
Lesley B Knoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7347046/publications.pdf Version: 2024-02-01

LESLEV R KNOLL

#	Article	IF	CITATIONS
1	Temporal patterns in sediment, carbon, and nutrient burial in ponds associated with changing agricultural tillage. Biogeochemistry, 2022, 159, 87-102.	3.5	3
2	Long-term ice phenology records spanning up to 578 years for 78 lakes around the Northern Hemisphere. Scientific Data, 2022, 9, .	5.3	9
3	Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes. Water Research, 2021, 190, 116715.	11.3	23
4	Lake browning generates a spatiotemporal mismatch between dissolved organic carbon and limiting nutrients. Limnology and Oceanography Letters, 2021, 6, 182-191.	3.9	17
5	Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 2021, 11, 521-529.	18.8	87
6	Widespread deoxygenation of temperate lakes. Nature, 2021, 594, 66-70.	27.8	267
7	Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyllâ€ <i>a</i> in north temperate lakes. Global Change Biology, 2021, 27, 4615-4629.	9.5	22
8	Global data set of long-term summertime vertical temperature profiles in 153 lakes. Scientific Data, 2021, 8, 200.	5.3	7
9	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	3.3	56
10	Increased winter drownings in ice-covered regions with warmer winters. PLoS ONE, 2020, 15, e0241222.	2.5	21
11	The relative importance of photodegradation and biodegradation of terrestrially derived dissolved organic carbon across four lakes of differing trophic status. Biogeosciences, 2020, 17, 6327-6340.	3.3	11
12	Consequences of lake and river ice loss on cultural ecosystem services. Limnology and Oceanography Letters, 2019, 4, 119-131.	3.9	81
13	Stream Nitrogen and Phosphorus Loads Are Differentially Affected by Storm Events and the Difference May Be Exacerbated by Conservation Tillage. Environmental Science & Technology, 2019, 53, 5613-5621.	10.0	32
14	The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods, 2019, 17, 42-57.	2.0	47
15	Browningâ€Related Decreases in Water Transparency Lead to Longâ€Term Increases in Surface Water Temperature and Thermal Stratification in Two Small Lakes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1651-1665.	3.0	63
16	University Of Minnesota Itasca Biological Station and Laboratories: Over 100 Years Of Field-Based Education and Research. Limnology and Oceanography Bulletin, 2018, 27, 42-44.	0.4	1
17	Browning-related oxygen depletion in an oligotrophic lake. Inland Waters, 2018, 8, 255-263.	2.2	40
18	Transparency, Geomorphology and Mixing Regime Explain Variability in Trends in Lake Temperature and Stratification across Northeastern North America (1975–2014). Water (Switzerland), 2017, 9, 442.	2.7	77

LESLEY B KNOLL

#	Article	IF	CITATIONS
19	The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: an extension of the Plankton Ecology Group (PEG) model. Inland Waters, 2016, 6, 565-580.	2.2	34
20	Quantifying pelagic phosphorus regeneration using three methods in lakes of varying productivity. Inland Waters, 2016, 6, 509-522.	2.2	6
21	Ecological consequences of long-term browning in lakes. Scientific Reports, 2016, 5, 18666.	3.3	168
22	Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables. Inland Waters, 2015, 5, 203-214.	2.2	41
23	Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in <scp>M</scp> idwestern <scp>US</scp> reservoirs. Freshwater Biology, 2014, 59, 2342-2353.	2.4	32
24	Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change. Limnology and Oceanography, 2014, 59, 840-850.	3.1	81
25	Temperate reservoirs are large carbon sinks and small CO ₂ sources: Results from highâ€resolution carbon budgets. Global Biogeochemical Cycles, 2013, 27, 52-64.	4.9	73
26	Large variation in vulnerability to grazing within a population of the colonial phytoplankter, <i>Microcystis aeruginosa</i> . Limnology and Oceanography, 2011, 56, 1714-1724.	3.1	25
27	Dreissenid mussels (<i>Dreissena polymorpha</i> and <i>Dreissena bugensis</i>) reduce microzooplankton and macrozooplankton biomass in thermally stratified lakes. Limnology and Oceanography, 2010, 55, 1851-1859.	3.1	35
28	Differential effects of elevated nutrient and sediment inputs on survival, growth and biomass of a common larval fish species (<i>Dorosoma cepedianum</i>). Freshwater Biology, 2010, 55, 654-669.	2.4	7
29	Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct and indirect effects. Oikos, 2009, 118, 1732-1742.	2.7	52
30	Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 2009, 54, 2298-2314.	3.1	1,977
31	Invasive zebra mussels (<i>Dreissena polymorpha</i>) increase cyanobacterial toxin concentrations in low-nutrient lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 448-455.	1.4	81
32	NUTRIENT CYCLING BY FISH SUPPORTS RELATIVELY MORE PRIMARY PRODUCTION AS LAKE PRODUCTIVITY INCREASES. Ecology, 2006, 87, 1696-1709.	3.2	112
33	Complex interactions between the zebra mussel, <i>Dreissena polymorpha</i> , and the harmful phytoplankter, <i>Microcystis aeruginosa</i> . Limnology and Oceanography, 2005, 50, 896-904.	3.1	78
34	Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use. Limnology and Oceanography, 2003, 48, 608-617.	3.1	109