
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiology and Climate Change. Science, 2008, 322, 690-692.	12.6	1,953
2	Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance. Science, 2007, 315, 95-97.	12.6	1,623
3	Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 132, 739-761.	1.8	1,152
4	Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 2010, 213, 881-893.	1.7	1,121
5	Contrasting futures for ocean and society from different anthropogenic CO ₂ emissions scenarios. Science, 2015, 349, aac4722.	12.6	1,059
6	Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Die Naturwissenschaften, 2001, 88, 137-146.	1.6	951
7	Climate change effects on fishes and fisheries: towards a causeâ€andâ€effect understanding. Journal of Fish Biology, 2010, 77, 1745-1779.	1.6	760
8	Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology - Progress Series, 2008, 373, 203-217.	1.9	697
9	Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History. Journal of Oceanography, 2004, 60, 705-718.	1.7	594
10	Impacts of ocean acidification on marine shelled molluscs. Marine Biology, 2013, 160, 2207-2245.	1.5	557
11	Climate change tightens a metabolic constraint on marine habitats. Science, 2015, 348, 1132-1135.	12.6	547
12	Physiological basis for high CO ₂ tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences, 2009, 6, 2313-2331.	3.3	544
13	The human imperative of stabilizing global climate change at 1.5°C. Science, 2019, 365, .	12.6	498
14	Sensitivities of extant animal taxa to ocean acidification. Nature Climate Change, 2013, 3, 995-1001.	18.8	421
15	Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. Journal of Experimental Biology, 2017, 220, 2685-2696.	1.7	410
16	Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 2020, 369, 65-70.	12.6	373
17	Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology, 2012, 18, 82-92.	9.5	366
18	Synergistic effects of temperature extremes, hypoxia, and increases in CO2on marine animals: From Earth history to global change, lournal of Geophysical Research, 2005, 110, .	3.3	357

#	Article	IF	CITATIONS
19	Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton,) Tj ETQq1 1 0.7843	14 rg <mark>&T</mark> /Ove	rlo <u>çk</u> 10 Tf 5
20	Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response. Marine Drugs, 2010, 8, 2318-2339.	4.6	347
21	Tradeâ€Offs in Thermal Adaptation: The Need for a Molecular to Ecological Integration. Physiological and Biochemical Zoology, 2006, 79, 295-313.	1.5	324
22	Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 2233-2258.	4.0	304
23	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
24	Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Continental Shelf Research, 2001, 21, 1975-1997.	1.8	287
25	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	9.5	285
26	Predicting the Response of Molluscs to the Impact of Ocean Acidification. Biology, 2013, 2, 651-692.	2.8	266
27	IPCC reasons for concern regarding climate change risks. Nature Climate Change, 2017, 7, 28-37.	18.8	266
28	Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. Journal of Experimental Biology, 2002, 205, 1831-41.	1.7	265
29	Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, <i>Maja squinado</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1531-R1538.	1.8	264
30	Physiological and metabolic responses to hypoxia in invertebrates. Reviews of Physiology, Biochemistry and Pharmacology, 1993, 125, 43-147.	1.6	253
31	Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Marine Ecology - Progress Series, 2012, 470, 273-290.	1.9	253
32	Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Frontiers in Marine Science, 2018, 5, .	2.5	248
33	A framework for complex climate change risk assessment. One Earth, 2021, 4, 489-501.	6.8	244
34	Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, <i>Crassostrea virginica</i> . Journal of Experimental Biology, 2012, 215, 29-43.	1.7	227
35	On the processes linking climate to ecosystem changes. Journal of Marine Systems, 2010, 79, 374-388.	2.1	219
36	Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biological Reviews, 2009, 84, 277-292.	10.4	213

#	Article	IF	CITATIONS
37	Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R911-R921.	1.8	209
38	Antarctic climate change and the environment. Antarctic Science, 2009, 21, 541-563.	0.9	195
39	Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. Journal of Experimental Biology, 2003, 206, 195-207.	1.7	194
40	Climate change and the oceans – What does the future hold?. Marine Pollution Bulletin, 2013, 74, 495-505.	5.0	191
41	A Roadmap for Using the UN Decade of Ocean Science for Sustainable Development in Support of Science, Policy, and Action. One Earth, 2020, 2, 34-42.	6.8	191
42	Temperature, metabolic power and the evolution of endothermy. Biological Reviews, 2010, 85, 703-727.	10.4	183
43	Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L Journal of Experimental Biology, 2006, 209, 353-363.	1.7	176
44	Determination of intracellular pH and PCO2 after metabolic inhibiton by fluoride and nitrilotriacetic acid. Respiration Physiology, 1990, 81, 255-273.	2.7	175
45	Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 425-435.	1.6	169
46	Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. Journal of Thermal Biology, 2007, 32, 144-151.	2.5	169
47	Persistence of Positive Carryover Effects in the Oyster, Saccostrea glomerata, following Transgenerational Exposure to Ocean Acidification. PLoS ONE, 2015, 10, e0132276.	2.5	145
48	Metabolic Demand, Oxygen Supply, and Critical Temperatures in the Antarctic BivalveLaternula elliptica. Physiological and Biochemical Zoology, 2002, 75, 123-133.	1.5	144
49	Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Marine Ecology - Progress Series, 2010, 417, 159-170.	1.9	142
50	Physiological ecology meets climate change. Ecology and Evolution, 2015, 5, 1025-1030.	1.9	138
51	Metabolic Depression During Environmental Stress: The Role of Extracellular <i>>Versus</i> >Intracellular pH in <i>Sipunculus Nudus</i> . Journal of Experimental Biology, 1996, 199, 1801-1807.	1.7	138
52	Climate-dependent evolution of Antarctic ectotherms: An integrative analysis. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1071-1104.	1.4	136
53	Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater PCO2. Aquatic Toxicology, 2009, 92, 30-37.	4.0	136
54	Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Marine Biology, 2013, 160, 1845-1861.	1.5	134

