Richard B Kaner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystalline tetra-aniline with chloride interactions towards a biocompatible supercapacitor. Materials Horizons, 2022, 9, 383-392.	12.2	18
2	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022 34, e2105789.	2,21.0	58
3	Thin-Film Composite Membranes with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration. Nano Letters, 2022, 22, 1039-1046.	9.1	37
4	Gold Sunflower Microelectrode Arrays with Dendritic Nanostructures on the Lateral Surfaces for Antireflection and Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2022, 5, 1873-1890.	5.0	12
5	Ultrapermeable nanofiltration membranes with tunable selectivity fabricated with polyaniline nanofibers. Journal of Materials Chemistry A, 2022, 10, 4392-4401.	10.3	13
6	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals. , 2022, 1, 158-169.		15
7	Trilayer Metal–Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. Journal of the American Chemical Society, 2022, 144, 3411-3428.	13.7	142
8	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Advanced Materials, 2022, 34, e2200254.	21.0	18
9	Hardening Effects in Superhard Transition-Metal Borides. Accounts of Materials Research, 2022, 3, 100-109.	11.7	20
10	Macro―and Nanoâ€Porous 3Dâ€Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	25
11	Low Temperature Nano Mechano-electrocatalytic CH ₄ Conversion. ACS Nano, 2022, 16, 8684-8693.	14.6	19
12	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices (Adv. Mater. 20/2022). Advanced Materials, 2022, 34, .	21.0	1
13	Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Advanced Functional Materials, 2022, 32, .	14.9	35
14	Reverse osmosis membrane compaction and embossing at ultra-high pressure operation. Desalination, 2022, 537, 115875.	8.2	15
15	Enhanced Hardening Effects on Molybdenum-Doped WB ₂ and WB ₂ –SiC/B ₄ C Composites. Chemistry of Materials, 2022, 34, 5461-5470.	6.7	2
16	A 3Dâ€Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. Small, 2022, 18, .	10.0	22
17	Low-temperature liquid platinum catalyst. Nature Chemistry, 2022, 14, 935-941.	13.6	61
18	Laserâ€Scribed Graphene–Polyaniline Microsupercapacitor for Internetâ€ofâ€Things Applications. Advanced Functional Materials, 2022, 32, .	14.9	27

#	Article	IF	CITATIONS
19	Selfâ€Deposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	14.9	41
20	Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16, 431-439.	31.5	104
21	Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy and Environmental Science, 2021, 14, 1602-1611.	30.8	64
22	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	12.2	51
23	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. Journal of Materials Chemistry A, 2021, 9, 7712-7725.	10.3	20
24	Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges. Nano Letters, 2021, 21, 3699-3707.	9.1	30
25	Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation. ACS Nano, 2021, 15, 7821-7832.	14.6	83
26	Self-healing flexible/stretchable energy storage devices. Materials Today, 2021, 44, 78-104.	14.2	85
27	Graphene's Role in Emerging Trends of Capacitive Energy Storage. Small, 2021, 17, e2006875.	10.0	28
28	Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped)carbons. Carbon, 2021, 176, 500-510.	10.3	16
29	3D Graphene Network with Covalently Grafted Aniline Tetramer for Ultralong‣ife Supercapacitors. Advanced Functional Materials, 2021, 31, 2102397.	14.9	48
30	Facile Fabrication of Multivalent VO <i>_x</i> /Graphene Nanocomposite Electrodes for Highâ€Energyâ€Density Symmetric Supercapacitors. Advanced Energy Materials, 2021, 11, 2100768.	19.5	40
31	A multipronged approach for systematic in vitro quantification of catheter-associated biofilms. Journal of Hazardous Materials Letters, 2021, 2, 100032.	3.6	3
