Nicolas Jouve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nextâ€generation sequencing and syntenic integration of flowâ€sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant Journal, 2012, 69, 377-386.	5.7	137
2	Chloroplast microsatellite polymorphisms inVitisspecies. Genome, 2002, 45, 1142-1149.	2.0	117
3	Genome remodelling in three modern S. officinarumxS. spontaneum sugarcane cultivars. Journal of Experimental Botany, 2004, 55, 847-854.	4.8	108
4	Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6�-triticale. Chromosome Research, 1994, 2, 331-338.	2.2	107
5	Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma, 2010, 119, 495-503.	2.2	103
6	Inoculum at the time of SARS-CoV-2 exposure and risk of disease severity. International Journal of Infectious Diseases, 2020, 97, 290-292.	3.3	97
7	Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theoretical and Applied Genetics, 2000, 100, 1085-1094.	3.6	90
8	Evolutionary Trends of Different Repetitive DNA Sequences During Speciation in the Genus Secale. , 2002, 93, 339-345.		86
9	Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenetic and Genome Research, 2008, 120, 210-219.	1.1	73
10	A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Research, 2009, 17, 755-762.	2.2	71
11	The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Research, 2007, 15, 711-720.	2.2	58
12	Fluorescence in situ hybridization with multiple repeated DNA probes applied to the analysis of wheat-rye chromosome pairing. Theoretical and Applied Genetics, 1997, 94, 347-355.	3.6	55
13	RAPD variation in wild populations of four species of the genus Hordeum (Poaceae). Theoretical and Applied Genetics, 1998, 96, 101-111.	3.6	52
14	Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L Theoretical and Applied Genetics, 2013, 126, 949-961.	3.6	50
15	Distribution of highly repeated DNA sequences in species of the genus Secale. Genome, 1997, 40, 309-317.	2.0	47
16	Mapping of QTLs for androgenetic response based on a molecular genetic map of × <i>Triticosecale</i> Wittmack. Genome, 2005, 48, 999-1009.	2.0	46
17	Chromosomal Characterization of the Three Subgenomes in the Polyploids of Hordeum murinum L.: New Insight into the Evolution of This Complex. PLoS ONE, 2013, 8, e81385.	2.5	46
18	Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome, 2008, 51, 809-815.	2.0	43

#	Article	IF	CITATIONS
19	Do tyrosine crosslinks contribute to the formation of the gluten network in common wheat (Triticum aestivum L.) dough?. Journal of Cereal Science, 2006, 44, 144-153.	3.7	42
20	Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. Genome, 1995, 38, 795-802.	2.0	40
21	Relationship between common wheat (Triticum aestivum L.) gluten proteins and dough rheological properties. Euphytica, 2005, 143, 169-177.	1.2	40
22	Marker assisted selection to improve HMW-glutenins in wheat. Euphytica, 2001, 119, 69-73.	1.2	39
23	Highly repetitive sequences in B chromosomes of <i>Secale cereale</i> revealed by fluorescence in situ hybridization. Genome, 1994, 37, 709-712.	2.0	37
24	Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Research, 1998, 6, 345-350.	2.2	35
25	Sequencing of long stretches of repetitive DNA. Scientific Reports, 2016, 6, 36665.	3.3	35
26	Characterisation of two gene subunits on the 1R chromosome of rye as orthologs of each of the Glu-1 genes of hexaploid wheat. Theoretical and Applied Genetics, 2001, 103, 733-742.	3.6	33
27	Influence of genotype and culture medium on callus formation and plant regeneration from immature embryos of Triticum turgidum Desf. Cultivars. Plant Breeding, 2001, 120, 513-517.	1.9	30
28	Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster. BMC Genomics, 2011, 12, 205.	2.8	24
29	Similarities in the chromosomal distribution of AG and AC repeats within and between <i>Drosophila</i> , human and barley chromosomes. Cytogenetic and Genome Research, 2007, 119, 91-99.	1.1	23
30	Identification of C-banded chromosomes in meiosis of common wheat, Triticum aestivum L Theoretical and Applied Genetics, 1984, 67, 257-261.	3.6	22
31	Telomeric DNA localization on dinoflagellate chromosomes: structural and evolutionary implications. Cytogenetic and Genome Research, 2007, 116, 224-231.	1.1	21
32	Relationships in Patagonian species of Berberis (Berberidaceae) based on the characterization of rDNA internal transcribed spacer sequences. Botanical Journal of the Linnean Society, 2007, 153, 321-328.	1.6	21
33	The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Annals of Botany, 2013, 112, 1845-1855.	2.9	20
34	Genetic variation for isozyme genes and proteins in spanish primitive cultivars and wild subspecies of Lens. Euphytica, 1992, 59, 181-187.	1.2	18
35	Microspore development during in vitro androgenesis in triticale. Biologia Plantarum, 2005, 49, 23-28.	1.9	18
36	Improvement of Anther Culture Media for Haploid Production in Triticale. Cereal Research Communications, 2000, 28, 65-72.	1.6	18