#	Article	IF	CITATIONS
55	Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. Journal of Experimental Biology, 2002, 205, 2217-30.	1.7	133
56	CHALLENGING THE COLD: CRABS RECONQUER THE ANTARCTIC. Ecology, 2005, 86, 619-625.	3.2	128
57	Acid–Base Regulation, Metabolism and Energetics in <i>Sipunculus Nudus</i> As a Function of Ambient Carbon Dioxide Level. Journal of Experimental Biology, 1998, 201, 43-55.	1.7	126
58	Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua  ) during combined and isolated exposures to hypercapnia and copper. Marine Biology, 1997, 128, 337-346.	1.5	123
59	Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Climate Research, 2008, 37, 253-270.	1.1	120
60	Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Marine Biology, 2007, 150, 1417-1429.	1.5	119
61	Impacts of hypoxic events surpass those of future ocean warming and acidification. Nature Ecology and Evolution, 2021, 5, 311-321.	7.8	116
62	Modelling climate change impacts on marine fish populations: processâ€based integration of ocean warming, acidification and other environmental drivers. Fish and Fisheries, 2016, 17, 972-1004.	5.3	115
63	Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Polar Biology, 1999, 22, 17-30.	1.2	114
64	Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 134, 79-90.	2.6	114
65	Response of Mytilus galloprovincialis (L.) to increasing seawater temperature and to marteliosis: Metabolic and physiological parameters. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 156, 57-66.	1.8	114
66	Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Marine Ecology - Progress Series, 2008, 373, 303-309.	1.9	113
67	Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Frontiers in Zoology, 2012, 9, 28.	2.0	111
68	Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 133, 303-321.	1.8	110
69	Mitochondrial mechanisms of cold adaptation in cod (Gadus morhuaL.) populations from different climatic zones. Journal of Experimental Biology, 2006, 209, 2462-2471.	1.7	110
70	Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab <i>Hyas araneus</i> . Biogeosciences, 2009, 6, 2207-2215.	3.3	108
71	Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina (L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1997, 167, 25-35.	1.5	106
72	Oxygen limited thermal tolerance in fish?. Respiratory Physiology and Neurobiology, 2004, 141, 243-260.	1.6	106

#	Article	IF	CITATIONS
73	Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance. Polar Biology, 2006, 29, 688-693.	1.2	106
74	Get ready for ocean acidification. Nature, 2013, 498, 429-429.	27.8	103
75	Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 323-335.	1.5	102
76	Niche Dimensions in Fishes: An Integrative View. Physiological and Biochemical Zoology, 2010, 83, 808-826.	1.5	100
77	Metabolic power budgeting and adaptive strategies in zoology: examples from scallops and fishThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board Canadian Journal of Zoology. 2010. 88. 753-763.	1.0	100
78	Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter. Integrative and Comparative Biology, 2016, 56, 73-84.	2.0	95
79	How does oxidative stress relate to thermal tolerance in the Antarctic bivalve Yoldia eightsi?. Antarctic Science, 2001, 13, 111-118.	0.9	94
80	Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1660-R1670.	1.8	93
81	Oxygen limitation of thermal tolerance in cod, Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R902-R910.	1.8	91
82	Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Regions Science and Technology, 2000, 31, 207-225.	3.5	90
83	Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Marine Biology, 2010, 157, 1653-1663.	1.5	89
84	Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and ³¹ P-MRS. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1254-R1262.	1.8	88
85	Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean. PLoS ONE, 2015, 10, e0134082.	2.5	87
86	Oxidative stress and antioxidative defense in cephalopods: a function of metabolic rate or age?. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 125, 147-160.	1.6	85
87	Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. Journal of Experimental Biology, 2004, 207, 2529-2538.	1.7	85
88	The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecology Letters, 2000, 3, 487-494.	6.4	84
89	Integrating climate change in ocean planning. Nature Sustainability, 2020, 3, 505-516.	23.7	83
90	Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Scientia Marina, 2005, 69, 271-285.	0.6	80

#	Article	IF	CITATIONS
91	Mitochondrial function and critical temperature in the Antarctic bivalve, Laternula elliptica. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, 179-189.	1.8	79
92	Distribution patterns of decapod crustaceans in polar areas: a result of magnesium regulation?. Polar Biology, 2001, 24, 719-723.	1.2	79
93	Growth efficiency and temperature in scallops: a comparative analysis of species adapted to different temperatures. Functional Ecology, 2004, 18, 641-647.	3.6	79
94	Potential impacts of future ocean acidification on marine ecosystems and fisheries: current knowledge and recommendations for future research. ICES Journal of Marine Science, 2011, 68, 1019-1029.	2.5	79
95	Climate Variability and the Energetic Pathways of Evolution: The Origin of Endothermy in Mammals and Birds. Physiological and Biochemical Zoology, 2004, 77, 959-981.	1.5	75
96	Modulation of the cost of pHi regulation during metabolic depression: a (31)P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. Journal of Experimental Biology, 2000, 203, 2417-28.	1.7	75
97	Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen) Tj ETQq1 1 (Journal of Experimental Biology, 2003, 206, 3895-3903.	0.784314 1.7	rgBT /Overlo 73
98	Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 765-777.	1.5	72
99	Stress response or beneficial temperature acclimation: transcriptomic signatures in <scp>A</scp> ntarctic fish (<i><scp>P</scp>achycara brachycephalum</i>). Molecular Ecology, 2014, 23, 3469-3482.	3.9	72
100	Metabolic Biochemistry: Its Role in Thermal Tolerance and in the Capacities of Physiological and Ecological Function. Fish Physiology, 2005, 22, 79-154.	0.8	71
101	Resistance to freshwater exposure in White Sea Littorina spp. I: Anaerobic metabolism and energetics. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2000, 170, 91-103.	1.5	70
102	Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1453-R1466.	1.8	70
103	Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics, 2014, 15, 789.	2.8	70
104	Mitochondrial Acclimation Capacities to Ocean Warming and Acidification Are Limited in the Antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons. PLoS ONE, 2013, 8, e68865.	2.5	70
105	Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 166, 48-57.	1.6	69
106	Temperature effects on key metabolic enzymes in Littorina saxatilis and L. obtusata from different latitudes and shore levels. Marine Biology, 2001, 139, 113-126.	1.5	68
107	Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Frontiers in Marine Science, 2014, 1, .	2.5	68
108	Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (<i>Loligo vulgaris</i>). Journal of Experimental Biology, 2014, 217, 518-525.	1.7	68