32	Polyaniline-Lignin Interpenetrating Network for Supercapacitive Energy Storage. Nano Letters, 2021, 21, 9485-9493.	9.1	45
33	Liquid metal enabled continuous flow reactor: A proof-of-concept. Matter, 2021, 4, 4022-4041.	10.0	20
34	Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. ACS Applied Energy Materials, 2020, 3, 923-932.	5.1	73
35	Inâ€Operando Calorimetric Measurements for Activated Carbon Electrodes in Ionic Liquid Electrolytes under Large Potential Windows. ChemSusChem, 2020, 13, 1013-1026.	6.8	19
36	How permeable could a reverse osmosis membrane be if it was specifically developed for uncharged organic solute rejection?. AWWA Water Science, 2020, 2, e1189.	2.1	4

#	Article	IF	CITATIONS
37	Toward Highâ€Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap. Advanced Materials Technologies, 2020, 5, 2000520.	5.8	27
38	Enhancing Polyvalent Cation Rejection Using Perfluorophenylazide-Grafted-Copolymer Membrane Coatings. ACS Applied Materials & Interfaces, 2020, 12, 42030-42040.	8.0	11
39	Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society, 2020, 142, 18093-18102.	13.7	24
40	Enhancing cycling stability of tungsten oxide supercapacitor electrodes <i>via</i> a boron cluster-based molecular cross-linking approach. Journal of Materials Chemistry A, 2020, 8, 18015-18023.	10.3	13
41	Performance, Energy and Cost of Produced Water Treatment by Chemical and Electrochemical Coagulation. Water (Switzerland), 2020, 12, 3426.	2.7	17
42	On hip Chemiresistive Sensor Array for Onâ€Road NO <i>_x</i> Monitoring with Quantification. Advanced Science, 2020, 7, 2002014.	11.2	19
43	Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. Chemistry of Materials, 2020, 32, 4808-4819.	6.7	75
44	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	14.6	100
45	Ultrapermeable Organic Solvent Nanofiltration Membranes with Precisely Tailored Support Layers Fabricated Using Thin-Film Liftoff. ACS Applied Materials & Interfaces, 2020, 12, 30796-30804.	8.0	20
46	Liquidâ€Metalâ€Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 2020, 32, e2001997.	21.0	63
47	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	10.0	26
48	Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. Nano Letters, 2020, 20, 2209-2218.	9.1	41
49	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. Journal of the American Chemical Society, 2019, 141, 13948-13953.	13.7	163
50	Synthesis and High-Pressure Mechanical Properties of Superhard Rhenium/Tungsten Diboride Nanocrystals. ACS Nano, 2019, 13, 10036-10048.	14.6	12
51	Next-Generation Asymmetric Membranes Using Thin-Film Liftoff. Nano Letters, 2019, 19, 5036-5043.	9.1	28
52	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	14.6	66
53	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. Nature Communications, 2019, 10, 4645.	12.8	76
54	Printable magnesiumÂion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nature Communications, 2019, 10, 4913.	12.8	162

#	Article	IF	CITATIONS
55	Highly Permeable Polyaniline–Graphene Oxide Nanocomposite Membranes for CO ₂ Separations. ACS Applied Polymer Materials, 2019, 1, 3233-3241.	4.4	33
56	Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Advanced Science, 2019, 6, 1802230.	11.2	174
57	Understanding the mechanism of hardness enhancement in tantalum-substituted tungsten monoboride solid solutions. Journal of Applied Physics, 2019, 125, .	2.5	9
58	Catalytic Effects of Aniline Polymerization Assisted by Oligomers. ACS Catalysis, 2019, 9, 6596-6606.	11.2	6
59	Carbon Nanodots for Capacitor Electrodes. Trends in Chemistry, 2019, 1, 858-868.	8.5	30
60	Patching laser-reduced graphene oxide with carbon nanodots. Nanoscale, 2019, 11, 12712-12719.	5.6	23
