Enrica Chiadroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7348606/publications.pdf

Version: 2024-02-01

177 papers 4,704 citations

34 h-index 65 g-index

177 all docs

177 docs citations

177 times ranked

3096 citing authors

#	Article	IF	CITATIONS
1	Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics, 2007, 1, 336-342.	31.4	1,455
2	First operation of a free-electron laser generating GW power radiation at 32Ânm wavelength. European Physical Journal D, 2006, 37, 297-303.	1.3	301
3	SPARC_LAB present and future. Nuclear Instruments & Methods in Physics Research B, 2013, 309, 183-188.	1.4	124
4	Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications, 2016, 7, 11421.	12.8	124
5	Experimental Demonstration of Emittance Compensation with Velocity Bunching. Physical Review Letters, 2010, 104, 054801.	7.8	111
6	Intrinsic normalized emittance growth in laser-driven electron accelerators. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	97
7	High-Gain Harmonic-Generation Free-Electron Laser Seeded by Harmonics Generated in Gas. Physical Review Letters, 2011, 107, 224801.	7.8	76
8	Observation of Time-Domain Modulation of Free-Electron-Laser Pulses by Multipeaked Electron-Energy Spectrum. Physical Review Letters, 2013, 111, 114802.	7.8	68
9	Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering. Physical Review Letters, 2011, 106, 144801.	7.8	66
10	EuPRAXIA Conceptual Design Report. European Physical Journal: Special Topics, 2020, 229, 3675-4284.	2.6	64
11	Laser comb with velocity bunching: Preliminary results at SPARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 637, S43-S46.	1.6	62
12	Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems. Journal of Applied Physics, 2012, 112, .	2.5	62
13	Electron Linac design to drive bright Compton back-scattering gamma-ray sources. Journal of Applied Physics, 2013, 113, 194508.	2.5	61
14	Self-amplified spontaneous emission for a single pass free-electron laser. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	60
15	Horizon 2020 EuPRAXIA design study. Journal of Physics: Conference Series, 2017, 874, 012029.	0.4	60
16	Direct Measurement of the Double Emittance Minimum in the Beam Dynamics of the Sparc High-Brightness Photoinjector. Physical Review Letters, 2007, 99, 234801.	7.8	59
17	The SPARC linear accelerator based terahertz source. Applied Physics Letters, 2013, 102, .	3.3	57
18	Characterization of the THz radiation source at the Frascati linear accelerator. Review of Scientific Instruments, 2013, 84, 022703.	1.3	57

#	Article	IF	CITATIONS
19	The SPARC project: a high-brightness electron beam source at LNF to drive a SASE-FEL experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507, 345-349.	1.6	50
20	Superradiant Cascade in a Seeded Free-Electron Laser. Physical Review Letters, 2013, 110, 044801.	7.8	46
21	EuPRAXIA@SPARC_LAB Design study towards a compact FEL facility at LNF. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 134-138.	1.6	46
22	The External-Injection experiment at the SPARC_LAB facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 60-66.	1.6	45
23	Experimental characterization of active plasma lensing for electron beams. Applied Physics Letters, 2017, 110, .	3.3	42
24	Chromatic effects in quadrupole scan emittance measurements. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	41
25	Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields. Physical Review Letters, 2019, 122, 114801.	7.8	41
26	High brightness electron beam emittance evolution measurements in an rf photoinjector. Physical Review Special Topics: Accelerators and Beams, 2008, 11 , .	1.8	39
27	Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations. Physics in Medicine and Biology, 2014, 59, 5811-5829.	3.0	39
28	Focusing of High-Brightness Electron Beams with Active-Plasma Lenses. Physical Review Letters, 2018, 121, 174801.	7.8	39
29	High-Order-Harmonic Generation and Superradiance in a Seeded Free-Electron Laser. Physical Review Letters, 2012, 108, 164801.	7.8	38
30	The SPARC_LAB Thomson source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 237-242.	1.6	36
31	Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 386-391.	1.6	36
32	Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature, 2022, 605, 659-662.	27.8	36
33	Large-bandwidth two-color free-electron laser driven by a comb-like electron beam. New Journal of Physics, 2014, 16, 033018.	2.9	35
34	Beam manipulation with velocity bunching for PWFA applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 17-23.	1.6	35
35	Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions. Scientific Reports, 2016, 6, 35000.	3. 3	32
36	Energy spread minimization in a beam-driven plasma wakefield accelerator. Nature Physics, 2021, 17, 499-503.	16.7	30