#	Article	IF	CITATIONS
109	Thermal sensitivity of mitochondrial function in the Antarctic Notothenioid Lepidonotothen nudifrons. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 597-604.	1.5	66
110	Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Scientific Reports, 2017, 7, 4526.	3.3	66
111	Chronological and physiological ageing in a polar and a temperate mud clam. Mechanisms of Ageing and Development, 2005, 126, 598-609.	4.6	65
112	Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Marine Biology, 2013, 160, 1995-2006.	1.5	65
113	Can respiratory physiology predict thermal niches?. Annals of the New York Academy of Sciences, 2016, 1365, 73-88.	3.8	65
114	Estimating the global risk of anthropogenic climate change. Nature Climate Change, 2021, 11, 879-885.	18.8	65
115	Metabolic and molecular stress responses of sublittoral bearded horse mussel <i>Modiolus barbatus</i> to warming sea water: implications for vertical zonation. Journal of Experimental Biology, 2008, 211, 2889-2898.	1.7	64
116	Contributions of anaerobic metabolism to pH regulation in animal tissues: theory. Journal of Experimental Biology, 1987, 131, 69-87.	1.7	64
117	Determination of intracellular buffer values after metabolic inhibition by fluoride and nitrilotriacetic acid. Respiration Physiology, 1990, 81, 275-288.	2.7	63
118	Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Global Change Biology, 2014, 20, 3059-3067.	9.5	63
119	Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables. Journal of Experimental Biology, 2002, 205, 1153-60.	1.7	63
120	Temperature adaptation in eurythermal cod (Gadus morhua): a comparison of mitochondrial enzyme capacities in boreal and Arctic populations. Marine Biology, 2003, 142, 589-599.	1.5	62
121	A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Frontiers in Physiology, 2013, 4, 110.	2.8	62
122	Energy metabolism and ATP free-energy change of the intertidal wormSipunculus nudus below a critical temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1996, 166, 492-500.	1.5	61
123	Metabolic and molecular stress responses of the gilthead seabream Sparus aurata during long-term exposure to increasing temperatures. Marine Biology, 2009, 156, 797-809.	1.5	61
124	Metabolic and molecular stress responses of gilthead seam bream Sparus aurata during exposure to low ambient temperature: an analysis of mechanisms underlying the winter syndrome. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 1005-1018.	1.5	61
125	Effects of environmental hypercapnia on animal physiology: A 13C NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2006, 144, 479-484.	1.8	60
126	Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 154-161.	1.8	60

#	Article	IF	CITATIONS
127	Combined effects of short-term exposure to elevated CO 2 and decreased O 2 on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Chemosphere, 2016, 155, 207-216.	8.2	59
128	Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration. Ecotoxicology and Environmental Safety, 2017, 137, 94-102.	6.0	59
129	Metabolic Rates at Different Oxygen Levels Determined by Direct and Indirect Calorimetry in the Oxyconformer <i>Sipunculus Nudus</i> . Journal of Experimental Biology, 1991, 157, 143-160.	1.7	59
130	Temperature-dependent changes in energy metabolism, intracellular pH and blood oxygen tension in the Atlantic cod. Journal of Fish Biology, 2003, 62, 1239-1253.	1.6	58
131	Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2006, 143, 494-503.	1.8	58
132	Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (<i>Crassostrea virginica</i> Gmelin). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1338-R1346.	1.8	58
133	Physiological plasticity, long term resistance or acclimation to temperature, in the Antarctic bivalve, Laternula elliptica. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 162, 16-21.	1.8	57
134	Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata. Marine Pollution Bulletin, 2017, 122, 263-271.	5.0	57
135	Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R1410-R1420.	1.8	56
136	High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquatic Toxicology, 2004, 70, 55-61.	4.0	56
137	Thermal tolerance of crustacean larvae (zoea I) in two different populations of the kelp crab <i>Taliepus dentatus</i> (Milne-Edwards). Journal of Experimental Biology, 2009, 212, 1371-1376.	1.7	56
138	Foraging behaviour, swimming performance and malformations of early stages of commercially important fishes under ocean acidification and warming. Climatic Change, 2016, 137, 495-509.	3.6	56
139	Oxygen-dependent asynchrony of embryonic development in embryo masses of brachyuran crabs. Marine Biology, 2003, 142, 559-565.	1.5	55
140	Thermal limits of burrowing capacity are linked to oxygen availability and size in the Antarctic clam Laternula elliptica. Oecologia, 2007, 154, 479-484.	2.0	54
141	Metabolic adaptation of the intertidal worm Sipunculus nudus to functional and environmental hypoxia. Marine Biology, 1984, 79, 237-247.	1.5	53
142	Mitochondrial ageing of a polar and a temperate mud clam. Mechanisms of Ageing and Development, 2005, 126, 610-619.	4.6	53
143	Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biology, 2005, 28, 575-584.	1.2	53
144	Anaerobic metabolic patterns related to stress responses in hypoxia exposed mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 2010, 394, 123-133.	1.5	53

#	Article	IF	CITATIONS
145	Age-dependence of metabolism in mussels Mytilus edulis (L.) from the White Sea. Journal of Experimental Marine Biology and Ecology, 2001, 257, 53-72.	1.5	52
146	Mitochondrial Function in Seasonal Acclimatization versus Latitudinal Adaptation to Cold in the Lugworm Arenicola marina (L.). Physiological and Biochemical Zoology, 2004, 77, 174-186.	1.5	52
147	Anaerobiosis and acid-base status in marine invertebrates: a theoretical analysis of proton generation by anaerobic metabolism. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1984, 155, 1-12.	1.5	51
148	Improved heat tolerance in air drives the recurrent evolution of air-breathing. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132927.	2.6	51
149	New encounters in Arctic waters: a comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biology, 2016, 39, 1137-1153.	1.2	51
150	Thermal tolerance of larval stages of the Chilean kelp crab Taliepus dentatusÂ. Marine Ecology - Progress Series, 2011, 429, 157-167.	1.9	51
151	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	9.5	51
152	Mitochondrial oxyconformity and cold adaptation in the polychaete Nereis pelagica and the bivalve Arctica islandica from the Baltic and White Seas. Journal of Experimental Biology, 2000, 203, 3355-68.	1.7	51
153	Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 347-359.	1.5	50
154	Implications of the Paris agreement for the ocean. Nature Climate Change, 2016, 6, 732-735.	18.8	50
155	Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, <i>Gadus morhua</i> . Global Change Biology, 2017, 23, 1499-1510.	9.5	50
156	Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Science Advances, 2018, 4, eaas8821.	10.3	50
157	Energetic aspects of cold adaptation: critical temperatures in metabolic, ionic and acid-base regulation?. , 1998, , 88-120.		49
158	Temperature-dependent expression of cytochrome-c oxidase in Antarctic and temperate fish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R508-R516.	1.8	49
159	Thermal physiology of the common eelpout (Zoarces viviparus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2003, 173, 365-378.	1.5	49
160	Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae). Polar Biology, 2006, 30, 95-107.	1.2	49
161	Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131695.	2.6	49
162	Lake Baikal amphipods under climate change: thermalÂconstraintsÂand ecological consequences. Ecosphere, 2016, 7, e01308.	2.2	49

