List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734678/publications.pdf Version: 2024-02-01

ΔΜΙΤ V ΚΗΕΡΛ

#	Article	IF	CITATIONS
1	Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	2.6	24
2	Response by Patel and Khera to Letter Regarding Article, "Quantifying and Understanding the Higher Risk of Atherosclerotic Cardiovascular Disease Among South Asian Individuals: Results From the UK Biobank Prospective Cohort Study― Circulation, 2022, 145, e147-e148.	1.6	0
3	<i>CYP2C19</i> Genotyping in Anticoagulated Patients After Percutaneous Coronary Intervention: Should It Be Routine?. Circulation, 2022, 145, 721-723.	1.6	1
4	A single-cell atlas of human and mouse white adipose tissue. Nature, 2022, 603, 926-933.	13.7	277
5	Association of Habitual Alcohol Intake With Risk of Cardiovascular Disease. JAMA Network Open, 2022, 5, e223849.	2.8	136
6	Association of the Interaction Between Familial Hypercholesterolemia Variants and Adherence to a Healthy Lifestyle With Risk of Coronary Artery Disease. JAMA Network Open, 2022, 5, e222687.	2.8	17
7	Analyzing human knockouts to validate GPR151 as a therapeutic target for reduction of body mass index. PLoS Genetics, 2022, 18, e1010093.	1.5	1
8	Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nature Genetics, 2022, 54, 450-458.	9.4	109
9	Association of Pathogenic DNA Variants Predisposing to Cardiomyopathy With Cardiovascular Disease Outcomes and All-Cause Mortality. JAMA Cardiology, 2022, 7, 723.	3.0	15
10	Rare and Common Genetic Variation Underlying the Risk of Hypertrophic Cardiomyopathy in a National Biobank. JAMA Cardiology, 2022, 7, 715.	3.0	22
11	Estimated Yield of Screening for Heterozygous Familial Hypercholesterolemia With and Without Genetic Testing in US Adults. Journal of the American Heart Association, 2022, 11, e025192.	1.6	7
12	The potential of polygenic scores to improve cost and efficiency of clinical trials. Nature Communications, 2022, 13, .	5.8	19
13	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	9.4	68
14	Association of Genome-Wide Polygenic Risk Score for Body Mass Index With Cardiometabolic Health From Childhood Through Midlife. Circulation Genomic and Precision Medicine, 2022, 15, .	1.6	4
15	Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nature Communications, 2022, 13, .	5.8	43
16	Polygenic Score Assessed in Young Adulthood and Onset ofÂSubclinical Atherosclerosis and Coronary Heart Disease. Journal of the American College of Cardiology, 2022, 80, 280-282.	1.2	10
17	Lp(a) (Lipoprotein[a]) Concentrations and Incident Atherosclerotic Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 465-474.	1.1	104
18	Transethnic Transferability of a Genome-Wide Polygenic Score for Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2021, 14, e003092.	1.6	25

#	Article	IF	CITATIONS
19	Association of Genetic Variation With Cirrhosis: A Multi-Trait Genome-Wide Association and Gene–Environment Interaction Study. Gastroenterology, 2021, 160, 1620-1633.e13.	0.6	68
20	Performance of Atrial Fibrillation Risk Prediction Models in Over 4 Million Individuals. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e008997.	2.1	30
21	Genetic Predictor to Identify Individuals With High Lipoprotein(a) Concentrations. Circulation Genomic and Precision Medicine, 2021, 14, e003182.	1.6	10
22	Predicting Risk of Hypertension Among Childhood Cancer Survivors. JACC: CardioOncology, 2021, 3, 85-87.	1.7	1
23	Improving reporting standards for polygenic scores in risk prediction studies. Nature, 2021, 591, 211-219.	13.7	265
24	Concordance of a High Polygenic Score Among Relatives. Circulation Genomic and Precision Medicine, 2021, 14, e003262.	1.6	16
25	Randomized prospective evaluation of genome sequencing versus standard-of-care as a first molecular diagnostic test. Genetics in Medicine, 2021, 23, 1689-1696.	1.1	17
26	Quantifying and Understanding the Higher Risk of Atherosclerotic Cardiovascular Disease Among South Asian Individuals. Circulation, 2021, 144, 410-422.	1.6	72
27	B-PO02-164 GENOME-WIDE POLYGENIC RISK SCORE PREDICTS SUDDEN ARRHYTHMIC DEATH IN PATIENTS WITH CORONARY ARTERY DISEASE. Heart Rhythm, 2021, 18, S164-S165.	0.3	0
28	Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. European Heart Journal, 2021, 42, 3388-3403.	1.0	114
29	Perspectives on Identifying and Treating Familial Hypercholesterolemia in Childhood. Clinical Chemistry, 2021, 67, 1312-1317.	1.5	1
30	Rare, Damaging DNA Variants in <i>CORIN</i> and Risk of Coronary Artery Disease: Insights From Functional Genomics and Large-Scale Sequencing Analyses. Circulation Genomic and Precision Medicine, 2021, 14, e003399.	1.6	10
31	Design and user experience testing of a polygenic score report: a qualitative study of prospective users. BMC Medical Genomics, 2021, 14, 238.	0.7	29
32	Abdominal subcutaneous adipose tissue negatively associates with subclinical coronary artery disease in men with psoriasis. American Journal of Preventive Cardiology, 2021, 8, 100231.	1.3	0
33	Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction. Patterns, 2021, 2, 100364.	3.1	18
34	Polygenic basis and biomedical consequences of telomere length variation. Nature Genetics, 2021, 53, 1425-1433.	9.4	145
35	Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Reports Medicine, 2021, 2, 100437.	3.3	56
36	Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nature Metabolism, 2021, 3, 1476-1483.	5.1	43

