Roderick H Dashwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research, 2007, 55, 224-236.	7.1	883
2	A Novel Mechanism of Chemoprotection by Sulforaphane. Cancer Research, 2004, 64, 5767-5774.	0.9	477
3	Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 2008, 269, 291-304.	7.2	457
4	Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc min mice. FASEB Journal, 2006, 20, 506-508.	0.5	327
5	Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis, 2006, 27, 811-819.	2.8	275
6	Dietary histone deacetylase inhibitors: From cells to mice to man. Seminars in Cancer Biology, 2007, 17, 363-369.	9.6	260
7	Dietary Sulforaphane, a Histone Deacetylase Inhibitor for Cancer Prevention. Journal of Nutrition, 2009, 139, 2393-2396.	2.9	197
8	Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Experimental Biology and Medicine, 2007, 232, 227-34.	2.4	183
9	Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: Studies with sulforaphane and garlic organosulfur compounds. Environmental and Molecular Mutagenesis, 2009, 50, 213-221.	2.2	180
10	Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention?. Carcinogenesis, 2006, 27, 344-349.	2.8	179
11	Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clinical Epigenetics, 2011, 3, 4.	4.1	177
12	Chemoprotection by sulforaphane: Keep one eye beyond Keap1. Cancer Letters, 2006, 233, 208-218.	7.2	160
13	Histone Deacetylases as Targets for Dietary Cancer Preventive Agents: Lessons Learned with Butyrate, Diallyl Disulfide, and Sulforaphane. Current Drug Targets, 2006, 7, 443-452.	2.1	158
14	Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Molecular Nutrition and Food Research, 2011, 55, 999-1009.	3.3	149
15	Metabolism and Tissue Distribution of Sulforaphane in Nrf2 Knockout and Wild-Type Mice. Pharmaceutical Research, 2011, 28, 3171-3179.	3.5	130
16	Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis, 2008, 29, 1816-1824.	2.8	127
17	Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clinical Epigenetics, 2011, 3, 3.	4.1	120
18	Chemopreventive properties of chlorophyllin: inhibition of aflatoxin B1 (AFB1)-DNA binding in vivo and anti-mutagenic activity against AFB1 and two heterocyclic amines in the salmonella mutagenicity assay. Carcinogenesis, 1991, 12, 939-942.	2.8	118

#	Article	IF	CITATIONS
19	Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis, 1995, 16, 2931-2937.	2.8	118
20	Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Molecular Cancer, 2011, 10, 68.	19.2	113
21	Chemopreventive properties of chlorophylls towards aflatoxin B1: a review of the antimutagenicity and anticarcinogenicity data in rainbow trout. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 399, 245-253.	1.0	110
22	Mechanisms of Chlorophyllin Anticarcinogenesis against Aflatoxin B1: Complex Formation with the Carcinogen. Chemical Research in Toxicology, 1995, 8, 506-514.	3.3	109
23	Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Molecular Nutrition and Food Research, 2015, 59, 424-433.	3.3	104
24	Suppression of tumorigenesis in the Apcmin mouse: down-regulation of beta-catenin signaling by a combination of tea plus sulindac. Carcinogenesis, 2003, 24, 263-267.	2.8	103
25	HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics, 2013, 8, 612-623.	2.7	103
26	Dietary Factors and Epigenetic Regulation for Prostate Cancer Prevention. Advances in Nutrition, 2011, 2, 497-510.	6.4	102
27	MicroRNAs, diet, and cancer: New mechanistic insights on the epigenetic actions of phytochemicals. Molecular Carcinogenesis, 2012, 51, 213-230.	2.7	101
28	Mechanisms of the in vitro antimutagenic action of chlorophyllin against benzo[a]pyrene: Studies of enzyme inhibition, molecular complex formation and degradation of the ultimate carcinogen. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 308, 191-203.	1.0	95