61	Self-Assembled Functionally Graded Graphene Films with Tunable Compositions and Their Applications in Transient Electronics and Actuation. ACS Applied Materials & amp; Interfaces, 2019, 11, 23463-23473.	8.0	10
62	Synthesis and Characterization of Single-Phase Metal Dodecaboride Solid Solutions: Zr _{1–<i>x</i>} Y _{<i>x</i>} B ₁₂ and Zr _{1–<i>x</i>} U _{<i>x</i>} B ₁₂ . Journal of the American Chemical Society, 2019, 141, 9047-9062.	13.7	15
63	Direct grafting of tetraaniline <i>via</i> perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces. Chemical Science, 2019, 10, 4445-4457.	7.4	16
64	All printable snow-based triboelectric nanogenerator. Nano Energy, 2019, 60, 17-25.	16.0	42
65	Radial Xâ€Ray Diffraction Study of Superhard Early Transition Metal Dodecaborides under High Pressure. Advanced Functional Materials, 2019, 29, 1900293.	14.9	12
66	Graphene/oligoaniline based supercapacitors: Towards conducting polymer materials with high rate charge storage. Energy Storage Materials, 2019, 19, 137-147.	18.0	39
67	Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy, 2019, 59, 336-345.	16.0	61
68	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	38.1	824
69	Carbon Nanodots: Laserâ€Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation (Small 52/2019). Small, 2019, 15, 1970285.	10.0	2
70	Laserâ€Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation. Small, 2019, 15, e1904918.	10.0	11
71	Fast response electrochemical capacitor electrodes created by laser-reduction of carbon nanodots. Materials Today Energy, 2019, 11, 114-119.	4.7	19
72	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 2019, 12, 26-36.	4.7	63

#	Article	IF	CITATIONS
73	Microscopic investigation of local structural and electronic properties of tungsten tetraboride: a superhard metallic material. Journal of Materials Science, 2019, 54, 3547-3557.	3.7	7
74	Understanding How Bonding Controls Strength Anisotropy in Hard Materials by Comparing the High-Pressure Behavior of Orthorhombic and Tetragonal Tungsten Monoboride. Journal of Physical Chemistry C, 2018, 122, 5647-5656.	3.1	10
75	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	27.5	90
76	Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 15609-15615.	8.0	69
77	Effects of Dodecaboride-Forming Metals on the Properties of Superhard Tungsten Tetraboride. Chemistry of Materials, 2018, 30, 3559-3570.	6.7	24
78	Investigation of ternary metal dodecaborides (M ₁ M ₂ M ₃)B ₁₂ (M ₁ , M ₂ and) Tj ET	Г QqQ 3О0 г	rgBīī2/Overloc
79	Hollow Pt-Functionalized SnO ₂ Hemipill Network Formation Using a Bacterial Skeleton for the Noninvasive Diagnosis of Diabetes. ACS Sensors, 2018, 3, 661-669.	7.8	37
80	Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. Nanotechnology, 2018, 29, 175402.	2.6	47
81	Synthesis and characterization of aluminum diboride products using 27Al, 11B NMR and ab initio studies. Journal of Materials Science, 2018, 53, 3309-3322.	3.7	4
82	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Advanced Materials, 2018, 30, 1704449.	21.0	302
83	Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Composites Science and Technology, 2018, 160, 50-59.	7.8	62
84	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	18.0	82
85	The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy, 2018, 44, 489-498.	16.0	105
86	Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Research, 2018, 11, 2836-2846.	10.4	31
87	Laser-reduced graphene-oxide/ferrocene: a 3-D redox-active composite for supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 20463-20472.	10.3	43
88	Carbon Nanodots as Feedstock for a Uniform Hematiteâ€Graphene Nanocomposite. Small, 2018, 14, e1803656.	10.0	23
