS
109	Hydrotreating Reactivities of Atmospheric Residues and Correlation with Their Composition and Properties. Energy & Fuels, 2018, 32, 6726-6736.	5.1	14
110	Effect of the pre-treated pyrolysis fuel oil: coal tar pitch ratio on the spinnability and oxidation properties of isotropic pitch precursors and the mechanical properties of derived carbon fibers. Carbon Letters, 2019, 29, 193-202.	5.9	14
111	Effect of oxygen-introduced pitch precursor on the properties and structure evolution of isotropic pitch-based fibers during carbonization and graphitization. Fuel Processing Technology, 2020, 199, 106291.	7.2	14
112	Correlation between molecular stacking and anisotropic texture in spinnable mesophase pitch. Carbon, 2022, 192, 395-404.	10.3	13
113	Progress and effectiveness of structural models of carbons. Tanso, 2004, 2004, 274-284.	0.1	12
114	Carbon nanofibers with radially oriented channels. Carbon, 2007, 45, 173-179.	10.3	12
115	Low-temperature catalytic conversion of lignite: 2. Recovery and reuse of potassium carbonate supported on perovskite oxide in steam gasification. Journal of Industrial and Engineering Chemistry, 2014, 20, 194-201.	5.8	12
116	Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis. Carbon Letters, 2019, 29, 307-317.	5.9	12
117	Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization. Electrochimica Acta, 2008, 53, 5789-5795.	5.2	11
118	Control of nitrogen content and its effects on the electrochemical behavior of nitrogen-doped carbon nanofibers. Journal of Electroanalytical Chemistry, 2016, 768, 34-40.	3.8	11
119	Examining the molecular entanglement between Vi€O complexes and their matrices in atmospheric residues by ESR. RSC Advances, 2017, 7, 37908-37914.	3.6	11
120	The crystalline and microstructural transformations of two coal ashes and their quenched slags with similar chemical compositions during heat treatment. Journal of Industrial and Engineering Chemistry, 2015, 22, 110-119.	5.8	10
121	Effects of Blending and Heat-Treating on Composition and Distribution of SARA Fractions of Atmospheric Residues. Energy & Fuels, 2017, 31, 6637-6648.	5.1	10
122	Changes in Composition and Molecular Structures of Atmospheric Residues during Hydrotreating. Energy & Fuels, 2019, 33, 10787-10794.	5.1	10
123	The Bimetallic Effects of Catalysts on the Syntheses of Thin Carbon Nanofibers. Journal of Physical Chemistry C, 2008, 112, 10050-10060.	3.1	9
124	Platinum catalysts supported on hydrothermally stable mesoporous aluminosilicate for the catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs). Catalysis Communications, 2010, 11, 1068-1071.	3.3	9
125	Characteristics on HDS over amorphous silica–alumina in single and dual catalytic bed system for gas oil. Catalysis Today, 2011, 164, 100-106.	4.4	9
126	Identification and quantification of (alkyl)benzenes in hydrocracked products of light cycle oil by GC–AED. Fuel, 2013, 111, 883-886.	6.4	9

#	Article	IF	CITATIONS
127	Effect of pore size in activated carbon on the response characteristic of electric double layer capacitor. Journal of Industrial and Engineering Chemistry, 2021, 102, 321-326.	5.8	9
128	Thermophysical Characteristics of Novel Biomass-Derived Activated Carbon as a Function of Synthesis Parameters. Heat Transfer Engineering, 2022, 43, 1694-1707.	1.9	9
129	Synthesis of surface-replicated ultra-thin silica hollow nanofibers using structurally different carbon nanofibers as templates. Journal of Solid State Chemistry, 2019, 272, 21-26.	2.9	8
130	Thermodynamic trends in the uptake capacity of porous adsorbents on methane and hydrogen. Applied Physics Letters, 2008, 92, 201911.	3.3	7
131	Structure and electrochemical applications of boron-doped graphitized carbon nanofibers. Nanotechnology, 2012, 23, 315602.	2.6	7
132	TiO2-entrained tubular carbon nanofiber and its electrochemical properties in the rechargeable Na-ion battery system. Applied Thermal Engineering, 2014, 72, 309-314.	6.0	7
133	Quantitative analysis of BF4â^' ions infiltrated into micropores of activated carbon fibers using nuclear magnetic resonance. RSC Advances, 2014, 4, 16726.	3.6	7
134	Specific Inhibition of the Hydrogenolysis of Benzylic Câ^'O Bonds Using Palladium Nanoparticles Supported on Nitrogenâ€Đoped Carbon Nanofibers. ChemCatChem, 2018, 10, 505-509.	3.7	7
135	Behaviors of Cellulose-Based Activated Carbon Fiber for Acetaldehyde Adsorption at Low Concentration. Applied Sciences (Switzerland), 2020, 10, 25.	2.5	7
136	Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization. Desalination, 2022, 539, 115901.	8.2	7
137	MAS, STMAS and DQMAS NMR Studies of the Thermal Transformation of Kaolinite. Applied Magnetic Resonance, 2013, 44, 1081-1094.	1.2	6
138	Structural effects on the enhancement of first-cycle Coulombic efficiency of mangrove-derived hard carbon as an anode material in sodium ion batteries. SN Applied Sciences, 2019, 1, 1.	2.9	6
139	¹⁹ F <i>Ex Situ</i> Solid-State NMR Study on Structural Differences in Pores of Activated Carbon Series Derived from Chemical and Physical Activation Processes for EDLCs. Journal of Physical Chemistry C, 2020, 124, 12457-12465.	3.1	6
140	Highly Chlorinated Polyvinyl Chloride as a Novel Precursor for Fibrous Carbon Material. Polymers, 2020, 12, 328.	4.5	6
141	Establishment of Innovative Carbon Nanofiber Synthesis Technology Utilizing Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 3844-3852.	6.7	6
142	Study on structural and compositional transitions of coal ash by using NMR. Science in China Series A: Mathematics, 2012, 18, 80-87.	0.2	5
143	Solid electrolyte interphase formation behavior on well-defined carbon surfaces for Li-ion battery systems. Electrochimica Acta, 2012, 77, 111-120.	5.2	5
144	Preparation of chestnut-like carbon and its application for electrodes with high specific capacitance. Applied Catalysis B: Environmental, 2014, 158-159, 308-313.	20.2	5