29	Effects of Chlorophyll and Chlorophyllin on Low-Dose Aflatoxin B1 Pharmacokinetics in Human Volunteers. Cancer Prevention Research, 2009, 2, 1015-1022.	1.5	93
30	Effects of Sulforaphane and 3,3′-Diindolylmethane on Genome-Wide Promoter Methylation in Normal Prostate Epithelial Cells and Prostate Cancer Cells. PLoS ONE, 2014, 9, e86787.	2.5	91
31	Dietary agents as histone deacetylase inhibitors. Molecular Carcinogenesis, 2006, 45, 443-446.	2.7	90
32	Natural chlorophyll inhibits aflatoxin B1-induced multi-organ carcinogenesis in the rat. Carcinogenesis, 2007, 28, 1294-1302.	2.8	88
33	Protection by chlorophyllin against the covalent binding of 2-amino-3-methylimidazo[4,5-f]qiiinoline (IQ) to rat liver DNA. Carcinogenesis, 1992, 13, 113-118.	2.8	87
34	Indole-3-carbinol: Anticarcinogen or tumor promoter in brassica vegetables?. Chemico-Biological Interactions, 1998, 110, 1-5.	4.0	84
35	Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Molecular Carcinogenesis, 2017, 56, 197-207.	2.7	83
36	Modulation of heterocyclic amine-induced mutagenicity and carcinogenicity: an 'A-to-Z' guide to chemopreventive agents, promoters, and transgenic models. Mutation Research - Reviews in Mutation Research, 2002, 511, 89-112.	5.5	82

Roderick H Dashwood

#	Article	IF	CITATIONS
37	Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer. Journal of Nutritional Biochemistry, 2017, 42, 72-83.	4.2	81
38	Â-Keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis, 2009, 30, 1416-1423.	2.8	74
39	3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicology and Applied Pharmacology, 2012, 263, 345-351.	2.8	73
40	Antimutagenic potency of chlorophyllin in the salmonella assay and its correlation with binding constants of mutagen-inhibitor complexes. Environmental and Molecular Mutagenesis, 1993, 22, 164-171.	2.2	69
41	Study of the forces stabilizing complexes between chlorophylls and heterocyclic amine mutagens. , 1996, 27, 211-218.		69
42	Metabolism as a key to histone deacetylase inhibition. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 181-199.	5.2	68
43	Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutrition Reviews, 2008, 66, S36-S38.	5.8	65
44	(â^')-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 2010, 501, 52-57.	3.0	65
45	Inhibition by chlorophyllin of 2-amino-3-methylimidazo-[4,5-f] quinoline-induced tumorigenesis in the male F344 rat. Cancer Letters, 1995, 95, 161-165.	7.2	64
46	Comparison of antiâ€inflammatory mechanisms of mango (<i>Mangifera Indica</i> L.) and pomegranate (<i>Punica Granatum</i> L.) in a preclinical model of colitis. Molecular Nutrition and Food Research, 2016, 60, 1912-1923.	3.3	64
47	Inhibition of 2-amino-3-methylimidazo[4.5-f] (IQ)-DNA binding by chlorophyllin: studies of enzyme inhibition and molecular complex formation. Carcinogenesis, 1992, 13, 1121-1126.	2.8	61
48	Phytochemicals from Cruciferous Vegetables, Epigenetics, and Prostate Cancer Prevention. AAPS Journal, 2013, 15, 951-961.	4.4	59
49	Chlorophyllin Chemoprevention in Trout Initiated by Aflatoxin B1 Bath Treatment: An Evaluation of Reduced Bioavailability vs. Target Organ Protective Mechanisms. Toxicology and Applied Pharmacology, 1999, 158, 141-151.	2.8	57
50	Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants, 2020, 9, 865.	5.1	56
51	NADPH oxidase overexpression in human colon cancers and rat colon tumors induced by 2â€aminoâ€1â€methylâ€6â€phenylimidazo[4,5â€ <i>b</i>]pyridine (PhIP). International Journal of Cancer, 2011, 2581-2590.	128,	55
52	Post-initiation effects of chlorophyllin and indole-3-carbinol in rats given 1,2-dimethylhydrazine or 2-amino-3-methyl- imidazo[4,5-f]quinoline. Carcinogenesis, 2001, 22, 309-314.	2.8	54