89	Optically Active Poly[2-(<i>sec</i> -butyl)aniline] Nanofibers Prepared via Enantioselective Polymerization. ACS Omega, 2018, 3, 18895-18905.	3.5	5
90	Superhard Tungsten Diboride-Based Solid Solutions. Inorganic Chemistry, 2018, 57, 15305-15313.	4.0	36

#	Article	IF	CITATIONS
91	Thionine Functionalized 3D Graphene Aerogel: Combining Simplicity and Efficiency in Fabrication of a Metalâ€Free Redox Supercapacitor. Advanced Energy Materials, 2018, 8, 1802869.	19.5	153
92	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	47.7	2,379
93	Silicon expansion at the service of safety – A reversible potential-dependent switch for safer batteries. Materials Today Energy, 2018, 10, 89-97.	4.7	5
94	Investigation of Hardness of Ternary Borides of the YCrB ₄ , Y ₂ ReB ₆ , Y ₃ ReB ₇ , and YMo ₃ B ₇ Structural Types. Chemistry of Materials, 2018, 30, 6494-6502.	6.7	17
95	Perspective: Superhard metal borides: A look forward. APL Materials, 2018, 6, 070901.	5.1	77
96	Highâ€Throughput Continuous Production of Shearâ€Exfoliated 2D Layered Materials using Compressible Flows. Advanced Materials, 2018, 30, e1800200.	21.0	51
97	Roll-to-Roll Functionalization of Polyolefin Separators for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3292-3300.	5.1	21
98	Polyaniline nanofibers: broadening applications for conducting polymers. Chemical Society Reviews, 2017, 46, 1510-1525.	38.1	484
99	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8, 14482.	12.8	219
100	Nextâ€Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Advanced Functional Materials, 2017, 27, 1605745.	14.9	220
101	Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Advanced Energy Materials, 2017, 7, 1700358.	19.5	88
102	Calligraphy-inspired brush written foldable supercapacitors. Nano Energy, 2017, 38, 428-437.	16.0	26
103	A Surprising Failure Mechanism in Symmetric Supercapacitors at High Voltages. ChemElectroChem, 2017, 4, 2660-2668.	3.4	26
104	Aluminumâ€Ionâ€Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Small, 2017, 13, 1700380.	10.0	107
105	Rediscovering the Crystal Chemistry of Borides. Advanced Materials, 2017, 29, 1604506.	21.0	260
106	11B NMR Study of WB2. Journal of Physical Chemistry C, 2017, 121, 1315-1320.	3.1	4
107	Synthesis of <i>N</i> = 8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. Journal of the American Chemical Society, 2017, 139, 15878-15890.	13.7	78
108	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. ACS Nano, 2017, 11, 10974-10983.	14.6	122

#	Article	IF	CITATIONS
109	A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358, 332-335.	12.6	576
110	Organic dispersion of polyaniline and single-walled carbon nanotubes and polyblends with poly(methyl methacrylate). Polymer, 2017, 129, 1-4.	3.8	17
111	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	12.2	222
112	A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. Journal of the Iranian Chemical Society, 2017, 14, 2579-2590.	2.2	15
113	Furthering Our Understanding of the Doping Mechanism in Conjugated Polymers Using Tetraaniline. Macromolecules, 2017, 50, 5892-5897.	4.8	28
114	Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte. Nano Today, 2017, 15, 15-25.	11.9	108
115	Rapid Prototyping of a Low-cost Graphene-based Impedimetric Biosensor. Procedia Technology, 2017, 27, 274-276.	1.1	2
116	Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. ACS Nano, 2017, 11, 7995-8001.	14.6	63
117	Fabrication of Graphene–Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials & Interfaces, 2017, 9, 43230-43238.	8.0	47
118	Effects of Variable Boron Concentration on the Properties of Superhard Tungsten Tetraboride. Journal of the American Chemical Society, 2017, 139, 17120-17127.	13.7	35
119	Characterization of Aniline Tetramer by MALDI TOF Mass Spectrometry upon Oxidative and Reductive Cycling. Polymers, 2016, 8, 401.	4.5	19