#	Article	lF	CITATIONS
37	Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches. Applied Physics Letters, 2017, 111, .	3.3	29
38	Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression. New Journal of Physics, 2016, 18, 083033.	2.9	26
39	Six-dimensional measurements of trains of high brightness electron bunches. Physical Review Special Topics: Accelerators and Beams, 2015, 18, .	1.8	26
40	Trace-space reconstruction of low-emittance electron beams through betatron radiation in laser-plasma accelerators. Physical Review Accelerators and Beams, 2017, 20, .	1.6	25
41	Status of the SPARC project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528, 586-590.	1.6	24
42	First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beam by means of Electro-Optic Sampling. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 216-221.	1.6	24
43	Phase space analysis of velocity bunched beams. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	22
44	Two-Color Radiation Generated in a Seeded Free-Electron Laser with Two Electron Beams. Physical Review Letters, 2015, 115, 014801.	7.8	22
45	Time-domain measurement of a self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering. Applied Physics Letters, 2012, 101, 134102.	3.3	20
46	Challenges in plasma and laser wakefield accelerated beams diagnostic. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 720, 153-156.	1.6	20
47	The FLAME laser at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 452-455.	1.6	20
48	Nonintercepting electron beam size monitor using optical diffraction radiation interference. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	19
49	Mapping the transverse coherence of the self amplified spontaneous emission of a free-electron laser with the heterodyne speckle method. Optics Express, 2014, 22, 30013.	3.4	18
50	Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources. Europhysics Letters, 2015, 111, 44003.	2.0	17
51	Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Longitudinal Manipulation. Applied Sciences (Switzerland), 2016, 6, 56.	2.5	17
52	Sub-picosecond snapshots of fast electrons from high intensity laser-matter interactions. Optics Express, 2016, 24, 29512.	3.4	17
53	Plasma production for electron acceleration by resonant plasma wave. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 254-259.	1.6	17
54	Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	16

#	Article	IF	CITATIONS
55	Transformer ratio studies for single bunch plasma wakefield acceleration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 242-245.	1.6	16
56	Compact and tunable focusing device for plasma wakefield acceleration. Review of Scientific Instruments, 2018, 89, 033302.	1.3	16
57	Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments. Journal of Instrumentation, 2016, 11, C09015-C09015.	1.2	15
58	Ultrafast evolution of electric fields from high-intensity laser-matter interactions. Scientific Reports, 2018, 8, 3243.	3.3	15
59	Overview of plasma lens experiments and recent results at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 16-20.	1.6	15
60	Seeding experiments at SPARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 593, 132-136.	1.6	14
61	Analogical optical modeling of the asymmetric lateral coherence of betatron radiation. Optics Express, 2015, 23, 29912.	3.4	14
62	Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel. Nuclear Instruments & Methods in Physics Research B, 2015, 355, 217-220.	1.4	14
63	Beam manipulation for resonant plasma wakefield acceleration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865, 139-143.	1.6	14
64	Novel Single-Shot Diagnostics for Electrons from Laser-Plasma Interaction at SPARC_LAB. Quantum Beam Science, 2017, 1, 13.	1.2	14
65	Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application. Thin Solid Films, 2015, 579, 50-56.	1.8	13
66	Stability study for matching in laser driven plasma acceleration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 67-72.	1.6	13
67	EuPRAXIA@SPARC_LAB: The high-brightness RF photo-injector layout proposal. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 282-285.	1.6	13
68	Design and characterization of a movable emittance meter for low-energy electron beams. Review of Scientific Instruments, 2006, 77, 093301.	1.3	12
69	Nano-machining, surface analysis and emittance measurements of a copper photocathode at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 233-238.	1.6	12
70	The Potential of EuPRAXIA@SPARC_LAB for Radiation Based Techniques. Condensed Matter, 2019, 4, 30.	1.8	12
71	Observations and diagnostics in high brightness beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 343-347.	1.6	11
72	Electro-Optical Detection of Coherent Radiation Induced by Relativistic Electron Bunches in the Near and Far Fields. Physical Review Applied, 2018, 9, .	3.8	11