AMIT V KHERA

#	Article	IF	CITATIONS
37	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	13.7	353
38	Machine learning enables new insights into genetic contributions to liver fat accumulation. Cell Genomics, 2021, 1, 100066.	3.0	34
39	Monogenic and Polygenic Contributions to Atrial Fibrillation Risk. Circulation Research, 2020, 126, 200-209.	2.0	79
40	Physiology as a Lingua Franca for Clinical Machine Learning. Patterns, 2020, 1, 100017.	3.1	9
41	Validation of a Genome-Wide PolygenicÂScore for Coronary ArteryÂDisease inÂSouth Asians. Journal of the American College of Cardiology, 2020, 76, 703-714.	1.2	76
42	Heterozygous <i>ABCG5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.	1.6	45
43	Genome-Wide Polygenic Score, Clinical Risk Factors, and Long-Term Trajectories of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2738-2746.	1.1	71
44	Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nature Communications, 2020, 11, 3635.	5.8	277
45	Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nature Communications, 2020, 11, 2254.	5.8	140
46	Limitations of Contemporary Guidelines for Managing Patients at High Genetic Risk of Coronary Artery Disease. Journal of the American College of Cardiology, 2020, 75, 2769-2780.	1.2	88
47	What Is Familial Hypercholesterolemia, and Why Does It Matter?. Circulation, 2020, 141, 1760-1763.	1.6	34
48	Association of Rare Pathogenic DNA Variants for Familial Hypercholesterolemia, Hereditary Breast and Ovarian Cancer Syndrome, and Lynch Syndrome With Disease Risk in Adults According to Family History. JAMA Network Open, 2020, 3, e203959.	2.8	75
49	A structural variation reference for medical and population genetics. Nature, 2020, 581, 444-451.	13.7	614
50	Titin Truncating Variants in Adults Without Known Congestive HeartÂFailure. Journal of the American College of Cardiology, 2020, 75, 1239-1241.	1.2	22
51	Race, socioeconomic deprivation, and hospitalization for COVID-19 in English participants of a national biobank. International Journal for Equity in Health, 2020, 19, 114.	1.5	101
52	Genome-Wide Polygenic Score and Cardiovascular Outcomes With Evacetrapib in Patients With High-Risk Vascular Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002767.	1.6	9
53	A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genetics, 2020, 16, e1008629.	1.5	101
54	Rare Genetic Variants Associated With Sudden Cardiac Death in Adults. Journal of the American College of Cardiology, 2019, 74, 2623-2634.	1.2	27

