Judith E Sleeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346117/publications.pdf

Version: 2024-02-01

25 2,054 19 25 papers citations h-index g-index

37 37 37 2125
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genetics, 1998, 20, 46-50.	21.4	470
2	Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Current Biology, 1999, 9, 1065-1074.	3.9	227
3	Time-lapse Imaging Reveals Dynamic Relocalization of PP1 \hat{I}^3 throughout the Mammalian Cell Cycle. Molecular Biology of the Cell, 2003, 14, 107-117.	2.1	145
4	snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. Journal of Cell Science, 2001, 114, 4407-4419.	2.0	137
5	Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. Journal of Cell Science, 2001, 114, 4219-4228.	2.0	133
6	Nuclear bodies: new insights into assembly/dynamics and disease relevance. Current Opinion in Cell Biology, 2014, 28, 76-83.	5.4	111
7	Inhibition of Protein Dephosphorylation Results in the Accumulation of Splicing snRNPs and Coiled Bodies within the Nucleolus. Experimental Cell Research, 1997, 230, 84-93.	2.6	108
8	Dynamic Interactions Between Splicing snRNPs, Coiled Bodies and Nucleoli Revealed Using snRNP Protein Fusions to the Green Fluorescent Protein. Experimental Cell Research, 1998, 243, 290-304.	2.6	100
9	Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo. Journal of Cell Science, 2003, 116, 2039-2050.	2.0	91
10	Nuclear organization of pre-mRNA splicing factors. Current Opinion in Cell Biology, 1999, 11, 372-377.	5.4	85
11	Nuclear substructure and dynamics. Current Biology, 2003, 13, R825-R828.	3.9	81
12	The Cajal body and the nucleolus: "ln a relationship―or "lt's complicated�. RNA Biology, 2017, 14, 739-751.	3.1	57
13	Protein phosphatase 4 interacts with the Survival of Motor Neurons complex and enhances the temporal localisation of snRNPs. Journal of Cell Science, 2003, 116, 1905-1913.	2.0	55
14	A Direct Interaction between the Carboxyl-terminal Region of CDC5L and the WD40 Domain of PLRG1 Is Essential for Pre-mRNA Splicing. Journal of Biological Chemistry, 2001, 276, 42370-42381.	3.4	47
15	FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. Rna, 2005, 11, 1201-1214.	3.5	43
16	Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family. Biochemical Journal, 2006, 400, 281-289.	3.7	31
17	A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus. Journal of Cell Science, 2007, 120, 1540-1550.	2.0	29
18	The SMN Protein is a Key Regulator of Nuclear Architecture in Differentiating Neuroblastoma Cells. Traffic, 2009, 10, 1585-1598.	2.7	24

#	Article	IF	Citations
19	Small nuclear RNAs and mRNAs: linking RNA processing and transport to spinal muscular atrophy. Biochemical Society Transactions, 2013, 41, 871-875.	3.4	20
20	Time-resolved quantitative proteomics implicates the core snRNP protein, SmB, together with the Survival of Motor Neuron protein, in neural trafficking. Journal of Cell Science, 2014, 127, 812-27.	2.0	15
21	Neurochondrin interacts with the SMN protein suggesting a novel mechanism for Spinal Muscular Atrophy pathology. Journal of Cell Science, 2018, 131, .	2.0	14
22	Changes in intra-nuclear mobility of mature snRNPs provide a mechanism for splicing defects in Spinal Muscular Atrophy Journal of Cell Science, 2012, 125, 2626-37.	2.0	10
23	Dynamics of the mammalian nucleus: can microscopic movements help us to understand our genes?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2775-2793.	3.4	9
24	Transcriptionally correlated subcellular dynamics of MBNL1 during lens development and their implication for the molecular pathology of myotonic dystrophy type 1. Biochemical Journal, 2014, 458, 267-280.	3.7	9
25	Condensation properties of stress granules and processing bodies are compromised in myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	2