#	Article	IF	CITATIONS
37	Prolamin storage proteins and alloploidy in wild populations of the small grass Brachypodium distachyon (L.) P. Beauv Plant Systematics and Evolution, 2011, 297, 99-111.	0.9	17
38	The meiotic pairing of nine wheat chromosomes. Theoretical and Applied Genetics, 1984, 69, 193-198.	3.6	16
39	Encoding genes for endosperm proteins in Hordeum chilense. Theoretical and Applied Genetics, 1991, 81, 127-132.	3.6	16
40	Title is missing!. Genetic Resources and Crop Evolution, 1997, 44, 217-226.	1.6	16
41	Localization of <i>Rad50, </i> a Single-Copy Gene, on Group 5 Chromosomes of Wheat, Using a FISH Protocol Employing Tyramide for Signal Amplification (Tyr-FISH). Cytogenetic and Genome Research, 2009, 125, 321-328.	1.1	16
42	Genetic diversity of SSR and ISSR markers in wild populations of Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). Plant Systematics and Evolution, 2014, 300, 2029-2040.	0.9	16
43	AFLP characterization of natural populations of Berberis (Berberidaceae) in Patagonia, Argentina. Plant Systematics and Evolution, 2002, 231, 133-142.	0.9	15
44	Biochemical variation to determine phylogenetic relationships betweenHordeum chilense and other American species of the genusHordeum (Poaceae). Plant Systematics and Evolution, 1987, 157, 105-119.	0.9	14
45	Analysis by PCR-based markers using designed primers to study relationships between species of Hordeum (Poaceae). Genome, 1999, 42, 129-138.	2.0	13
46	The detection, cloning, and characterisation of WIS 2-1A retrotransposon-like sequences in Triticum aestivum L. and ×Triticosecale Wittmack and an examination of their evolution in related Triticeae. Genome, 2001, 44, 979-989.	2.0	13
47	Meiotic pairing of the amphiploid Hordeum chilense X Triticum turgidum conv. durum studied by means of Giemsa C-banding technique. Theoretical and Applied Genetics, 1985, 70, 85-91.	3.6	12
48	Species relationships between antifungal chitinase and nuclear rDNA (internal transcribed spacer) sequences in the genusHordeum. Genome, 2002, 45, 339-347.	2.0	12
49	The analysis of meiosis of the B genome in common wheat. Genome, 1985, 27, 17-22.	0.7	11
50	Meiotic pairing and alpha-amylase phenotype in a 5B/5Rm Triticum aestivum — Secale montanum translocation line in common wheat. Theoretical and Applied Genetics, 1986, 73, 122-128.	3.6	11
51	Analysis of induced homoeologous pairing in hybrids between 6 <i>x</i> triticale <i>ph1</i> mutant and <i>Triticum aestivum</i> L. Genome, 1986, 28, 696-700.	0.7	11
52	Chromosomal location of structural genes controlling isozymes in Hordeum chilense. Theoretical and Applied Genetics, 1987, 73, 433-439.	3.6	10
53	Characterization of the gene Mre11 and evidence of silencing after polyploidization in Triticum. Theoretical and Applied Genetics, 2007, 114, 985-999.	3.6	10
54	Chromosomal location of structural genes controlling isozymes in Hordeum chilense. Theoretical and Applied Genetics, 1987, 73, 690-698.	3.6	9

#	Article	IF	CITATIONS
55	Changes in triticale chromosome heterochromatin visualized by C-banding. Genome, 1989, 32, 735-742.	2.0	9
56	Changes in expression of seed storage protein genes effected by chromosome 1D of wheat. Genome, 1991, 34, 845-848.	2.0	9
57	On the allopolyploid origin and genome structure of the closely related species <i>Hordeum secalinum</i> and <i>Hordeum capense</i> inferred by molecular karyotyping. Annals of Botany, 2017, 120, mcw270.	2.9	9
58	C-banding at meiosis as a means of analyzing cytogenetic structure in wheat. Genome, 1985, 27, 689-696.	0.7	8
59	Structure of the isozymes of the AAT-2 and AAT-3 systems of asparate aminotransferase in wheat, rye and triticale. Euphytica, 1986, 35, 129-135.	1.2	8
60	Meiotic expression of modified chromosome constitution and structure in × Triticosecale Wittmack. Heredity, 1990, 65, 21-28.	2.6	8
61	The genomic composition of Tricepiro, a synthetic forage crop. Genome, 2005, 48, 154-159.	2.0	8
62	Characterization and Phylogenetic Analysis of the Genes Coding for High Molecular Weight Glutenin Subunits in Three Diploid Species of Aegilops. International Journal of Plant Sciences, 2006, 167, 359-366.	1.3	8
63	Secondary association of univalent chromosomes in hybrids of hexaploid triticale and rye and wheat. Journal of Heredity, 1980, 71, 408-410.	2.4	7
64	Meiotic behaviour, chromosome stability and genetic analysis of the preferential transmission of 1B-1R, 1A-1R and 1R(1D) chromosomes in intervarietal hybrids of wheat. Agronomy for Sustainable Development, 1999, 19, 57-68.	0.8	7
65	The detection, cloning, and characterisation of WIS 2-1A retrotransposon-like sequences in <i>Triticum aestivum</i> L. and × <i>Triticosecale</i> Wittmack and an examination of their evolution in related Triticeae. Genome, 2001, 44, 979-989.	2.0	7
66	Meiotic pairing in hybrids of 6x-Triticale and the amphiploid Hordeum chilense X Triticum turgidum conv. durum. Journal of Heredity, 1985, 76, 63-64.	2.4	6
67	Biolistic Transfer of the Gene uidA and Its Expression in Haploid Embryo-like Structures of Triticale (×Triticosecale Wittmack). Plant Cell, Tissue and Organ Culture, 2004, 77, 203-209.	2.3	6
68	Callus induction and plant regeneration from immature embryos of Brachypodium distachyon with different chromosome numbers. Biologia Plantarum, 2011, 55, .	1.9	6
69	Allopolyploidy and the complex phylogenetic relationships within the Hordeum brachyantherum taxon. Molecular Phylogenetics and Evolution, 2016, 97, 107-119.	2.7	6
70	Comparative analysis of gene expression among species of different ploidy. Molecular Biology Reports, 2014, 41, 6525-6535.	2.3	5
71	Structure and chromosomal location of malate dehydrogenase (zone 2) isozymes in common and durum wheats. Euphytica, 1986, 35, 509-513.	1.2	4
72	Analysis of interference in a double interchange heterozygote of wheat (Triticum aestivum L.). Heredity, 1986, 56, 1-6.	2.6	4