#	Article	IF	CITATIONS
73	Status of the Horizon 2020 EuPRAXIA conceptual design study*. Journal of Physics: Conference Series, 2019, 1350, 012059.	0.4	11
74	Conceptual design of a high-brightness linac for soft X-ray SASE-FEL source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507, 502-506.	1.6	10
75	First non-intercepting emittance measurement by means of optical diffraction radiation interference. New Journal of Physics, 2014, 16, 113029.	2.9	10
76	Measurement of power spectral density of broad-spectrum visible light with heterodyne near field scattering and its scalability to betatron radiation. Optics Express, 2015, 23, 32888.	3.4	10
77	Novel schemes for the optimization of the SPARC narrow band THz source. Review of Scientific Instruments, 2015, 86, 073301.	1.3	10
78	A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 839, 1-5.	1.6	10
79	IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 138-146.	1.6	9
80	Two Color FEL Driven by a Comb-like Electron Beam Distribution. Physics Procedia, 2014, 52, 27-35.	1.2	9
81	Laser pulse shaping for high gradient accelerators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 446-451.	1.6	9
82	First measurements of betatron radiation at FLAME laser facility. Nuclear Instruments & Methods in Physics Research B, 2017, 402, 388-392.	1.4	9
83	Single-shot non-intercepting profile monitor of plasma-accelerated electron beams with nanometric resolution. Applied Physics Letters, 2017, 111, .	3.3	9
84	Characterization of self-injected electron beams from LWFA experiments at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 118-122.	1.6	9
85	Zemax simulations describing collective effects in transition and diffraction radiation. Optics Express, 2018, 26, 5075.	3.4	9
86	Plasma boosted electron beams for driving Free Electron Lasers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 54-57.	1.6	9
87	The SPARC/X SASE-FEL Projects. Laser and Particle Beams, 2004, 22, 341-350.	1.0	8
88	The THz Radiation Source at the SPARC Facility. Journal of Physics: Conference Series, 2012, 359, 012018.	0.4	8
89	Electron density measurement in gas discharge plasmas by optical and acoustic methods. Journal of Instrumentation, $2016, 11, C08003-C08003$.	1.2	8
90	Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application. Thin Solid Films, 2016, 603, 441-445.	1.8	8

#	Article	IF	CITATIONS
91	Laser–capillary interaction for the EXIN project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 309-313.	1.6	8
92	Temperature analysis in the shock waves regime for gas-filled plasma capillaries in plasma-based accelerators. Journal of Instrumentation, 2019, 14, C03002-C03002.	1.2	8
93	Plasma lens-based beam extraction and removal system for plasma wakefield acceleration experiments. Physical Review Accelerators and Beams, 2019, 22, .	1.6	8
94	Design of a plasma discharge circuit for particle wakefield acceleration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 193-196.	1.6	7
95	Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 836, 57-60.	1.6	7
96	Pulsed laser deposition of yttrium photocathode suitable for use in radio-frequency guns. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	7
97	EUPRAXIA@SPARC_LAB: Beam dynamics studies for the X-band Linac. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 314-317.	1.6	7
98	3D-printed capillary for hydrogen filled discharge for plasma based experiments in RF-based electron linac accelerator. Review of Scientific Instruments, 2018, 89, 083502.	1.3	7
99	EuPRAXIA – a compact, cost-efficient particle and radiation source. AIP Conference Proceedings, 2019, ,	0.4	7
100	A Versatile THz Source from High-Brightness Electron Beams: Generation and Characterization. Condensed Matter, 2020, 5, 40.	1.8	7
101	Transverse emittance diagnostics for high brightness electron beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865, 63-66.	1.6	6
102	Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold. Physics of Plasmas, 2018, 25, 056704.	1.9	6
103	Free Electron Laser in the water window with plasma driven electron beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 303-308.	1.6	6
104	Tapering of plasma density ramp profiles for adiabatic lens experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 339-342.	1.6	6
105	Preliminary RF design of an X-band linac for the EuPRAXIA@SPARC_LAB project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 243-246.	1.6	6
106	First emittance measurement of the beam-driven plasma wakefield accelerated electron beam. Physical Review Accelerators and Beams, 2021, 24, .	1.6	6
107	Non-intercepting electron beam transverse diagnostics with optical diffraction radiation at the DESY FLASH facility. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3789-3796.	1.4	5
108	Analysis methodology of movable emittance-meter measurements for low energy electron beams. Review of Scientific Instruments, 2008, 79, 013303.	1.3	5