53	Nrf2 status affects tumor growth, HDAC3 gene promoter associations, and the response to sulforaphane in the colon. Clinical Epigenetics, 2015, 7, 102.	4.1	54
54	Â-Catenin mutation in rat colon tumors initiated by 1,2-dimethylhydrazine and 2-amino-3-methylimidazo[4,5-f]quinoline, and the effect of post-initiation treatment with chlorophyllin and indole-3-carbinol. Carcinogenesis, 2001, 22, 315-320.	2.8	53

#	Article	IF	CITATIONS
55	Histone and Non-Histone Targets of Dietary Deacetylase Inhibitors. Current Topics in Medicinal Chemistry, 2015, 16, 714-731.	2.1	53
56	Caspase-8 and apoptosis-inducing factor mediate a cytochrome c-independent pathway of apoptosis in human colon cancer cells induced by the dietary phytochemical chlorophyllin. Cancer Research, 2003, 63, 1254-61.	0.9	51
57	Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. Current Pharmacology Reports, 2015, 1, 102-111.	3.0	50
58	Response of Apcmin and A33ΔNβ-cat mutant mice to treatment with tea, sulindac, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 506-507, 121-127.	1.0	48
59	Antimutagenic activity of tea towards 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline: effect of tea concentration and brew time on electrophile scavenging. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 402, 299-306.	1.0	47
60	Evidence forras gene mutation in 2-amino-3-methylimidazo[4,5-f]quinoline–induced colonic aberrant crypts in the rat. Molecular Carcinogenesis, 1995, 12, 187-192.	2.7	46
61	Effects of tea and chlorophyllin on the mutagenicity ofN-hydroxy-IQ: Studies of enzyme inhibition, molecular complex formation, and degradation/scavenging of the active metabolites. , 1997, 30, 468-474.		46
62	Cancer Chemopreventive Mechanisms of Tea Against Heterocyclic Amine Mutagens from Cooked Meat. Proceedings of the Society for Experimental Biology and Medicine, 1999, 220, 239-243.	1.8	46
63	Heterocyclic Analogs of Sulforaphane Trigger DNA Damage and Impede DNA Repair in Colon Cancer Cells: Interplay of HATs and HDACs. Molecular Nutrition and Food Research, 2018, 62, e1800228.	3.3	45
64	Chemoprevention studies of heterocyclic amine-induced colon carcinogenesis. Cancer Letters, 1999, 143, 179-183.	7.2	44
65	Epigenetic inactivation of endothelinâ€2 and endothelinâ€3 in colon cancer. International Journal of Cancer, 2013, 132, 1004-1012.	5.1	44
66	Cancer chemoprevention by dietary chlorophylls: A 12,000-animal dose–dose matrix biomarker and tumor study. Food and Chemical Toxicology, 2012, 50, 341-352.	3.6	43
67	Reliable tumor detection by whole-genome methylation sequencing of cell-free DNA in cerebrospinal fluid of pediatric medulloblastoma. Science Advances, 2020, 6, .	10.3	42
68	Inhibition of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-DNA binding in rats given chlorophyllin: dose-response and time-course studies in the liver and colon. Carcinogenesis, 1994, 15, 763-766.	2.8	40
69	Chlorophyllin-enhanced excretion of urinary and fecal mutagens in rats given 2-amino-3-methylimidazo[4, 5-f]quinoline. Environmental and Molecular Mutagenesis, 1992, 20, 199-205.	2.2	39
70	Inhibitory Activity of Green and Black Tea in a Free Radical-generating System Using 2-Amino-3-methylimidazo[4,5-f]quinoline as Substrate. Japanese Journal of Cancer Research, 1997, 88, 553-558.	1.7	39
71	Low-dose dietary chlorophyll inhibits multi-organ carcinogenesis in the rainbow trout. Food and Chemical Toxicology, 2008, 46, 1014-1024.	3.6	39
72	Antioxidant and antigenotoxic activities of <i>Angelica keiskei, Oenanthe javanica</i> and <i>Brassica oleracea</i> in the Salmonella mutagenicity assay and in HCT116 human colon cancer cells. BioFactors, 2006, 26, 231-244.	5.4	38

#	Article	IF	CITATIONS
73	A role for low-abundance miRNAs in colon cancer: the miR-206/Krüppel-like factor 4 (KLF4) axis. Clinical Epigenetics, 2012, 4, 16.	4.1	38