AMIT V KHERA

#	Article	IF	CITATIONS
55	Leveraging Human Genetics to Estimate Clinical Risk Reductions Achievable by Inhibiting Factor XI. Stroke, 2019, 50, 3004-3012.	1.0	31
56	Whole-Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized With Early-Onset Myocardial Infarction. Circulation, 2019, 139, 1593-1602.	1.6	213
57	Rare Protein-Truncating Variants in <i>APOB</i> , Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002376.	1.6	57
58	RARE PROTEIN-TRUNCATING VARIANTS IN APOB ASSOCIATE WITH LOWER LOW-DENSITY LIPOPROTEIN CHOLESTEROL, LOWER TRIGLYCERIDES, AND REDUCED RISK OF CORONARY HEART DISEASE. Journal of the American College of Cardiology, 2019, 73, 1716.	1.2	1
59	Genetic Association of Finger Photoplethysmography-Derived Arterial Stiffness Index With Blood Pressure and Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1253-1261.	1.1	35
60	Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell, 2019, 177, 587-596.e9.	13.5	516
61	2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2019, 140, e596-e646.	1.6	1,789
62	2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary. Journal of the American College of Cardiology, 2019, 74, 1376-1414.	1.2	820
63	Volanesorsen, Familial Chylomicronemia Syndrome, and Thrombocytopenia. New England Journal of Medicine, 2019, 381, 2582-2584.	13.9	21
64	Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores. Genome Medicine, 2019, 11, 74.	3.6	70
65	DNA Sequence Variation in <i>ACVR1C</i> Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. Diabetes, 2019, 68, 226-234.	0.3	31
66	Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nature Communications, 2018, 9, 1613.	5.8	78
67	Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling. Circulation, 2018, 137, 222-232.	1.6	87
68	Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nature Genetics, 2018, 50, 1514-1523.	9.4	497
69	Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics, 2018, 50, 1219-1224.	9.4	2,111
70	Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nature Communications, 2018, 9, 3391.	5.8	140
71	Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nature Communications, 2018, 9, 2252.	5.8	99
72	Genetics of coronary artery disease: discovery, biology and clinical translation. Nature Reviews Genetics, 2017, 18, 331-344.	7.7	448

#	Article	IF	CITATIONS
73	Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2017, 317, 937.	3.8	148
74	Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2017, 317, 626.	3.8	313
75	Genetic Variation at the Sulfonylurea Receptor, Type 2 Diabetes, and Coronary Heart Disease. Diabetes, 2017, 66, 2310-2315.	0.3	20
76	Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease. Circulation Research, 2017, 121, 81-88.	2.0	68
77	Cholesterol Efflux Capacity, High-Density Lipoprotein Particle Number, and Incident Cardiovascular Events. Circulation, 2017, 135, 2494-2504.	1.6	180
78	Genetic Predisposition to Abdominal Obesity and Cardiometabolic Risk—Reply. JAMA - Journal of the American Medical Association, 2017, 317, 2334.	3.8	4
79	ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. Journal of the American College of Cardiology, 2017, 69, 2054-2063.	1.2	348
80	Is Coronary Atherosclerosis One Disease or Many?. Circulation, 2017, 135, 1005-1007.	1.6	36
81	Genetic Risk, Lifestyle, and Coronary Artery Disease. New England Journal of Medicine, 2017, 376, 1192-1195.	13.9	17
82	Demystifying HDL Cholesterol—A "Human Knockout―to the Rescue?. Clinical Chemistry, 2017, 63, 33-36.	1.5	5
83	Evaluation of the Pooled Cohort Equations for Prediction of Cardiovascular Risk in a Contemporary Prospective Cohort. American Journal of Cardiology, 2017, 119, 881-885.	0.7	29
84	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	9.4	470
85	Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nature Genetics, 2017, 49, 1392-1397.	9.4	190
86	A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell, 2017, 170, 522-533.e15.	13.5	356
87	Mendelian Randomization. JAMA - Journal of the American Medical Association, 2017, 318, 1925.	3.8	1,253
88	Phenotypic Characterization of GeneticallyÂLowered Human Lipoprotein(a) Levels. Journal of the American College of Cardiology, 2016, 68, 2761-2772.	1.2	186
89	Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. Journal of the American College of Cardiology, 2016, 67, 2578-2589.	1.2	723
90	Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. New England Journal of Medicine, 2016, 375, 2349-2358.	13.9	979

