
John C Travers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Raman Frequency Combs to Supercontinuum Generation in Nitrogenâ€Filled Hollow ore Antiâ€Resonant Fiber. Laser and Photonics Reviews, 2022, 16, .	8.7	9
2	Soliton self-compression and resonant dispersive wave emission in higher-order modes of a hollow capillary fibre. JPhys Photonics, 2022, 4, 034002.	4.6	7
3	Near-zero-index ultra-fast pulse characterization. Nature Communications, 2022, 13, .	12.8	6
4	Timing and energy stability of resonant dispersive wave emission in gas-filled hollow-core waveguides. JPhys Photonics, 2021, 3, 025004.	4.6	7
5	Bright, Tuneable and Compact Source of Few-Femtosecond Pulses in the Deep Ultraviolet. , 2021, , .		Ο
6	Energy Noise and Timing Jitter of Few-Femtosecond Pulses Generated by Resonant Dispersive Wave Emission in Hollow-Core Waveguides. , 2021, , .		0
7	Progress in Soliton Dynamics in Hollow Capillary Fibres. , 2021, , .		0
8	Circularly Polarized DUV Pulses via Dispersive Wave Emission in Hollow Capillary Fibers. , 2021, , .		0
9	Ultrafast circularly polarized pulses tunable from the vacuum to deep ultraviolet. Optics Letters, 2021, 46, 4057.	3.3	9
10	Recent advances in supercontinuum generation in specialty optical fibers [Invited]. Journal of the Optical Society of America B: Optical Physics, 2021, 38, F90.	2.1	59
11	New developments in gas-filled hollow-fibre nonlinear optics. , 2021, , .		0
12	Few-Cycle Visible Light Generation in a Hollow-Core Fiber. , 2021, , .		0
13	Advances in nonlinear optics in gas-filled hollow-core fibers. , 2021, , .		Ο
14	Efficient Generation of Bright Few-Femtosecond Deep Ultraviolet Pulses at 50 kHz Repetition Rate in a Compact System. , 2021, , .		0
15	Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression. Physical Review Research, 2020, 2, .	3.6	40
16	Broadband Ultraviolet Generation with 50% Conversion Efficiency in Hollow Capillary Fibers. , 2020, , \cdot		1
17	Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients. Optics Letters, 2020, 45, 4456.	3.3	30
18	Generation of broadband circularly polarized deep-ultraviolet pulses in hollow capillary fibers. Optics Letters, 2020, 45, 5648.	3.3	9

#	Article	IF	CITATIONS
19	Sub-Cycle Infrared Pulses Through Soliton Self-Compression in Hollow Capillary Fibres. , 2020, , .		Ο
20	Optical soliton dynamics in hollow capillary fibres for the generation of extreme ultrafast laser pulses. , 2020, , .		0
21	High-Energy Infrared Soliton Dynamics in Hollow Capillary Fibres. , 2020, , .		Ο
22	Periodic Dispersive Wave Pattern Induced by Ozone Formation in Air-Filled Hollow-Core Fiber. , 2020, , .		0
23	Spectral and Temporal Control of Resonant Dispersive Wave Emission in Hollow Capillary Fibres Using Pressure Gradients. , 2020, , .		Ο
24	Optical attosecond pulses and bright VUV generation from soliton dynamics in hollow capillaries. , 2020, , .		0
25	Generation of 15 cycle pulses at 780 nm at oscillator repetition rates with stable carrier-envelope phase. Optics Express, 2019, 27, 24105.	3.4	4
26	Soliton Self-Compression in Hollow Capillary Fibres. , 2019, , .		2
27	Soliton-Plasma Interactions and Dispersive-Wave Emission Beyond Two-Photon Resonances in Gas-Filled Hollow Capillary Fibres. , 2019, , .		Ο
28	Ultrafast Deep and Vacuum Ultraviolet Gas-Filled Hollow-Core Fibre Sources for Time-Resolved Photoelectron Spectroscopy. , 2019, , .		0
29	Soliton Self-Compression and UV Dispersive Wave Emission in Compact Hollow Capillary Systems. , 2019, , .		0
30	Ultrafast Molecular Spectroscopy Using a Hollow-Core Photonic Crystal Fiber Light Source. Journal of Physical Chemistry Letters, 2019, 10, 715-720.	4.6	26
31	High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nature Photonics, 2019, 13, 547-554.	31.4	181
32	Direct characterization of tuneable few-femtosecond dispersive-wave pulses in the deep UV. Optics Letters, 2019, 44, 731.	3.3	28
33	High-energy ultraviolet dispersive-wave emission in compact hollow capillary systems. Optics Letters, 2019, 44, 2990.	3.3	30
34	Highly efficient deep UV generation by four-wave mixing in gas-filled hollow-core photonic crystal fiber. Optics Letters, 2019, 44, 5509.	3.3	24
35	Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence. Physical Review A, 2018, 97, .	2.5	19
36	Scaling Optical Soliton Dynamics Over Twelve Orders of Magnitude: from One Watt Picosecond Pulses to Terawatt-Scale Sub-Femtosecond Pulses. , 2018, , .		0