74	Frequent mutations of the rat ?-catenin gene in colon cancers induced by methylazoxymethanol acetate plus 1-hydroxyanthraquinone. , 1999, 24, 232-237.		37
75	The importance of using pure chemicals in (anti)mutagenicity studies: chlorophyllin as a case in point. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 381, 283-286.	1.0	36
76	Phosphorylation and ubiquitination of oncogenic mutants of β-catenin containing substitutions at Asp32. Oncogene, 2004, 23, 4839-4846.	5.9	35
77	Micro <scp>RNA</scp> profiling of carcinogenâ€induced rat colon tumors and the influence of dietary spinach. Molecular Nutrition and Food Research, 2012, 56, 1259-1269.	3.3	33
78	The Dietary Phytochemical Chlorophyllin Alters E-Cadherin and β-Catenin Expression in Human Colon Cancer Cells. Journal of Nutrition, 2004, 134, 3441S-3444S.	2.9	32
79	Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis. Carcinogenesis, 2008, 30, 315-320.	2.8	29
80	Protective versus promotional effects of white tea and caffeine on PhIP-induced tumorigenesis and β-catenin expression in the rat. Carcinogenesis, 2008, 29, 834-839.	2.8	29
81	E2F4 and ribonucleotide reductase mediate Sâ€phase arrest in colon cancer cells treated with chlorophyllin. International Journal of Cancer, 2009, 125, 2086-2094.	5.1	29
82	A functional pseudogene, <i>NMRAL2P</i> , is regulated by Nrf2 and serves as a coactivator of <i>NQO1</i> in sulforaphaneâ€ŧreated colon cancer cells. Molecular Nutrition and Food Research, 2017, 61, 1600769.	3.3	29
83	Acetylation of CCAR2 Establishes a BET/BRD9 Acetyl Switch in Response to Combined Deacetylase and Bromodomain Inhibition. Cancer Research, 2019, 79, 918-927.	0.9	28
84	Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention. Molecular Nutrition and Food Research, 2014, 58, 2001-2013.	3.3	26
85	Emerging crosstalk between long non-coding RNAs and Nrf2 signaling. Cancer Letters, 2020, 490, 154-164.	7.2	26
86	Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and β-catenin/Tcf signaling. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 523-524, 217-223.	1.0	23
87	Neonatal Colonic Inflammation Epigenetically Aggravates Epithelial Inflammatory Responses to Injury in Adult Life. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 65-78.	4.5	23
88	Measuring Histone Deacetylase Inhibition in the Brain. Current Protocols in Pharmacology, 2018, 81, e41.	4.0	23
89	Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Letters, 2016, 381, 341-348.	7.2	22
90	Differential modulation of dibenzo[def,p]chrysene transplacental carcinogenesis: Maternal diets rich in indole-3-carbinol versus sulforaphane. Toxicology and Applied Pharmacology, 2013, 270, 60-69.	2.8	21

#	Article	IF	CITATIONS
91	Mutational analysis of Ctnnb1 and Apc in tumors from rats given 1,2-dimethylhydrazine or 2-amino-3-methylimidazo[4,5-f]quinoline: Mutational â€~hotspots' and the relative expression of β-catenin and c-jun. Molecular Carcinogenesis, 2003, 36, 195-203.	2.7	20
92	Cancer Chemopreventive Mechanisms of Tea Against Heterocyclic Amine Mutagens from Cooked Meat. Experimental Biology and Medicine, 1999, 220, 239-243.	2.4	19
93	Oncogenic targets <i>Mmp7</i> , <i>S100a9</i> , <i>Nppb</i> and <i>Aldh1a3</i> from transcriptome profiling of FAP and Pirc adenomas are downregulated in response to tumor suppression by Clotam. International Journal of Cancer, 2017, 140, 460-468.	5.1	18
94	<i>CCAR1</i> and <i>CCAR2</i> as gene chameleons with antagonistic duality: Preclinical, human translational, and mechanistic basis. Cancer Science, 2020, 111, 3416-3425.	3.9	18
95	The phytochemical 3,3′-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells. Journal of Nutritional Biochemistry, 2017, 47, 113-119.	4.2	16