120	Superhard Monoborides: Hardness Enhancement through Alloying in W _{1â^'} <i>_x</i> Ta <i>_x</i> B. Advanced Materials, 2016, 28, 6993-6998.	21.0	75
121	Superhard W0.5Ta0.5B nanowires prepared at ambient pressure. Applied Physics Letters, 2016, 109, .	3.3	18
122	Synthesis and applications of conducting polymer nanofibers. MRS Bulletin, 2016, 41, 785-790.	3.5	3
123	Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. Applied Physics Letters, 2016, 109, .	3.3	3
124	Stabilization of LnB ₁₂ (Ln = Gd, Sm, Nd, and Pr) in Zr _{1–<i>x</i>} Ln _{<i>x</i>} B ₁₂ under Ambient Pressure. Inorganic Chemistry, 2016, 55, 12419-12426.	4.0	20
125	An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket. Carbon, 2016, 106, 279-283.	10.3	11
126	Extrinsic Hardening of Superhard Tungsten Tetraboride Alloys with Group 4 Transition Metals. Journal of the American Chemical Society, 2016, 138, 5714-5721.	13.7	64

#	Article	IF	CITATIONS
127	Stabilization of HfB ₁₂ in Y _{1–<i>x</i>} Hf _{<i>x</i>} B ₁₂ under Ambient Pressure. Inorganic Chemistry, 2016, 55, 5051-5055.	4.0	33
128	Synthesis of Graphene Nanoribbons via the Topochemical Polymerization and Subsequent Aromatization of a Diacetylene Precursor. CheM, 2016, 1, 78-90.	11.7	87
129	Superhard Rhenium/Tungsten Diboride Solid Solutions. Journal of the American Chemical Society, 2016, 138, 14398-14408.	13.7	48
130	Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. Nano Research, 2016, 9, 3229-3246.	10.4	40
131	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS ₂ nanosheets. Nanoscale, 2016, 8, 16276-16283.	5.6	62
132	Superhard Mixed Transition Metal Dodecaborides. Chemistry of Materials, 2016, 28, 6605-6612.	6.7	57
133	Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1, .	48.7	925
134	3D Freeze asting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	21.0	390
135	Synthesis of NiMnO ₃ /C nano-composite electrode materials for electrochemical capacitors. Nanotechnology, 2016, 27, 315401.	2.6	51
136	Low-Fouling Antibacterial Reverse Osmosis Membranes via Surface Grafting of Graphene Oxide. ACS Applied Materials & Interfaces, 2016, 8, 14334-14338.	8.0	113
137	Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries. Current Applied Physics, 2016, 16, 611-617.	2.4	26
138	¹¹ B NMR Spectral and Nuclear Spin–Lattice Relaxation Analyses of ReB ₂ . Journal of Physical Chemistry C, 2016, 120, 2901-2907.	3.1	9
139	Ultraincompressible, Superhard Materials. Annual Review of Materials Research, 2016, 46, 465-485.	9.3	92
140	Enhancing the Hardness of Superhard Transition-Metal Borides: Molybdenum-Doped Tungsten Tetraboride. Chemistry of Materials, 2016, 28, 632-637.	6.7	60
141	LATE-BREAKING ABSTRACT: Activity limitation and exacerbations in smokers with emphysema on CT but preserved pulmonary function. SPIROMICS. , 2016, , .		0
142	2D MoS ₂ PDMS Nanocomposites for NO ₂ Separation. Small, 2015, 11, 5035-5040.	10.0	59
143	Flash Converted Graphene for Ultraâ€High Power Supercapacitors. Advanced Energy Materials, 2015, 5, 1500786.	19.5	80
144	Enhanced Gas Permeation through Graphene Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 13700-13712.	3.1	70

#	Article	IF	CITATIONS
145	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. RSC Advances, 2015, 5, 50433-50439.	3.6	12
146	¹⁰ B and ¹¹ B NMR Study of Elemental Boron. Journal of Physical Chemistry C, 2015, 119, 13807-13813.	3.1	16
147	Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4851-4860.	8.0	340
148	High Surface Area Tunnels in Hexagonal WO ₃ . Nano Letters, 2015, 15, 4834-4838.	9.1	144
149	Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene. Chemical Science, 2015, 6, 2087-2101.	7.4	26
