
Peter Carlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foxf2 represses bone formation via Wnt2b/β-catenin signaling. Experimental and Molecular Medicine, 2022, 54, 753-764.	7.7	6
2	Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. ELife, 2021, 10, .	6.0	9
3	FOXF2is required for cochlear development in humans and mice. Human Molecular Genetics, 2019, 28, 1286-1297.	2.9	20
4	Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme. Developmental Biology, 2016, 415, 14-23.	2.0	30
5	Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2016, 15, 695-707.	10.2	130
6	Foxf2 Is Required for Brain Pericyte Differentiation and Development and Maintenance of the Blood-Brain Barrier. Developmental Cell, 2015, 34, 19-32.	7.0	107
7	FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development (Cambridge), 2015, 142, 3307-20.	2.5	10
8	Hypoxia-induced regulation of the very low density lipoprotein receptor. Biochemical and Biophysical Research Communications, 2013, 437, 274-279.	2.1	10
9	Inversion upstream of <i>FOXF1</i> in a case of lethal alveolar capillary dysplasia with misalignment of pulmonary veins. American Journal of Medical Genetics, Part A, 2013, 161, 764-770.	1.2	12
10	Foxf2 in Intestinal Fibroblasts Reduces Numbers of Lgr5+ Stem Cells and Adenoma Formation by Inhibiting Wnt Signaling. Gastroenterology, 2013, 144, 1001-1011.	1.3	49
11	Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a highâ€fat diet. FASEB Journal, 2013, 27, 3660-3671.	0.5	40
12	Separation of intact intestinal epithelium from mesenchyme. BioTechniques, 2013, 55, 42-44.	1.8	29
13	Pitx3 directly regulates Foxe3 during early lens development. International Journal of Developmental Biology, 2013, 57, 741-751.	0.6	27
14	Forkhead Box F1 Regulates Tumor-Promoting Properties of Cancer-Associated Fibroblasts in Lung Cancer. Cancer Research, 2010, 70, 2644-2654.	0.9	84
15	Nuclear Janus-Activated Kinase 2/Nuclear Factor 1-C2 Suppresses Tumorigenesis and Epithelial-to-Mesenchymal Transition by Repressing Forkhead Box F1. Cancer Research, 2010, 70, 2020-2029.	0.9	60
16	Persistent FoxE3 Expression Blocks Cytoskeletal Remodeling and Organelle Degradation during Lens Fiber Differentiation. Investigative Ophthalmology and Visual Science, 2008, 49, 4269-4277.	3.3	38
17	Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network. Genes and Development, 2007, 21, 2448-2460.	5.9	77
18	Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development (Cambridge), 2007, 134, 3753-3761.	2.5	124

PETER CARLSSON

#	Article	IF	CITATIONS
19	Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Developmental Biology, 2007, 302, 218-229.	2.0	56
20	Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development (Cambridge), 2006, 133, 833-843.	2.5	196
21	Meckel's Cartilage Differentiation Is Dependent on Hedgehog Signaling. Cells Tissues Organs, 2005, 179, 146-157.	2.3	42
22	Differences in the embryonic expression patterns of mouse <i>Foxf1</i> and â€ <i>2</i> match their distinct mutant phenotypes. Developmental Dynamics, 2004, 229, 328-333.	1.8	52
23	Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Developmental Dynamics, 2004, 229, 722-732.	1.8	110
24	Foxj3, a novel mammalian forkhead gene expressed in neuroectoderm, neural crest, and myotome. Developmental Dynamics, 2004, 231, 396-401.	1.8	28
25	Fox's in development and disease. Trends in Genetics, 2003, 19, 339-344.	6.7	316
26	Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of <i>Foxi1</i> null mutant mice. Development (Cambridge), 2003, 130, 2013-2025.	2.5	169
27	Novel Anterior Segment Phenotypes Resulting from Forkhead Gene Alterations: Evidence for Cross-Species Conservation of Function. , 2003, 44, 2627.		46
28	Forkhead Transcription Factors: Key Players in Development and Metabolism. Developmental Biology, 2002, 250, 1-23.	2.0	790
29	Foxe3 haploinsufficiency in mice: a model for Peters' anomaly. Investigative Ophthalmology and Visual Science, 2002, 43, 1350-7.	3.3	68
30	FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance. Cell, 2001, 106, 563-573.	28.9	500
31	Haploinsufficiency of the forkhead gene <i>Foxf1</i> , a target for sonic hedgehog signaling, causes lung and foregut malformations. Development (Cambridge), 2001, 128, 2397-2406.	2.5	301
32	Forkhead transcription factorFoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Developmental Dynamics, 2000, 218, 136-149.	1.8	92
33	Solution structure and dynamics of the DNA-binding domain of the adipocyte-transcription factor FREAC-11 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2000, 296, 351-359.	4.2	53
34	A forkhead gene, <i>FoxE3</i> , is essential for lens epithelial proliferation and closure of the lens vesicle. Genes and Development, 2000, 14, 245-254.	5.9	221
35	The Kidney-expressed Winged Helix Transcription Factor FREAC-4 Is Regulated by Ets-1. Journal of Biological Chemistry, 1999, 274, 165-169.	3.4	28
36	Transcriptional regulation of pig lactase-phlorizin hydrolase: Involvement of HNF-1 and FREACs. Gastroenterology, 1999, 116, 842-854.	1.3	46