#	Article	IF	CITATIONS
37	High-Energy Soliton Dynamics in Gas-Filled Hollow Capillary Fibers. , 2018, , .		Ο
38	Introduction to the Special Issue on Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-2.	2.9	0
39	Scaling Soliton Dynamics in Hollow Fibers. , 2018, , .		0
40	High-Energy VUV Generation in Gas-Filled Hollow Capillary Fibers. , 2018, , .		0
41	Experimental Demonstration of High-Energy Deep Ultraviolet Pulse Generation Through Soliton Dynamics in Gas-Filled Hollow Capillary Fibers. , 2018, , .		0
42	Ultraviolet Supercontinuum Generation in Optical Fibers. , 2018, , .		1
43	Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nature Communications, 2017, 8, 813.	12.8	51
44	Extremely broadband single-shot cross-correlation frequency-resolved optical gating using a transient grating as gate and dispersive element. Review of Scientific Instruments, 2017, 88, 073106.	1.3	3
45	Hybrid photonic-crystal fiber. Reviews of Modern Physics, 2017, 89, .	45.6	200
46	PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons. Physical Review Letters, 2017, 118, 263902.	7.8	21
47	Self-focusing below the critical power in gas-filled hollow-core PCF. , 2017, , .		1
48	Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Optics Express, 2017, 25, 7637.	3.4	65
49	Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica, 2017, 4, 1272.	9.3	84
50	Continuously wavelength-tunable high harmonic generation via soliton dynamics. Optics Letters, 2017, 42, 1768.	3.3	17
51	Femtosecond Micro-J Pulses in the Deep UV at MHz Repetition Rates. , 2017, , .		0
52	Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores. Optics Letters, 2016, 41, 4245.	3.3	36
53	Near-ionization-threshold emission in atomic gases driven by intense sub-cycle pulses. New Journal of Physics, 2016, 18, 023018.	2.9	3
54	Coherent octave-spanning mid-infrared supercontinuum generated in As_2S_3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser. Optics Express, 2016, 24, 12406.	3.4	27

#	Article	IF	CITATIONS
55	Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG. Optics Letters, 2016, 41, 5535.	3.3	20
56	Supercontinuum generation in microstructured ZBLAN fibre with six nanobore cores. , 2016, , .		0
57	Fibre Based Supercontinuum. , 2016, , 199-245.		0
58	Photoionization-Induced Emission of Mid-IR Dispersive Waves in Gas-Filled Photonic Crystal Fibers. , 2016, , .		0
59	PHz-Wide Spectral Interference Through Plasma-Induced Fission of Higher Order Solitons. , 2016, , .		1
60	Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers. Physical Review Letters, 2015, 115, 033901.	7.8	35
61	Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Physical Review A, 2015, 92, .	2.5	93
62	Hollow-core photonic-crystal fibres for vacuum-ultraviolet nonlinear optics in gases. , 2015, , .		0
63	Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nature Photonics, 2015, 9, 133-139.	31.4	227
64	Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica, 2015, 2, 292.	9.3	158
65	Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas hollow-core photonic crystal fiber stages. Optics Letters, 2015, 40, 1238.	s-filled	64
66	Generation of three-octave-spanning transient Raman comb in hydrogen-filled hollow-core PCF. Optics Letters, 2015, 40, 1026.	3.3	24
67	Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber. Applied Physics Letters, 2015, 107, .	3.3	17
68	Octave-spanning Supercontinuum From As2S3-silica Double-nanospike Waveguide Pumped by Femtosecond Cr:ZnS Laser at 2.35 μm. , 2015, , .		0
69	Bright Tunable Photonic-Crystal-Fibre Light Sources in the Deep and Vacuum Ultraviolet. , 2015, , .		0
70	Efficient Broadband Vacuum-Ultraviolet Generation in Gas-Filled Hollow-Core Photonic Crystal Fibers. , 2014, , .		1
71	Vacuum UV to IR supercontinuum generation by impulsive Raman self-scattering in hydrogen-filled PCF. , 2014, , .		0
72	Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Optics Letters, 2014, 39, 1398.	3.3	23