#	Article	IF	CITATIONS
163	A new function for lactate in the toad Bufo marinus. Journal of Applied Physiology, 1994, 76, 2405-2410.	2.5	48
164	Adapting to Climate Change. Science, 2009, 323, 876-877.	12.6	48
165	A snapshot of ocean acidification research. Marine Biology, 2013, 160, 1765-1771.	1.5	48
166	Indicators of oxygen- and capacity-limited thermal tolerance in the lugworm Arenicola marina. Climate Research, 2008, 37, 227-240.	1.1	48
167	Governing for Transformative Change across the Biodiversity–Climate–Society Nexus. BioScience, 2022, 72, 684-704.	4.9	48
168	Anaerobiosis and acid-base status in marine invertebrates: effect of environmental hypoxia on extracellular and intracellular pH inSipunculus nudus L Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1984, 155, 13-20.	1.5	47
169	Coordination of metabolism, acidâ€base regulation and haemocyanin function in cephalopods. Marine and Freshwater Behaviour and Physiology, 1995, 25, 131-148.	0.9	47
170	In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magnetic Resonance Imaging, 2002, 20, 165-172.	1.8	47
171	Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758)—explaining ecological findings under climate change. Marine Biology, 2020, 167, 1.	1.5	47
172	Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magnetic Resonance Imaging, 2001, 19, 1113-1124.	1.8	46
173	Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis. Integrative and Comparative Biology, 2007, 47, 645-655.	2.0	46
174	Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics. Oecologia, 2007, 153, 29-36.	2.0	46
175	Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis (L.) from the North Sea. Journal of Experimental Marine Biology and Ecology, 2015, 473, 16-25.	1.5	46
176	Effects of temperature acclimation on lactate dehydrogenase of cod(Gadus morhua): genetic, kinetic and thermodynamic aspects. Journal of Experimental Biology, 2004, 207, 95-112.	1.7	45
177	Critical temperatures in the cephalopod Sepia officinalisinvestigated using in vivo31P NMR spectroscopy. Journal of Experimental Biology, 2006, 209, 891-906.	1.7	45
178	Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, <i>Dosidicus gigas</i> , living in an oxygen minimum zone. Journal of Experimental Biology, 2014, 217, 2555-68.	1.7	45
179	Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (Boreogadus) Tj ETQq1	1 0.784314 r 2.0	gBT_{45}Overlo
180	Highâ€Energy Phosphate Metabolism during Exercise and Recovery in Temperate and Antarctic Scallops: An In Vivo 31Pâ€NMR Study. Physiological and Biochemical Zoology, 2003, 76, 622-633.	1.5	44

#	Article	IF	CITATIONS
181	The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid–base balance in the spider crab, Hyas araneus. Marine Biology, 2013, 160, 2049-2062.	1.5	44
182	Impacts of Climate Variability and Change on (Marine) Animals: Physiological Underpinnings and Evolutionary Consequences. Integrative and Comparative Biology, 2016, 56, 31-44.	2.0	44
183	Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Scientific Reports, 2022, 12, .	3.3	44
184	Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 185-205.	1.5	43
185	Nothing in experimental biology makes sense except in the light of ecology and evolution – correspondence on <i>J. Exp. Biol.</i> 216, 2771-2782. Journal of Experimental Biology, 2013, 216, 4494-4495.	1.7	42
186	How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope – remarks on the article by Gräs et al Journal of Experimental Biology, 2014, 217, 4432-4433.	1.7	42
187	Oxygen consumption and mode of energy production in the intertidal worm Sipunculus nudus L.: Definition and characterization of the critical PO2 for an oxyconformer. Respiration Physiology, 1985, 59, 361-377.	2.7	41
188	Environmental constraints and the physiology of performance in squids. African Journal of Marine Science, 1998, 20, 207-221.	0.6	41
189	Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Marine Biology, 2011, 158, 2043-2053.	1.5	41
190	Thermal plasticity of mitochondria: A latitudinal comparison between Southern Ocean molluscs. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152, 423-430.	1.8	40
191	Metabolic response and thermal tolerance of green abalone juveniles (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. Journal of Experimental Marine Biology and Ecology, 2017, 497, 11-18.	1.5	40
192	Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. Journal of Experimental Biology, 2021, 224, .	1.7	40
193	Squid (<i>Lolliguncula Brevis</i>) Life in Shallow Waters: Oxygen Limitation of Metabolism and Swimming Performance. Journal of Experimental Biology, 1996, 199, 911-921.	1.7	40
194	Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). Journal of Experimental Biology, 2005, 208, 2409-2420.	1.7	39
195	Monitoring the biochemical and cellular responses of marine bivalves during thermal stress by using biomarkers. Marine Environmental Research, 2012, 73, 70-77.	2.5	39
196	Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 767-781.	1.5	39
197	Contributions of anaerobic metabolism to pH regulation in animal tissues: theory. Journal of Experimental Biology, 1987, 131, 69-87.	1.7	39
198	Recovery from anaerobiosis of the lugworm,Arenicola marina L.: Changes of metabolite concentrations in the body-wall musculature. Journal of Comparative Physiology â–¡ B, 1979, 133, 227-231.	2.0	38

#	Article	IF	CITATIONS
199	Connecting to ecology: a challenge for comparative physiologists? Response to †Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology'. Journal of Experimental Biology, 2018, 221, .	1.7	38
200	Temperature and energetics: an introduction to cold ocean physiology. , 1998, , 3-30.		37
201	Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 607-621.	1.5	37
202	Involvement of p38 <scp>MAPK</scp> in the Induction of <scp>H</scp> sp70 During Acute Thermal Stress in Red Blood Cells of the Gilthead Sea Bream, <i><scp>S</scp>parus aurata</i> . Journal of Experimental Zoology, 2012, 317, 303-310.	1.2	37
203	An Analysis of the Effects of pH on Oxygen Binding by Squid (<i>Illex Illecebrosus, Loligo Pealei</i>) Haemocyanin. Journal of Experimental Biology, 1990, 150, 407-424.	1.7	37
204	Survivorship of juvenile surf clams Donax serra (Bivalvia, Donacidae) exposed to severe hypoxia and hydrogen sulphide. Journal of Experimental Marine Biology and Ecology, 2002, 271, 9-23.	1.5	36
205	Temperature-dependent lipid levels and components in polar and temperate eelpout (Zoarcidae). Fish Physiology and Biochemistry, 2008, 34, 261-274.	2.3	36
206	Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. Journal of Thermal Biology, 2015, 52, 117-129.	2.5	36
207	The Anaerobic Endproduct Lactate Has a Behavioural and Metabolic Signalling Function in the Shore Crab <i>Carcinus Maenas</i> . Journal of Experimental Biology, 1997, 200, 1015-1024.	1.7	36
208	Physiological ageing in a temperate and a polar swimming scallop. Marine Ecology - Progress Series, 2006, 307, 187-198.	1.9	36
209	The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface. Scientific Reports, 2016, 6, 19158.	3.3	35
210	Comparison of Aerobic Scope for Metabolic Activity in Aquatic Ectotherms With Temperature Related Metabolic Stimulation: A Novel Approach for Aerobic Power Budget. Frontiers in Physiology, 2018, 9, 1438.	2.8	35
211	Feeding, metabolism and metabolic scope in Antarctic marine ectotherms. , 1998, , 365-390.		34
212	Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. Polar Biology, 2001, 24, 869-874.	1.2	34
213	Thermal sensitivity of cellular energy budgets in some Antarctic fish hepatocytes. Polar Biology, 2005, 28, 805-814.	1.2	34
214	Thermal sensitivity of uncoupling protein expression in polar and temperate fish. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2006, 1, 365-374.	1.0	34
215	Mitochondrial dynamics underlying thermal plasticity of cuttlefish (<i>Sepia officinalis</i>) hearts. Journal of Experimental Biology, 2012, 215, 2992-3000.	1.7	34
216	Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 625-639.	1.5	34