150	Highly Ordered Mesoporous CuCo ₂ O ₄ Nanowires, a Promising Solution for High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3919-3926.	6.7	353
151	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	38.1	1,015
152	Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4233-4238.	7.1	500
153	Structure of superhard tungsten tetraboride: A missing link between MB ₂ and MB ₁₂ higher borides. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3223-3228.	7.1	82
154	Novel chlorine resistant low-fouling ultrafiltration membrane based on a hydrophilic polyaniline derivative. Journal of Materials Chemistry A, 2015, 3, 8725-8733.	10.3	35
155	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	16.0	181
156	Introducing the micro-super-capacitor laser-etched graphene brings Moore's law to energy storage. IEEE Spectrum, 2015, 52, 40-45.	0.7	4
157	Efficient synthesis of oligofluoranthene nanorods with tunable functionalities. Chemical Science, 2015, 6, 7190-7200.	7.4	14
158	Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La _{3â^'x} Ca _x Te ₄ . Journal of Materials Chemistry C, 2015, 3, 10459-10466.	5.5	19
159	Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction. Applied Physics Letters, 2015, 107, .	3.3	20
160	Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. ACS Nano, 2015, 9, 9486-9496.	14.6	46
161	A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. Inorganic Chemistry Frontiers, 2015, 2, 35-41.	6.0	20
162	Raman scattering from superhard rhenium diboride under high pressure. Applied Physics Letters, 2014, 104, .	3.3	4

#	Article	IF	CITATIONS
163	Lattice stress states of superhard tungsten tetraboride from radial x-ray diffraction under nonhydrostatic compression. Physical Review B, 2014, 90, .	3.2	34
164	Hybrid Solar Cells: Materials, Interfaces, and Devices. Springer Series in Materials Science, 2014, , 357-387.	0.6	1
165	Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. Materials Horizons, 2014, 1, 58-64.	12.2	55
166	Hardness and fracture toughness of thermoelectric La3â^'x Te4. Journal of Materials Science, 2014, 49, 1150-1156.	3.7	29
167	Graphene closer to fruition. Nature Materials, 2014, 13, 328-329.	27.5	28
168	Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano, 2014, 8, 1500-1510.	14.6	217
169	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications, 2014, 5, 3200.	12.8	90
170	Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chemical Communications, 2014, 50, 1972.	4.1	277
171	Scalable Antifouling Reverse Osmosis Membranes Utilizing Perfluorophenyl Azide Photochemistry. Macromolecular Rapid Communications, 2014, 35, 1528-1533.	3.9	28
172	Tunable Plasmon Resonances in Twoâ€Dimensional Molybdenum Oxide Nanoflakes. Advanced Materials, 2014, 26, 3931-3937.	21.0	308
173	Direct Laser Writing of Graphene Electronics. ACS Nano, 2014, 8, 8725-8729.	14.6	123
174	Maintaining Cytocompatibility of Biopolymers Through a Graphene Layer for Electrical Stimulation of Nerve Cells. Advanced Functional Materials, 2014, 24, 769-776.	14.9	42
175	Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 2014, 6, 13613-13622.	5.6	86
176	Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives. Electrochimica Acta, 2014, 136, 182-188.	5.2	49
177	Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chemical Communications, 2013, 49, 6349.	4.1	28
178	Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes. Polymer Chemistry, 2013, 4, 4814.	3.9	20
179	Semiconductors: Twoâ€Ðimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater.) Tj ETQq1 1	0.784314 14.9	rgBT /Overlo
180	Fabrication of Low-Fouling Ultrafiltration Membranes Using a Hydrophilic, Self-Doping Polyaniline	6.7	74

Additive. Chemistry of Materials, 2013, 25, 3597-3602.