PETER CARLSSON

#	Article	IF	CITATIONS
37	The winged helix transcription factor Fkh10 is required for normal development of the inner ear. Nature Genetics, 1998, 20, 374-376.	21.4	91
38	Mutations of the Forkhead/Winged-Helix Gene, FKHL7, in Patients with Axenfeld-Rieger Anomaly. American Journal of Human Genetics, 1998, 63, 1316-1328.	6.2	298
39	FREAC-1 Contains a Cell-Type-Specific Transcriptional Activation Domain and Is Expressed in Epithelial–Mesenchymal Interfaces. Developmental Biology, 1998, 202, 183-195.	2.0	79
40	The Two-Exon Gene of the Human Forkhead Transcription Factor FREAC-2 (FKHL6) Is Located at 6p25.3. Genomics, 1998, 53, 387-390.	2.9	15
41	The Human Forkhead Protein FREAC-2 Contains Two Functionally Redundant Activation Domains and Interacts with TBP and TFIIB. Journal of Biological Chemistry, 1998, 273, 23335-23343.	3.4	54
42	Chromosome Localization, Sequence Analysis, and Expression Pattern Identify FKHL 18 as a Novel Human Forkhead Gene. Genomics, 1997, 44, 344-346.	2.9	14
43	Cloning and Characterization offreac-9 (FKHL171),a Novel Kidney-Expressed Human Forkhead Gene That Maps to Chromosome 1p32–p34. Genomics, 1997, 46, 78-85.	2.9	15
44	Differential Activation of Lung-specific Genes by Two Forkhead Proteins, FREAC-1 and FREAC-2. Journal of Biological Chemistry, 1996, 271, 4482-4490.	3.4	89
45	Characterization of the Human Forkhead Gene FREAC-4. Journal of Biological Chemistry, 1996, 271, 21094-21099.	3.4	28
46	Selection of High-Affinity Binding Sites for Sequence-Specific, DNA Binding Proteins from Random Sequence Oligonucleotides. Analytical Biochemistry, 1995, 229, 99-105.	2.4	26
47	Chromosomal Localization of Six Human Forkhead Genes, freac-1 (FKHL5), -3 (FKHL7), -4 (FKHL8), -5 (FKHL9), -6 (FKHL10), and -8 (FKHL12). Genomics, 1995, 30, 464-469.	2.9	63
48	The hLEF/TCF-1 alpha HMG protein contains a context-dependent transcriptional activation domain that induces the TCR alpha enhancer in T cells Genes and Development, 1993, 7, 2418-2430.	5.9	154
49	cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. FEBS Journal, 1990, 192, 543-550.	0.2	120
50	Two nuclear proteins bind to the major positive element of the apolipoprotein B gene promoter. Gene, 1990, 94, 295-301.	2.2	13
51	Human insulin-like growth-factor-binding protein. Low-molecular-mass form: protein sequence and cDNA cloning. FEBS Journal, 1989, 180, 259-265.	0.2	49
52	Negative and positive promoter elements contribute to tissue specificity of apolipoprotein B expression. Gene, 1989, 77, 113-121.	2.2	44
53	Lack of correlation between the apolipoprotein B Xba I polymorphism and blood lipid levels in a Swedish population. Atherosclerosis, 1989, 75, 183-188.	0.8	54
54	Apolipoprotein B: structure, biosynthesis and role in the lipoprotein assembly process. Atherosclerosis, 1987, 68, 1-17.	0.8	157

PETER CARLSSON

#	Article	IF	CITATIONS
55	Apolipoprotein B gene variants are involved in the determination of serum cholesterol levels: a study in normo- and hypelipidaemic individuals. Atherosclerosis, 1987, 67, 81-89.	0.8	165
56	Molecular cloning and sequence analysis of cDNA encoding lipoprotein lipase of guinea pig. Gene, 1987, 58, 1-12.	2.2	113
57	Structure and biosynthesis of apolipoprotein B. American Heart Journal, 1987, 113, 446-452.	2.7	22
58	Analysis of the human apolipoprotein B gene; complete structure of the B-74 region. Gene, 1986, 49, 29-51.	2.2	85
59	The isolation of genomic recombinants for the human apolipoprotein B gene and the mapping of three common DNA polymorphisms of the gene ?a useful marker for human chromosome 2. Human Genetics, 1986, 73, 313-319.	3.8	48
60	RFLPs for the human apolipoprotein B gene: Hincll and Pvull. Nucleic Acids Research, 1986, 14, 7135-7135.	14.5	24
61	Molecular cloning of human apolipoprotein B cDNA. Nucleic Acids Research, 1985, 13, 8813-8826.	14.5	51
62	Nucleotide sequence of the Escherichia coli pyrE gene and of the DNA in front of the protein-coding region. FEBS Journal, 1983, 135, 223-229.	0.2	93