#	Article	IF	CITATIONS
145	Fast Water Relaxation through Oneâ€Dimensional Channels by Rapid Energy Transfer. ChemPhysChem, 2016, 17, 3409-3415.	2.1	5
146	An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system. New Carbon Materials, 2016, 31, 378-385.	6.1	5
147	Fabrication of monolithic carbon nanofiber/carbon composites. RSC Advances, 2016, 6, 6443-6450.	3.6	5
148	Study toward high-performance thermally driven air-conditioning systems. AIP Conference Proceedings, 2017, , .	0.4	5
149	Enhanced activity and durability of the oxygen reduction catalysts supported on the surface expanded tubular-type carbon nanofiber. Applied Catalysis B: Environmental, 2017, 217, 192-200.	20.2	5
150	The Preparation and Properties of Isotropic Pitch-Based Carbon Felt Prepared by Solvent-Supported Dual Concentric Electrospinning. Macromolecular Research, 2019, 27, 1024-1029.	2.4	5
151	Microvoids Present in Anisotropic Mesophase Pitch, Their As-spun and Annealed Fibers. Chemistry Letters, 2003, 32, 168-169.	1.3	4
152	Structural Units and Their Periodicity in Carbon Nanotubes. Small, 2010, 6, 2526-2529.	10.0	4
153	Synthesis of silicon monoxide–pyrolytic carbon–carbon nanofiber composites and their hybridization with natural graphite as a means of improving the anodic performance of lithium-ion batteries. Nanotechnology, 2012, 23, 355601.	2.6	4
154	Interaction of Vanadyl Complexes in Atmospheric Residue with Their Matrixes: An ESR Study in a Temperature Range up to 170 ŰC. Journal of Physical Chemistry C, 2019, 123, 20587-20593.	3.1	4
155	Recognition and applications of hierarchical domain structural analysis for synthetic carbons. Tanso, 2018, 2018, 99-107.	0.1	4
156	Study on the applicability of pressurized physically activated carbon as an adsorbent in adsorption heat pumps. RSC Advances, 2022, 12, 2558-2563.	3.6	4
157	Ultra-deep Desulfurization Process of Diesel Fuel with Adsorption Treatment. Journal of the Japan Petroleum Institute, 2019, 62, 61-66.	0.6	3
158	Thermophysical and Adsorption Characteristics of Waste Biomass-Derived Activated Carbons. , 2020, , 617-628.		3
159	Structural pore elucidation of super-activated carbon based on the micro-domain structure model. Journal of Industrial and Engineering Chemistry, 2021, 101, 186-194.	5.8	3
160	Preparation of Isotropic Carbon Fibers from Kerosene-Purified Coal Tar Pitch by Co-Carbonization with Pyrolysis Fuel Oil. Materials, 2021, 14, 6280.	2.9	3
161	Physical mixtures of Si nanoparticles and carbon nanofibers as anode materials for lithium-ion batteries. Japanese Journal of Applied Physics, 2015, 54, 085001.	1.5	2
162	Enhancement of the rate performance of plasma-treated platelet carbon nanofiber anodes in lithium-ion batteries. RSC Advances, 2016, 6, 4810-4817.	3.6	2

#	Article	IF	CITATIONS
163	Dimensional control of tubular-type carbon nanofibers via pyrolytic carbon coating. Journal of Materials Science, 2017, 52, 5165-5178.	3.7	2
164	Molecular Behaviors on Asphaltenes during Atmospheric Residue Hydrodesulfurization. Energy & Fuels, 2021, 35, 13644-13653.	5.1	2
165	Selective Synthesis of Carbon Nanofibers as Better Catalyst Supports for Low-temperature Fuel Cells. , 0, , 71-87.		1
166	Improving Spinnability of Hyper-Coal Derived Spinnable Pitch through the Hydrogenation with 1,2,3,4-Tetrahydroquinoline. Journal of Carbon Research, 2018, 4, 46.	2.7	1
167	Toward development of activated carbons with enhanced effective adsorption amount by control of activation process. AIP Conference Proceedings, 2019, , .	0.4	1
168	Estimation of Mass Transfer Rate of Oxidant to Coal Char Particle Surface with Partial Oxidation Reaction in O ₂ /CO ₂ System. Kagaku Kogaku Ronbunshu, 2012, 38, 384-390.	0.3	1
169	Carbon nanofiber as a complementary functional material for use in the energy and environment fields. Tanso, 2013, 2013, 313-319.	0.1	0
170	Current features of traditional carbon materials. Tanso, 2015, 2015, 138-144.	0.1	0