#	Article	IF	CITATIONS
73	Spatiotemporal Nonlinear Dynamics in Gas-Filled Photonic-Crystal Fibers. , 2014, , .		1
74	Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photonics, 2014, 8, 278-286.	31.4	439
75	As_2S_3–silica double-nanospike waveguide for mid-infrared supercontinuum generation. Optics Letters, 2014, 39, 5216.	3.3	48
76	Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 311.	2.1	86
77	Compression of µJ-level pulses from 250 fs to sub-10 fs at 38 MHz repetition rate using two gas-filled hollow-core kagomé-PCF stages. , 2014, , .		1
78	Generation and Control of Isolated Attosecond Pulses by Fiber-Compressed Sub-Cycle Pulses. , 2014, , .		0
79	Vacuum UV to IR supercontinuum generation by impulsive Raman self-scattering in hydrogen-filled PCF. , 2014, , .		0
80	PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability. Physical Review Letters, 2013, 111, 033902.	7.8	23
81	Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes. Applied Physics B: Lasers and Optics, 2013, 112, 457-460.	2.2	25
82	Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Optics Letters, 2013, 38, 3592.	3.3	74
83	Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Optics Express, 2013, 21, 10942.	3.4	136
84	Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber. Optics Letters, 2013, 38, 2984.	3.3	36
85	Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum. Applied Physics Letters, 2013, 103, .	3.3	6
86	Modulation instability in the sub-cycle regime. , 2013, , .		0
87	Two Schemes for Pulse Compression in Gas-Filled Kagomé-PCF. , 2013, , .		0
88	Nonlinear intermodal interactions in gas-filled hollow-core photonic crystal fibre. , 2013, , .		1
89	Fission of solitons in continuous-wave supercontinuum. Optics Letters, 2012, 37, 5217.	3.3	14
90	Extreme supercontinuum generation to the deep UV. Optics Letters, 2012, 37, 770.	3.3	56

#	Article	IF	CITATIONS
91	Incoherent soliton fission driven supercontinuum generation pumped by partially coherent light. , 2012, , .		Ο
92	Modulation Instability in Xenon-Filled Hollow-Core Photonic Crystal Fiber. , 2012, , .		0
93	Interaction between Kerr and Ionization Induced Nonlinear Fiber Optics. , 2012, , .		0
94	Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser. IEEE Photonics Journal, 2012, 4, 1058-1064.	2.0	4
95	Plasma-Induced Asymmetric Self-Phase Modulation and Modulational Instability in Gas-Filled Hollow-Core Photonic Crystal Fibers. Physical Review Letters, 2012, 109, 113902.	7.8	43
96	Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 502.	2.1	29
97	Soliton Eigenvalue Evolution in Plasma-Influenced Nonlinear Gas-Fiber Optics. , 2012, , .		Ο
98	UV Continuum Generation in Ar-Filled Hollow-Core PCF. , 2012, , .		2
99	Theory of Photoionization-induced Nonlinear Phenomena in Gas-filled Photonic Crystal Fibers. , 2012, ,		Ο
100	Widely-Tunable UV-Visible Source Using Gas-Filled Hollow-Core PCF. , 2012, , .		0
101	Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]. Journal of the Optical Society of America B: Optical Physics, 2011, 28, A11.	2.1	322
102	Single-mode hollow-core photonic crystal fiber made from soft glass. Optics Express, 2011, 19, 15438.	3.4	36
103	Influence of ionization on ultrafast gas-based nonlinear fiber optics. Optics Express, 2011, 19, 21018.	3.4	77
104	Ultrafast Raman laser mode-locked by nanotubes. Optics Letters, 2011, 36, 3996.	3.3	60
105	Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers. Physical Review Letters, 2011, 107, 203902.	7.8	124
106	Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers. Physical Review A, 2011, 84, .	2.5	10
107	Non-Solitonic Extension of Supercontinua. , 2011, , .		Ο
108	Femtosecond Nonlinear Fiber Optics in the Ionization Regime. Physical Review Letters, 2011, 107, 203901.	7.8	139