#	Article	IF	CITATIONS
217	Metabolic Responses of the Toad <i>Bufo marinus</i> to Environmental Hypoxia: An Analysis of the Critical P <scp>o</scp> ₂ . Physiological Zoology, 1991, 64, 836-849.	1.5	33
218	Seasonal patterns of metabolism and the heat shock response (HSR) in farmed mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 2009, 381, 136-144.	1.5	33
219	Oxyconformity in the intertidal worm Sipunculus nudus: the mitochondrial background and energetic consequences. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 129, 109-120.	1.6	32
220	Do drivers of biodiversity change differ in importance across marine and terrestrial systems — Or is it just different research communities' perspectives?. Science of the Total Environment, 2017, 574, 191-203.	8.0	32
221	Marine clade sensitivities to climate change conform across timescales. Nature Climate Change, 2020, 10, 249-253.	18.8	32
222	Anaerobic Metabolism and Changes in Acid-Base Status: Quantitative Interrelationships and pH Regulation in the Marine Worm <i>Sipunculus Nudus</i> . Journal of Experimental Biology, 1987, 131, 89-105.	1.7	32
223	A review of ammoniaâ€mediated buoyancy in squids (cephalopoda: Teuthoidea). Marine and Freshwater Behaviour and Physiology, 1995, 25, 193-203.	0.9	31
224	Temperature Effects on Hemocyanin Oxygen Binding in an Antarctic Cephalopod. Biological Bulletin, 2001, 200, 67-76.	1.8	31
225	Latitudinal comparisons of reproductive traits in five Brachyuran species along the Chilean coast. Revista Chilena De Historia Natural, 2004, 77, 15.	1.2	31
226	An examination of the metabolic processes underpinning critical swimming in Atlantic cod (<i>Gadus) Tj ETQq0 (3749-3756.</i>	0 0 rgBT /(1.7	Overlock 10 T 31
227	Acid-base regulation in exercising squid (Illex illecebrosus, Loligo pealei). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1991, 261, R239-R246.	1.8	30
228	Resistance to freshwater exposure in White Sea Littorina spp. II: Acid-base regulation. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2000, 170, 105-115.	1.5	30
229	How does the cold stenothermal gadoid Lota lota survive high water temperatures during summer?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 149-156.	1.5	30
230	Chapter 4 Oxygen and Capacity Limited Thermal Tolerance. Fish Physiology, 2009, , 143-191.	0.8	30
231	Climate change reduces offspring fitness in littoral spawners: a study integrating organismic response and longâ€ŧerm timeâ€series. Clobal Change Biology, 2013, 19, 373-386.	9.5	30
232	Thermal Preference Ranges Correlate with Stable Signals of Universal Stress Markers in Lake Baikal Endemic and Holarctic Amphipods. PLoS ONE, 2016, 11, e0164226.	2.5	30
233	Mitochondrial Function in Antarctic Nototheniids with ND6 Translocation. PLoS ONE, 2012, 7, e31860.	2.5	30
234	Elevated pCO2 Affects Feeding Behavior and Acute Physiological Response of the Brown Crab Cancer pagurus. Frontiers in Physiology, 2018, 9, 1164.	2.8	29

#	Article	IF	CITATIONS
235	Burning embers: towards more transparent and robust climate-change risk assessments. Nature Reviews Earth & Environment, 2020, 1, 516-529.	29.7	29
236	Temperature and growth rates as modulators of the metabolic capacities of fish muscle. , 1998, , 58-87.		28
237	The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2004, 17, 236-248.	2.0	28
238	Hsp70 is not a sensitive indicator of thermal limitation in Gadus morhua. Journal of Fish Biology, 2005, 67, 767-778.	1.6	28
239	Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R756-R768.	1.8	28
240	Temperature tolerance of different larval stages of the spider crab Hyas araneus exposed to elevated seawater PCO2. Frontiers in Zoology, 2014, 11, 87.	2.0	28
241	Pre-hatching seawater pCO2 affects development and survival of zoea stages of Arctic spider crab Hyas araneus. Marine Ecology - Progress Series, 2014, 501, 127-139.	1.9	28
242	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	9.5	28
243	The importance of metabolism in acid–base regulation and acid–base methodology. Canadian Journal of Zoology, 1989, 67, 3005-3017.	1.0	27
244	The Protein Synthesis Machinery Operates at the Same Expense in Eurythermal and Cold Stenothermal Pectinids. Physiological and Biochemical Zoology, 2003, 76, 28-40.	1.5	27
245	Escape performance of temperate king scallop, Pecten maximus under ocean warming and acidification. Marine Biology, 2014, 161, 2819-2829.	1.5	27
246	A first Glimpse at the genome of the Baikalian amphipod <i>Eulimnogammarus verrucosus</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 177-189.	1.3	27
247	Impact of Ocean Acidification and Warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus. , 2018, 6, coy050.		27
248	Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus) Tj ETQq0 0 Biochemistry and Molecular Biology, 2016, 193, 33-46.	0 rgBT /(1.6	Overlock 10 Tf 26
249	Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea. Global Change Biology, 2018, 24, 526-535.	9.5	26
250	Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation. Journal of Experimental Biology, 2020, 223, .	1.7	26
251	Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard. Marine Ecology - Progress Series, 2017, 571, 183-191.	1.9	26
252	Full time mothers: daily rhythms in brooding and nonbrooding behaviors of Brachyuran crabs. Journal of Experimental Marine Biology and Ecology, 2002, 276, 31-47.	1.5	25