#	Article	IF	CITATIONS
109	Phase control effects in optical diffraction radiation from a slit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614, 163-168.	1.6	5
110	The THz radiation source at SPARC. Journal of Physics: Conference Series, 2012, 357, 012034.	0.4	5
111	Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
112	Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 330-333.	1.6	5
113	Simulation design for forthcoming high quality plasma wakefield acceleration experiment in linear regime at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 71-75.	1.6	5
114	Numerical studies on capillary discharges as focusing elements for electron beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 404-407.	1.6	5
115	Recent results at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 139-144.	1.6	5
116	Characterization of plasma sources for plasma-based accelerators. Journal of Instrumentation, 2020, 15, C09055-C09055.	1.2	5
117	Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME. Proceedings of SPIE, 2017, , .	0.8	4
118	Gas-filled capillaries for plasma-based accelerators. Journal of Physics: Conference Series, 2017, 874, 012036.	0.4	4
119	Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME. Journal of Physics: Conference Series, 2017, 874, 012035.	0.4	4
120	Toward a plasma-based accelerator at high beam energy with high beam charge and high beam quality. Physical Review Accelerators and Beams, 2020, 23, .	1.6	4
121	Experimental results with the SPARC emittance-meter. , 2007, , .		3
122	Effects of transverse electron beam size on transition radiation angular distribution. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 673, 56-63.	1.6	3
123	Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	3
124	Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865, 43-46.	1.6	3
125	RF injector design studies for the trailing witness bunch for a plasma-based user facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 229-232.	1.6	3
126	Design of high brightness Plasma Wakefield Acceleration experiment at SPARC_LAB test facility with particle-in-cell simulations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 408-413.	1.6	3

#	Article	IF	CITATIONS
127	From SPARC_LAB to EuPRAXIA@SPARC_LAB. Instruments, 2019, 3, 45.	1.8	3
128	Photoemission studies of yttrium photocathodes by using the visible radiation. Physical Review Accelerators and Beams, 2020, 23, .	1.6	3
129	Comparison between sparc e-meter measurements and simulations. , 2007, , .		2
130	External-injection Experiment at SPARC_LAB. Physics Procedia, 2014, 52, 90-99.	1.2	2
131	Intense terahertz pulses from SPARC_LAB coherent radiation source. Proceedings of SPIE, 2015, , .	0.8	2
132	The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams. Proceedings of SPIE, 2015, , .	0.8	2
133	Note: Nanosecond LED-based source for optical modeling of scintillators illuminated by partially coherent X-ray radiation. Review of Scientific Instruments, 2016, 87, 126104.	1.3	2
134	Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 326-329.	1.6	2
135	Wake fields effects in dielectric capillary. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 247-251.	1.6	2
136	Conceptual design of electron beam diagnostics for high brightness plasma accelerator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 350-354.	1.6	2
137	Adiabatic plasma lens experiments at SPARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 471-475.	1.6	2
138	Evolution of the electric fields induced in high intensity laser–matter interactions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 398-401.	1.6	2
139	Eupraxia, A Step Toward A Plasma-Wakefield Based Accelerator With High Beam Quality. Journal of Physics: Conference Series, 2019, 1350, 012068.	0.4	2
140	Angstrom wavelength FEL driven by 5 GeV LWFA beam with external injection. Journal of Physics: Conference Series, 2020, 1596, 012004.	0.4	2
141	Photon beam line of the water window FEL for the EuPRAXIA@SPARC_LAB project. Journal of Physics: Conference Series, 2020, 1596, 012039.	0.4	2
142	Time-resolved study of nonlinear photoemission in radio-frequency photoinjectors. Optics Letters, 2021, 46, 2844.	3.3	2
143	Misalignment measurement of femtosecond electron bunches with THz repetition rate. Physical Review Accelerators and Beams, 2017, 20, .	1.6	2
144	Status of the SPARC Project. , 0, , .		1