#	Article	IF	CITATIONS
109	Using the E22 transition of carbon nanotubes for fiber laser mode-locking. Laser Physics Letters, 2011, 8, 144-149.	1.4	74
110	Nanotube-based passively mode-locked Raman laser. , 2011, , .		1
111	Bismuth-Doped Fiber Integrated Ring Laser Mode-Locked with a Nanotube-Based Saturable Absorber. , 2010, , .		0
112	A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Research, 2010, 3, 653-660.	10.4	351
113	High average power supercontinuum sources. Pramana - Journal of Physics, 2010, 75, 769-785.	1.8	6
114	Bismuth fiber integrated laser mode-locked by carbon nanotubes. Laser Physics Letters, 2010, 7, 790-794.	1.4	74
115	Noise and Stability in Giant-Chirp Oscillators Mode-Locked with a Nanotube-Based Saturable Absorber. , 2010, , .		Ο
116	Continuous wave supercontinuum generation. , 2010, , 142-177.		5
117	Giant chirp oscillators: Modeling and experiment. , 2010, , .		Ο
118	Blue extension of optical fibre supercontinuum generation. Journal of Optics (United Kingdom), 2010, 12, 113001.	2.2	96
119	Narrow Linewidth Bismuth-Doped All-Fiber Ring Laser. IEEE Photonics Technology Letters, 2010, 22, 793-795.	2.5	6
120	Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions. Optics Express, 2010, 18, 24729.	3.4	23
121	Soliton-dispersive wave collisions in high average power supercontinuum generation. , 2010, , .		Ο
122	Pulse Formation Dynamics in Giant Chirp Oscillators. , 2010, , .		0
123	Fabrication and Applications of Low Loss Nonlinear Holey Fibers. Fiber and Integrated Optics, 2009, 28, 51-59.	2.5	7
124	Nanosecond-pulse fiber lasers mode-locked with nanotubes. Applied Physics Letters, 2009, 95, .	3.3	130
125	2 ns pulses from a fibre laser mode-locked by carbon nanotubes. , 2009, , .		0
126	Soliton trapping of dispersive waves in tapered optical fibers. Optics Letters, 2009, 34, 115.	3.3	86

#	Article	IF	CITATIONS
127	Generation and direct measurement of giant chirp in a passively mode-locked laser. Optics Letters, 2009, 34, 3526.	3.3	94
128	Blue solitary waves from infrared continuous wave pumping of optical fibers. Optics Express, 2009, 17, 1502.	3.4	36
129	Broadband, low intensity noise CW source for OCT at 1800nm. Optics Communications, 2008, 281, 154-156.	2.1	13
130	Toward visible cw-pumped supercontinua. Optics Letters, 2008, 33, 2122.	3.3	56
131	29 W High power CW supercontinuum source. Optics Express, 2008, 16, 5954.	3.4	144
132	Supercontinuum generation in a water-core photonic crystal fiber. Optics Express, 2008, 16, 9671.	3.4	123
133	Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser. Optics Express, 2008, 16, 14435.	3.4	204
134	High Power Fibre-Integrated Supercontinuum Sources. AIP Conference Proceedings, 2008, , .	0.4	0
135	CW Supercontinuum Generation in Photonic Crystal Fibres with Two Zero-Dispersion Wavelengths. AIP Conference Proceedings, 2008, , .	0.4	7
136	Short wavelength extension of CW-pumped supercontinuum at 1 micron. , 2008, , .		0
137	High power 29 W CW supercontinuum source. Proceedings of SPIE, 2008, , .	0.8	Ο
138	A new model for CW supercontinuum generation. , 2008, , .		2
139	Trapping of dispersive waves by solitons in long lengths of tapered PCF. , 2008, , .		1
140	Multi-watt supercontinuum generation from 0.3 to 2.4 μm in PCF tapers. , 2007, , .		1
141	Broadband, Low Intensity Noise Source for Optical Coherence Tomography at 1.8μm. , 2007, , .		0
142	2.1 μm CW Raman source in GeO ₂ fiber. , 2007, , .		0
143	Broadband, low intensity noise source for optical coherence tomography at 1.8μm. , 2007, , .		0
144	Optical pulse compression in dispersion decreasing photonic crystal fiber. Optics Express, 2007, 15, 13203.	3.4	87

#	Article	IF	CITATIONS
145	Pulse Compression in Dispersion Decreasing Photonic Crystal Fiber. , 2007, , .		1
146	Multi-watt supercontinuum generation from 0.3 to 2.4 μm in PCF tapers. , 2007, , .		1
147	2W/nm peak-power all-fiber supercontinuum source and its application to the characterization of periodically poled non-linear crystals. Optics Communications, 2007, 277, 134-137.	2.1	1
148	Non-linear applications of microstructured optical fibres. Optical and Quantum Electronics, 2007, 39, 963-974.	3.3	3
149	Pulse Compression at $1.06\hat{l}$ 4m in Dispersion Decreasing Photonic Crystal Fibers. , 2007, , .		0
150	Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14, 5715.	3.4	230
151	Application of a 2W/nm all-fiber supercontinuum source to the characterization of nonlinear crystals. , 2006, , .		Ο
152	Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber. Optics Letters, 2005, 30, 1938.	3.3	44
153	Extended blue supercontinuum generation in cascaded holey fibers. Optics Letters, 2005, 30, 3132.	3.3	102
154	Efficient continuous-wave holey fiber Raman laser. Applied Physics Letters, 2005, 87, 031106.	3.3	20
155	Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing. Nature Photonics, \circ	31.4	20