#	Article	IF	CITATIONS
253	In vitro protein synthesis capacities in a cold stenothermal and a temperate eurythermal pectinid. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2003, 173, 611-620.	1.5	25
254	Effects of hypoxia on the energy status and nitrogen metabolism of African lungfish during aestivation in a mucus cocoon. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 853-865.	1.5	24
255	Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: A latitudinal comparison. Journal of Experimental Marine Biology and Ecology, 2009, 372, 22-30.	1.5	24
256	lon regulatory capacity and the biogeography of Crustacea at high southern latitudes. Polar Biology, 2010, 33, 919-928.	1.2	24
257	Ocean acidification but not warming alters sex determination in the Sydney rock oyster, <i>Saccostrea glomerata</i> . Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172869.	2.6	24
258	Squid as Elite Athletes: Locomotory, Respiratory, and Circulatory Integration. , 1990, , 481-503.		24
259	Research Priorities for Understanding Ocean Acidification: Summary From the Second Symposium on the Ocean in a High-CO2 World. Oceanography, 2009, 22, 182-189.	1.0	23
260	Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costs. Marine Biology, 2013, 160, 1943-1953.	1.5	23
261	Cold Tolerance and the Regulation of Cardiac Performance and Hemolymph Distribution inMaja squinado(Crustacea: Decapoda). Physiological and Biochemical Zoology, 2000, 73, 406-415.	1.5	22
262	Seasonal Changes in Metabolism and Cellular Stress Phenomena in the Gilthead Sea Bream (<i>Sparus) Tj ETQq</i>	000rgBT 1.5	/Overlock 10
263	Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis. Scientific Reports, 2021, 11, 17098.	3.3	22
264	A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 272, R350-R356.	1.8	21
265	Membrane lipid and protein adaptations in Antarctic fish. , 1998, , 166-189.		21
266	Adaptation to cold and depth: contrasts between polar and deep-sea animals. , 1998, , 33-57.		21
267	Polymorphic microsatellite DNA markers from the marine gastropod Littorina saxatilis. Molecular Ecology Notes, 2002, 2, 27-29.	1.7	21
268	Influence of Temperature, Hypercapnia, and Development on the Relative Expression of Different Hemocyanin Isoforms in the Common Cuttlefish <i>Sepia officinalis</i> . Journal of Experimental Zoology, 2012, 317, 511-523.	1.2	21
269	Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 529-543.	1.5	21
270	Recovery from Anaerobiosis in the Intertidal Worm Sipunculus Nudus: I. Restoration of Aerobic, Steady-State Energy Metabolism. Journal of Experimental Biology, 1986, 122, 37-50.	1.7	21

#	Article	IF	CITATIONS
271	Effects of low temperature on prooxidant processes and antioxidant defence systems in marine organisms. , 1998, , 212-236.		20
272	Temperature-dependent pH regulation in eurythermal and stenothermal marine fish: an interspecies comparison using 31P-NMR. Journal of Thermal Biology, 2003, 28, 363-371.	2.5	20
273	Allometry of thermal limitation in the cephalopod Sepia officinalis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, 149-154.	1.8	20
274	Slowest of the slow: latitudinal insensitivity of burrowing capacity in the bivalve Laternula. Marine Biology, 2007, 151, 1823-1830.	1.5	20
275	Differential impacts of elevated CO 2 and acidosis on the energy budget of gill and liver cells from Atlantic cod, Gadus morhua. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 187, 160-167.	1.8	20
276	Aerobic capacities and swimming performance of Polar cod (<i>Boreogadus saida</i> Lepechin) under ocean acidification and warming conditions. Journal of Experimental Biology, 2018, 221, .	1.7	20
277	Single and combined effects of the "Deadly trio―hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 243-244, 110438.	1.6	20
278	Squid (Lolliguncula brevis) life in shallow waters: oxygen limitation of metabolism and swimming performance. Journal of Experimental Biology, 1996, 199, 911-21.	1.7	20
279	High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1789-R1796.	1.8	19
280	Thermal dependency of burrowing in three species within the bivalve genus Laternula: a latitudinal comparison. Marine Biology, 2009, 156, 1977-1984.	1.5	19
281	Differential physiological responses to oxygen availability in early life stages of decapods developing in distinct environments. Marine Biology, 2015, 162, 1111-1124.	1.5	19
282	Thermal growth potential of Atlantic cod by the end of the 21st century. Global Change Biology, 2016, 22, 4162-4168.	9.5	19
283	Differences in neurochemical profiles of two gadid species under ocean warming and acidification. Frontiers in Zoology, 2017, 14, 49.	2.0	19
284	Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 749-764.	1.5	19
285	Assessment of muscular energy metabolism and heat shock response of the green abalone Haliotis fulgens (Gastropoda: Philipi) at extreme temperatures combined with acute hypoxia and hypercapnia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 227, 1-11.	1.6	19
286	Different sensitivity to heatwaves across the life cycle of fish reflects phenotypic adaptation to environmental niche. Marine Environmental Research, 2020, 162, 105192.	2.5	19
287	Introduction to special section: The Ocean in a High-CO2World. Journal of Geophysical Research, 2005, 110, .	3.3	18
288	Biology of the Antarctic eelpout Pachycara brachycephalum. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1131-1140.	1.4	18