#	Article	IF	CITATIONS
73	Chromosome constitution in G2 and G3 progenies of 6x-triticale � T. turgidum L. hybrids. Euphytica, 1988, 37, 157-166.	1.2	4
74	Chromosome factors affecting pairing in progenies of 6x-triticale × Triticum turgidum L. ssp. turgidum conv. durum (Desf.). Heredity, 1988, 60, 455-461.	2.6	4
75	Characterization of the <i>Nbs1</i> Gene and Analysis of the Expression of Homologous and Homoeologous MRN Complex Genes in Meiocytes and Somatic Cells of Different Wheat Species. International Journal of Plant Sciences, 2011, 172, 959-969.	1.3	4
76	Partial asynapsis involving specific chromosomes in intervarietal hybrids of Triticum aestivum L Euphytica, 1986, 35, 529-537.	1.2	3
77	The effect of Secale cereale L. heterochromatin on wheat chromosome pairing. Genetica, 1988, 77, 89-95.	1.1	3
78	Chromosomal location by F1 monosomic analysis of endosperm proteins in bread wheat. Theoretical and Applied Genetics, 1988, 76, 933-940.	3.6	3
79	Replication of 5 S ribosomal genes precedes the appearance of early nuclear replication complexes. European Journal of Cell Biology, 1998, 77, 247-252.	3.6	3
80	Triticale Genomic and Chromosomes' History. Developments in Plant Breeding, 1996, , 91-118.	0.2	3
81	Analysis of centromere co-orientation in intervarietal hybrids of common wheat (Triticum aestivum) Tj ETQq1	1 0.784314 2.6	rgBJ /Overlo
82	Chromosomal location by F1 monosomic analysis of endosperm proteins in bread wheat. Theoretical and Applied Genetics, 1988, 76, 781-787.	3.6	2
83	Image analysis of C-banded chromosomes and pairing regionalization in wheat. Genome, 1992, 35, 1062-1067.	2.0	2
84	Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific introgressions into wheat. Euphytica, 1996, 89, 107-112.	1.2	2
85	Metaphase I centromere coorientation in interchange heterozygotes of Triticum aestivum L Journal of Heredity, 1985, 76, 191-193.	2.4	1
86	Behaviour of rye univalents in hybrids of 6x-triticale with Triticum turgidum (L.) ssp. turgidum conv. durum (Desf.). Genetica, 1988, 77, 85-88.	1.1	1
87	Chromosome pairing in hybrids of Triticum aestivum and the amphiploid Hordeum chilense x T. turgidum conv. durum. Euphytica, 1990, 45, 223-227.	1.2	1
88	Molecular Genetic Analysis of Drought Stress Response Traits in Brachypodium spp Agronomy, 2020, 10, 518.	3.0	1
89	Analysis of cpSSR in triticale plants obtained by <i>in vitro</i> androgenesis. Cereal Research Communications, 2009, 37, 345-352.	1.6	0
90	Endosperm Proteins of Androgenic Double Haploid Lines of 6x-Triticale. Developments in Plant Breeding, 1996, , 383-389.	0.2	0

#	Article	IF	CITATIONS
91	Isozyme and Endosperm Protein Markers in the Determination of Chromosomal Constitution in X Triticosecale Wittmack. Developments in Plant Breeding, 1996, , 409-415.	0.2	0
92	The Expression of the Nucleolus Organizer Regions (NORs) in Bread Wheat X Rye Hybrid Lines Carrying a 1RS/1BL Chromosome Translocation. Developments in Plant Breeding, 1996, , 135-139.	0.2	0
93	Comparative Analysis of Telomeric Heterochromatin of Rye Chromosomes in Rye and Triticale by Fish. Developments in Plant Breeding, 1996, , 155-163.	0.2	0