96	Dietary spinach reshapes the gut microbiome in an Apc-mutant genetic background: mechanistic insights from integrated multi-omics. Gut Microbes, 2021, 13, 1972756.	9.8	15
97	Neonatal Injury Increases Gut Permeability by Epigenetically Suppressing E-Cadherin in Adulthood. Journal of Immunology, 2020, 204, 980-989.	0.8	14
98	βâ€catenin is strongly elevated in rat colonic epithelium following shortâ€term intermittent treatment with 2â€aminoâ€1â€methylâ€6â€phenylimidazo[4,5â€ <i>b</i>]pyridine (PhIP) and a highâ€fat diet. Cancer Scier 99, 1754-1759.	ഷ92008,	12
99	Optimization of Erlotinib Plus Sulindac Dosing Regimens for Intestinal Cancer Prevention in an Apc-Mutant Model of Familial Adenomatous Polyposis (FAP). Cancer Prevention Research, 2021, 14, 325-336.	1.5	12
100	Tumors from rats given 1,2-dimethylhydrazine plus chlorophyllin or indole-3-carbinol contain transcriptional changes in β-catenin that are independent of β-catenin mutation status. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 601, 11-18.	1.0	11
101	A miRNA signature for an environmental heterocyclic amine defined by a multi-organ carcinogenicity bioassay in the rat. Archives of Toxicology, 2017, 91, 3415-3425.	4.2	10
102	Deacetylase Plus Bromodomain Inhibition Downregulates ERCC2 and Suppresses the Growth of Metastatic Colon Cancer Cells. Cancers, 2021, 13, 1438.	3.7	10
103	HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells. Experimental Biology and Medicine, 2016, 241, 1177-1185.	2.4	8
104	Accurate quantification of PGE 2 in the polyposis in rat colon (Pirc) model by surrogate analyte-based UPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148, 42-50.	2.8	8
105	Targeting Epigenetic †Readers' with Natural Compounds for Cancer Interception. Journal of Cancer Prevention, 2020, 25, 189-203.	2.0	8
106	Development of a murine colonoscopic polypectomy modelÂ(withÂvideos). Gastrointestinal Endoscopy, 2016, 83, 1272-1276.	1.0	6
107	Divergent roles of p120â€catenin isoforms linked to altered cell viability, proliferation, and invasiveness in carcinogenâ€induced rat skin tumors. Molecular Carcinogenesis, 2017, 56, 1733-1742.	2.7	6
108	Cancer chemoprevention from the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 405, 109-110.	1.0	5

Roderick H Dashwood

#	Article	IF	CITATIONS
109	Sequencing of the rat β-catenin gene (Ctnnb1) and mutational analysis of liver tumors induced by 2-amino-3-methylimidazo[4,5- f]quinoline. Gene, 2002, 283, 255-262.	2.2	5
110	Cancer interception by interceptor molecules: mechanistic, preclinical and human translational studies with chlorophylls. Genes and Environment, 2021, 43, 8.	2.1	5
111	Meeting Report: Translational Advances in Cancer Prevention Agent Development Meeting. Journal of Cancer Prevention, 2021, 26, 71-82.	2.0	4
112	Metabolomics of Acute vs. Chronic Spinach Intake in an Apc–Mutant Genetic Background: Linoleate and Butanoate Metabolites Targeting HDAC Activity and IFN–γ Signaling. Cells, 2022, 11, 573.	4.1	3
113	Assessment of global proteome in LNCaP cells by 2D-RP/RP LC–MS/MS following sulforaphane exposure. EuPA Open Proteomics, 2015, 9, 34-40.	2.5	2
114	Memories of a friend and colleague – Takashi Sugimura. Mutation Research - Reviews in Mutation Research, 2020, 786, 108337.	5.5	2
115	Chemoprevention of Prostate Cancer with Cruciferous Vegetables: Role of Epigenetics. , 2012, , 49-81.		2
116	Translational Advances in Cancer Prevention Agent Development (TACPAD) Virtual Workshop on Immunomodulatory Agents: Report. Journal of Cancer Prevention, 2021, 26, 309-317.	2.0	1
117	S318 Optimized Lower Dose Combinations of Sulindac Plus Erlotinib Sustained Antitumor Efficacy and Reduced Toxicity in a Preclinical Model of FAP. American Journal of Gastroenterology, 2021, 116, S138-S138.	0.4	0