#	Article	IF	CITATIONS
289	Increased Concentrations of Haemolymph Mg2+ Protect Intracellular Ph and Atp Levels During Temperature Stress and Anoxia in the Common Shrimp <i>Crangon Crangon</i> . Journal of Experimental Biology, 1997, 200, 785-792.	1.7	18
290	Hydrogen Peroxide Causes a Decrease in Aerobic Metabolic Rate and in Intracellular pH in the Shrimp Crangon crangon. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1997, 117, 123-129.	0.5	17
291	Physiological and genetical adaptation to temperature in fish populations. Continental Shelf Research, 2003, 23, 1919-1928.	1.8	17
292	Metabolic costs induced by lactate in the toad Bufo marinus: new mechanism behind oxygen debt?. Journal of Applied Physiology, 2003, 94, 1177-1185.	2.5	17
293	Thermal sensitivity of metabolic enzymes in subarctic and temperate freshwater mussels (Bivalvia:) Tj ETQq1 1 (0.784314 r 2.5	gB <u>T</u> /Overlo
294	Comparison between transcriptomic responses to short-term stress exposures of a common Holarctic and endemic Lake Baikal amphipods. BMC Genomics, 2019, 20, 712.	2.8	17
295	Interaction between temperature and hypoxia in the alligator. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1993, 265, R1339-R1343.	1.8	16
296	Metabolism and energetics in squid (Illex illecebrosus, Loligo pealei) during muscular fatigue and recovery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1993, 265, R157-R165.	1.8	16
297	Metabolic performance of the squid Lolliguncula brevis (Cephalopoda) during hypoxia: an analysis of the critical PO2. Journal of Experimental Marine Biology and Ecology, 2000, 243, 241-259.	1.5	16
298	A Role for Oxygen Delivery and Extracellular Magnesium in Limiting Cold Tolerance of the Sub-Antarctic Stone Crab <i>Paralomis granulosa</i> ?. Physiological and Biochemical Zoology, 2012, 85, 285-298.	1.5	16
299	Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 182, 102-112.	1.8	16
300	Uptake Kinetics and Subcellular Compartmentalization Explain Lethal but Not Sublethal Effects of Cadmium in Two Closely Related Amphipod Species. Environmental Science & Technology, 2017, 51, 7208-7218.	10.0	16
301	Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 403-418.	1.5	16
302	Temperature dependence of ionic and acid-base regulation in boreal and arctic Crangon crangon and Pandalus borealis. Journal of Experimental Marine Biology and Ecology, 1997, 211, 69-83.	1.5	15
303	Molecular characterisation and expression of Atlantic cod (Gadus morhua) myoglobin from two populations held at two different acclimation temperatures. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 681-689.	1.8	15
304	Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod. Frontiers in Zoology, 2015, 12, 6.	2.0	15
305	De novo transcriptome assembly and gene expression profile of thermally challenged green abalone (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. Marine Genomics, 2019, 45, 48-56.	1.1	15
306	Differential expression of duplicated LDH-A genes during temperature acclimation of weatherfish Misgurnus fossilis. FEBS Journal, 2007, 274, 1503-1513.	4.7	14

#	Article	IF	CITATIONS
307	Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8, 344-351.	1.0	14
308	A first insight into the spleen transcriptome of the notothenioid fish Lepidonotothen nudifrons: Resource description and functional overview. Marine Genomics, 2015, 24, 237-239.	1.1	14
309	Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: Role of filtration and ion-regulatory capacities. Marine Environmental Research, 2018, 135, 103-113.	2.5	13
310	Untargeted metabolic profiling reveals distinct patterns of thermal sensitivity in two related notothenioids. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2018, 217, 43-54.	1.8	13
311	Advances in understanding the impacts of global warming on marine fishes farmed offshore:Sparus aurataas a case study. Journal of Fish Biology, 2020, 98, 1509-1523.	1.6	13
312	Critical PO2 of Euryoxic Animals. , 1988, , 37-48.		13
313	Metabolic and energy correlates of intracellular pH in progressive fatigue of squid (L. brevis) mantle muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 271, R1403-R1414.	1.8	12
314	The Potential Role of CO2 in Initiation and Maintenance of Estivation in the Land Snail Helix lucorum. Physiological and Biochemical Zoology, 2007, 80, 113-124.	1.5	12
315	Simultaneous high-resolution pH and spectrophotometric recordings of oxygen binding in native blood microvolumes. Journal of Experimental Biology, 2014, 217, 1430-6.	1.7	12
316	Microscale genetic differentiation along the vertical shore gradient in White Sea snails Littorina saxatilis (Olivi) assessed by microsatellite markers. Journal of Molluscan Studies, 2003, 69, 388-391.	1.2	11
317	Cold induced changes of adenosine levels in common eelpout (<i>Zoarces viviparus</i>): a role in modulating cytochrome <i>c</i> oxidase expression. Journal of Experimental Biology, 2008, 211, 1262-1269.	1.7	11
318	Cross-Chapter Boxes. , 0, , 97-166.		11
319	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	2.5	11
320	Proton-Equivalent Ion Transfer in <i>Sipunculus Nudus</i> as a Function of Ambient Oxygen Tension: Relationships With Energy Metabolism. Journal of Experimental Biology, 1991, 156, 21-39.	1.7	11
321	Field studies and projections of climate change effects on the bearded horse mussel Modiolus barbatus in the Gulf of Thermaikos, Greece. Marine Ecology - Progress Series, 2012, 449, 183-196.	1.9	11
322	Acid-base regulation in the toad Bufo marinus during environmental hypoxia. Respiration Physiology, 1991, 85, 217-230.	2.7	10
323	The effect of hydrogen peroxide on isolated body wall of the lugworm Arenicola marina (L.) at different extracellular pH levels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2001, 128, 391-399.	2.6	10
324	Microsatellite DNA variation indicates low levels of genetic differentiation among cuttlefish (Sepia) Tj ETQq0 0	0 rgBT /Ον 1.0	erlock 10 Tf 50

Physiology Part D: Genomics and Proteomics, 2006, 1, 375-383.

#	Article	IF	CITATIONS
325	Do amphibious crabs have amphibious eggs? A case study of Armases miersii. Journal of Experimental Marine Biology and Ecology, 2011, 409, 107-113.	1.5	10
326	TEMPERATURE Effects of Climate Change. , 2011, , 1738-1745.		10
327	Physiological capacity of Cancer setosus larvae — Adaptation to El Niño Southern Oscillation conditions. Journal of Experimental Marine Biology and Ecology, 2012, 413, 100-105.	1.5	10
328	Effects of environmental and experimental stress on Antarctic fish. , 1998, , 299-326.		9
329	Invasive studies of intracellular acid–base parameters: quantitative analyses during environmental and functional stress. , 1999, , 69-98.		9
330	Coordination between ventilatory pressure oscillations and venous return in the cephalopod Sepia officinalis under control conditions, spontaneous exercise and recovery. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 177, 1-17.	1.5	9
331	Temperature-dependent activity in early life stages of the stone crab Paralomis granulosa (Decapoda,) Tj ETQq1 Biology and Ecology, 2011, 397, 27-37.	1 0.78431 1.5	4 rgBT /Over 9
332	Adaptations to semi-terrestrial life in embryos of East African mangrove crabs: a comparative approach. Marine Biology, 2013, 160, 2483-2492.	1.5	9
333	Environmentally low-temperature kinetic and thermodynamic study of lactate dehydrogenase from Atlantic cod (G. morhua) using a 96-well microplate technique. Analytical Biochemistry, 2004, 330, 10-20.	2.4	8
334	Thermal acclimation to 4 or 10°C imparts minimal benefit on swimming performance in Atlantic cod (Gadus morhua L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 623-633.	1.5	8
335	Oxygen and capacity limited thermal tolerance of the lugworm Arenicola marina: A seasonal comparison. Journal of Experimental Marine Biology and Ecology, 2011, 409, 300-309.	1.5	8
336	Field studies on the relation between the accumulation of heavy metals and metabolic and HSR in the bearded horse mussel Modiolus barbatus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 153, 133-140.	2.6	8
337	Microsatellite markers for the notothenioid fish Lepidonotothen nudifrons and two congeneric species. BMC Research Notes, 2016, 9, 238.	1.4	8
338	STC1 and PTHrP Modify Carbohydrate and Lipid Metabolism in Liver of a Teleost Fish. Scientific Reports, 2019, 9, 723.	3.3	8
339	The Intracellular pH of a Molluscan Smooth Muscle During a Contraction-Catch-Relaxation Cycle Estimated by the Distribution of [14C]DMO and by 31P-NMR Spectroscopy. Journal of Experimental Biology, 1990, 150, 81-93.	1.7	8
340	Impact of ocean acidification and warming on mitochondrial enzymes and membrane lipids in two Gadoid species. Polar Biology, 2020, 43, 1109-1120.	1.2	7
341	Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species. Scientific Reports, 2021, 11, 4562.	3.3	7
342	Interactions of Anaerobic Propionate Formation and Acid-Base Status in Arenicola marina: An Analysis of Propionyl-CoA Carboxylase. Physiological Zoology, 1994, 67, 892-909.	1.5	7