#	Article	IF	CITATIONS
145	COMMISSIONING OF THE SPARC MOVABLE EMITTANCE METER AND ITS FIRST OPERATION AT PITZ. International Journal of Modern Physics A, 2007, 22, 4146-4157.	1.5	1
146	Status of the sparc-x project., 2007,,.		1
147	Non-intercepting electron beam transverse diagnostics with Optical Diffraction Radiation at the DESY FLASH Facility., 2007,,.		1
148	Non-intercepting diagnostic for high brightness electron beams using Optical Diffraction Radiation Interference (ODRI). Journal of Physics: Conference Series, 2012, 357, 012019.	0.4	1
149	The SPARC_LAB high peak power THz source: Different methods of generation and characterization. , 2013, , .		1
150	Pre-wave zone studies of Coherent Transition and Diffraction Radiation. Nuclear Instruments & Methods in Physics Research B, 2015, 355, 144-149.	1.4	1
151	Segmented undulator operation at the SPARC-FEL test facility. Proceedings of SPIE, 2015, , .	0.8	1
152	Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB., 2015,,.		1
153	Beam dynamics in resonant plasma wakefield acceleration at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 109-112.	1.6	1
154	Study of the beam tolerance for plasma based ion channel lasers. Nuclear Instruments & Methods in Physics Research B, 2017, 402, 384-387.	1.4	1
155	Thermal behavior of the optical transition radiation screens for the ELI-NP Compton Gamma source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865, 47-50.	1.6	1
156	Recent studies on single-shot diagnostics for plasma accelerators at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 364-368.	1.6	1
157	Energy measurements by means of transition radiation in novel Linacs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 355-358.	1.6	1
158	Plasma acceleration limitations due to betatron radiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 463-466.	1.6	1
159	Compact and tunable active-plasma lens system for witness extraction and driver removal. Journal of Physics: Conference Series, 2020, 1596, 012050.	0.4	1
160	Electromagnetic and Beam Dynamics Studies for High Gradient Accelerators at Terahertz Frequencies. Journal of Physics: Conference Series, 2020, 1596, 012029.	0.4	1
161	<title>SPARC/X Projects</title> .,2005,,.		0
162	<title>Status of the <emph type="1">SPARX</emph> FEL project</title> ., 2007,,.		0

#	Article	IF	CITATIONS
163	<title>Status of the electron beam transverse diagnostics with optical diffraction radiation at FLASH, DESY</title> ., 2007,,.		0
164	DIFFRACTION RADIATION AS A DIAGNOSTICS TOOL AT FLASH., 2010,,.		0
165	Production of high power terahertz radiation through the SPARC Free-Electron Laser. , 2010, , .		0
166	NEW EXPERIMENTAL RESULTS WITH OPTICAL DIFFRACTION RADIATION DIAGNOSTICS. International Journal of Modern Physics A, 2010, 25, 189-200.	1.5	0
167	A survey of the Italian research in solid state physics by infrared spectroscopy with electron-beam sources. Journal of Physics: Conference Series, 2012, 359, 012001.	0.4	0
168	Far- and near-field approximation for diffraction radiation. Nuclear Instruments & Methods in Physics Research B, 2013, 309, 194-197.	1.4	0
169	Issues with Phase Space Characterization of Laser-plasma Generated Electron Beams. Physics Procedia, 2014, 52, 75-79.	1.2	0
170	6D electron beam diagnostics at SPARC_LAB. Proceedings of SPIE, 2015, , .	0.8	0
171	Seeded FEL with two energy level electron beam distribution at SPARC_LAB. Proceedings of SPIE, 2015, ,	0.8	0
172	Summary of WG5: High-gradient plasma structures and advanced beam diagnostics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 301-303.	1.6	0
173	Unified Analysis for Calculating the Incoherent Spontaneous Emission of Cooperative Radiations *. Chinese Physics Letters, 2017, 34, 114101.	3.3	0
174	Quantum-mechanical analysis of low-gain free-electron laser oscillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 889, 47-56.	1.6	0
175	Plasma ramps caused by outflow in gas-filled capillaries. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 346-349.	1.6	0
176	Layout considerations for a future electron plasma research accelerator facility EuPRAXIA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 111-113.	1.6	0
177	Towards the detection of nanometric emittances in plasma accelerators. Journal of Instrumentation, 2019, 14, C02004-C02004.	1.2	0