#	Article	IF	CITATIONS
91	The future of low-density lipoprotein cholesterol lowering therapy: An end to statin exceptionalism?. European Journal of Preventive Cardiology, 2016, 23, 1062-1064.	0.8	5
92	Body Fat Distribution and Incident Cardiovascular Disease in Obese Adults. Journal of the American College of Cardiology, 2015, 65, 2150-2151.	1.2	113
93	Plasma Apolipoprotein C-III Levels, Triglycerides, and Coronary Artery Calcification in Type 2 Diabetics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1880-1888.	1.1	60
94	Potent peroxisome proliferator-activated receptor-Â agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. European Heart Journal, 2015, 36, 3020-3022.	1.0	29
95	On-Statin Resistin, Leptin, and Risk of Recurrent Coronary Events After Hospitalization for an Acute Coronary Syndrome (from the Pravastatin or Atorvastatin Evaluation and Infection) Tj ETQq1 1 0.784314 rgBT /O 694-698.	verlock 10) Tf 50 582
96	Effects of Niacin, Statin, and Fenofibrate on Circulating Proprotein Convertase Subtilisin/Kexin Type 9 Levels in Patients With Dyslipidemia. American Journal of Cardiology, 2015, 115, 178-182.	0.7	51
97	Response to Letter Regarding Article, "Lipoprotein(a) Concentrations, Rosuvastatin Therapy, and Residual Vascular Risk: An Analysis From the JUPITER Trial (Justification for the Use of Statins in) Tj ETQq1 1 0.784	-3 1.4 rgBT	/Qwerlock 1
98	Single-cell transcriptomics: an emerging tool in the study of cardiometabolic disease. Journal of Translational Medicine, 2014, 12, 312.	1.8	4
99	Lipoprotein(a) Concentrations, Rosuvastatin Therapy, and Residual Vascular Risk. Circulation, 2014, 129, 635-642.	1.6	338
100	Anti-oxidative and cholesterol efflux capacities of high-density lipoprotein are reduced in ischaemic cardiomyopathy. European Journal of Heart Failure, 2013, 15, 1215-1219.	2.9	49
101	The Addition of Niacin to Statin Therapy Improves High-Density Lipoprotein Cholesterol Levels ButÂNot Metrics of Functionality. Journal of the American College of Cardiology, 2013, 62, 1909-1910.	1.2	71
102	Cholesterol Efflux Capacity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1449-1451.	1.1	30
103	Management of Low Levels of High-Density Lipoprotein-Cholesterol. Circulation, 2013, 128, 72-78.	1.6	15
104	Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity, 2013, 21, E439-47.	1.5	355
105	Fasting for lipid testing: Is it worth the trouble?. Archives of Internal Medicine, 2012, 172, 1710-2.	4.3	5
106	The Anti-Oxidative Capacity of High-Density Lipoprotein Is Reduced in Acute Coronary Syndrome But Not in Stable Coronary Artery Disease. Journal of the American College of Cardiology, 2011, 58, 2068-2075.	1.2	105
107	Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. New England Journal of Medicine, 2011, 364, 127-135.	13.9	1,686
108	Dense Genotyping of Candidate Gene Loci Identifies Variants Associated With High-Density Lipoprotein Cholesterol. Circulation: Cardiovascular Genetics, 2011, 4, 145-155.	5.1	71

AMIT V KHERA

#	Article	IF	CITATIONS
109	The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. European Heart Journal, 2011, 32, 963-971.	1.0	67
110	Future Therapeutic Directions in Reverse Cholesterol Transport. Current Atherosclerosis Reports, 2010, 12, 73-81.	2.0	93
111	Effect of Right Ventricular Function and Venous Congestion on Cardiorenal Interactions During the Treatment of Decompensated Heart Failure. American Journal of Cardiology, 2010, 105, 511-516.	0.7	120
112	Accuracy of Noninvasively Determined Pulmonary Artery Systolic Pressure. American Journal of Cardiology, 2010, 105, 1192-1197.	0.7	60
113	On-Statin Cholesteryl Ester Transfer Protein Mass and Risk of Recurrent Coronary Events (from the) Tj ETQq1 1 0	.784314 r 0.7	gBT /Overloo 37
114	Polyphenols and Cholesterol Efflux. Circulation Research, 2010, 106, 627-629.	2.0	18
115	Relationship of Oxidized Phospholipids on Apolipoprotein B-100 Particles to Race/Ethnicity, Apolipoprotein(a) Isoform Size, and Cardiovascular Risk Factors. Circulation, 2009, 119, 1711-1719.	1.6	117
116	Discovery and Validation of New Molecular Targets in Treating Dyslipidemia: The Role of Human Genetics. Trends in Cardiovascular Medicine, 2009, 19, 195-201.	2.3	19
117	My Most Famous Patient. Academic Medicine, 2008, 83, 1170-1171.	0.8	0
118	Monkeys Pay Per View: Adaptive Valuation of Social Images by Rhesus Macaques. Current Biology, 2005, 15, 543-548.	1.8	361
119	Electronic Health Record-Based Genome-Wide Meta-Analysis Provides New Insights on the Genetic Architecture of Non-Alcoholic Fatty Liver Disease. SSRN Electronic Journal, 0, , .	0.4	2