#	Article	IF	CITATIONS
343	Temperature-dependent shift of pHi in fish white muscle: contributions of passive and active processes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 272, R84-R89.	1.8	6
344	Ultrastructure of pedal muscle as a function of temperature in nacellid limpets. Marine Biology, 2010, 157, 1705-1712.	1.5	6
345	Response of branchial Na+/K+ ATPase to changes in ambient temperature in Atlantic cod (Gadus) Tj ETQq1 1 0.78 Systemic, and Environmental Physiology, 2016, 186, 461-470.	4314 rgBT 1.5	/Overlock 6
346	Does the membrane pacemaker theory of metabolism explain the size dependence of metabolic rate in marine mussels?. Journal of Experimental Biology, 2017, 220, 1423-1434.	1.7	6
347	In vivo 31P-MRS of muscle bioenergetics in marine invertebrates: Future ocean limits scallops' performance. Magnetic Resonance Imaging, 2019, 61, 239-246.	1.8	6
348	Reply to: methodological inconsistencies define thermal bottlenecks in fish life cycle. Evolutionary Ecology, 2022, 36, 293-298.	1.2	6
349	The role of phosphofructokinase in glycolytic control in the facultative anaerobe Sipunculus nudus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1991, 161, 581-589.	1.5	5
350	Physiological ecology in cold ocean fisheries: a case study in Atlantic cod. , 1998, , 463-489.		5
351	Muscle bioenergetics of speeding fish: In vivo ³¹ Pâ€NMR studies in a 4.7 T MR scanner with an integrated swim tunnel. Concepts in Magnetic Resonance Part B, 2008, 33B, 62-73.	0.7	5
352	Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested. Biogeosciences, 2021, 18, 1787-1792.	3.3	5
353	Low annual temperature likely prevents the Holarctic amphipod Gammarus lacustris from invading Lake Baikal. Scientific Reports, 2021, 11, 10532.	3.3	5
354	Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1996, 166, 492-500.	1.5	5
355	Athleten des Meeres: Zur Ökophysiologie pelagischer Kalmare. Biologie in Unserer Zeit, 1994, 24, 192-199.	0.2	4
356	Ecosystem impacts of climate change and ocean acidification: A case for "global―conservation physiology. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S59.	1.8	4
357	CO ₂ induced pH _i changes in the brain of polar fish: a TauCEST application. NMR in Biomedicine, 2018, 31, e3955.	2.8	4
358	Excess Oxygen in Polar Evolution: A Whole Organism Perspective. From Pole To Pole, 2013, , 67-87.	0.1	4
359	Composition and relative abundance of microsatellite repeats in genome of Littorina saxatilis (Olivi) (Gastropoda: Littorinidae). Journal of Molluscan Studies, 2001, 67, 499-510.	1.2	3
360	Integrated studies of organismal plasticity through physiological and transcriptomic approaches: examples from marine polar regions. Briefings in Functional Genomics, 2016, 15, 365-372.	2.7	3

#	Article	IF	CITATIONS
361	Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis from the White Sea. Polar Biology, 2018, 41, 2261-2273.	1.2	3
362	Kinetics of enzymes in cold-stenothermal invertebrates. , 1998, , 190-211.		2
363	SWIMMING AND OTHER ACTIVITIES Cellular Energy Utilization: Environmental Influences on Metabolism. , 2011, , 1645-1651.		2
364	Studying the cardiovascular system of a marine crustacean with magnetic resonance imaging at 9.4ÂT. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 567-579.	2.0	2
365	Non-invasive quantification of cardiac stroke volume in the edible crab Cancer pagurus. Frontiers in Zoology, 2019, 16, 46.	2.0	2
366	Transcriptome-level effects of the model organic pollutant phenanthrene and its solvent acetone in three amphipod species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 33, 100630.	1.0	2
367	pH Homeostasis in Terrestrial Vertebrates: A Comparison of Traditional and New Concepts. Advances in Comparative and Environmental Physiology, 1995, , 51-62.	0.5	2
368	The integrative and evolutionary biology of gas-binding copper proteins: an introduction. Integrative and Comparative Biology, 2007, 47, 628-630.	2.0	1
369	Frontiers in Aquatic Physiology - grand challenge. Frontiers in Physiology, 2010, 1, 6.	2.8	1
370	Non-invasive MRI Studies of Ventilatory and Cardiovascular Performance in Edible Crabs Cancer pagurus During Warming Under Elevated CO2 Levels. Frontiers in Physiology, 2020, 11, 596529.	2.8	1
371	Distribution patterns of decapod crustaceans in polar areas: a result of magnesium regulation?. , 2002, , 246-250.		1
372	Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. , 2002, , 266-271.		1
373	Advances in Predicting the Impacts of Global Warming on the Mussels Mytilus galloprovincialis in the Mediterranean Sea. , 2014, , 319-339.		1
374	Ambient media affect thermal response of cellular energy budget. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S173.	1.8	0
375	Professor Helen P. Laburn Ph.D. FRSSAf, 1951–2014. Journal of Thermal Biology, 2015, 51, 126-127.	2.5	О
376	Exploring the role of temperature in observed inter-population differences of Atlantic cod (Gadus) Tj ETQq0 0 0 1519-1529.	rgBT /Ove 2.5	rlock 10 Tf 50 0
377	Meeresorganismen unter CO2-Stress. , 2008, , 26-40.		0