#	Article	IF	CITATIONS
181	Carbon nanotube/polyaniline nanofiber ultrafiltration membranes. Journal of Materials Chemistry A, 2013, 1, 15390.	10.3	44
182	Ultra-sensitive chemosensors for Fe(iii) and explosives based on highly fluorescent oligofluoranthene. Chemical Science, 2013, 4, 1970.	7.4	94
183	Oh, the Places You'll Go with Graphene. Accounts of Chemical Research, 2013, 46, 2244-2253.	15.6	114
184	Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4, 1475.	12.8	1,592
185	Direct microscopic observation of membrane formation by nonsolvent induced phase separation. Journal of Membrane Science, 2013, 431, 212-220.	8.2	117
186	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	14.9	443
187	Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes. Nanoscale, 2013, 5, 3856.	5.6	61
188	Optimizing Thermoelectric Efficiency of La3-xTe4 with Calcium Metal Substitution. Materials Research Society Symposia Proceedings, 2013, 1490, 83-88.	0.1	3
189	Conducting Polymers. , 2013, , 1-8.		3
190	Polyaniline. , 2013, , 1-11.		0
191	Oligoaniline crystals: morphology control, hierarchical assembly and structure-property relationships. Materials Research Society Symposia Proceedings, 2012, 1402, 48.	0.1	0
192	Exploring the high-pressure behavior of superhard tungsten tetraboride. Physical Review B, 2012, 85, .	3.2	90
193	Lattice strain of osmium diboride under high pressure and nonhydrostatic stress. Journal of Applied Physics, 2012, 112, .	2.5	7
194	Toward Inexpensive Superhard Materials: Tungsten Tetraboride-Based Solid Solutions. Journal of the American Chemical Society, 2012, 134, 20660-20668.	13.7	105
195	Synthesis and Crystal Structure of Cubic Ca16Si17N34. Inorganic Chemistry, 2012, 51, 12626-12629.	4.0	12
196	Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices. ACS Nano, 2012, 6, 1395-1403.	14.6	341
197	Sulfonated Polyaniline Nanostructures Synthesized via Rapid Initiated Copolymerization with Controllable Morphology, Size, and Electrical Properties. Macromolecules, 2012, 45, 1570-1579.	4.8	80
198	Oriented Polythiophene Nanofibers Grown from CdTe Quantum Dot Surfaces. Small, 2012, 8, 1191-1196.	10.0	6

#	Article	IF	CITATIONS
199	Chemical Vapor Deposition of Graphene on Copper from Methane, Ethane and Propane: Evidence for Bilayer Selectivity. Small, 2012, 8, 1415-1422.	10.0	93
200	Elevated Temperature Anodized Nb ₂ O ₅ : A Photoanode Material with Exceptionally Large Photoconversion Efficiencies. ACS Nano, 2012, 6, 4045-4053.	14.6	174
201	Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012, 335, 1326-1330.	12.6	3,627
202	Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals. Journal of the American Chemical Society, 2012, 134, 9251-9262.	13.7	99
203	Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition. Nanoscale, 2012, 4, 3075.	5.6	13
204	Three-Dimensional Core–Shell Hybrid Solar Cells via Controlled in Situ Materials Engineering. Nano Letters, 2012, 12, 3581-3586.	9.1	41
205	Innenrücktitelbild: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. 16/2012). Angewandte Chemie, 2012, 124, 4045-4045.	2.0	0
206	Grapheneâ€Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3822-3825.	13.8	309
207	Inside Back Cover: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew.) Tj ETQ	1 0.78	4314 rgBT C
208	Oligotriphenylene Nanofiber Sensors for Detection of Nitroâ€Based Explosives. Advanced Functional Materials, 2012, 22, 726-735.	14.9	85
209	Continuity of Graphene on Polycrystalline Copper. Nano Letters, 2011, 11, 251-256.	9.1	175
210	Thermoelastic properties of ReB2 at high pressures and temperatures and comparison with Pt, Os, and Re. Journal of Applied Physics, 2011, 110, .	2.5	7
211	Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. ACS Nano, 2011, 5, 3469-3474.	14.6	134
212	Tungsten tetraboride, an inexpensive superhard material. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10958-10962.	7.1	299
213	Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Letters, 2011, 11, 954-959.	9.1	215
214	The effects of thionyl chloride on the properties of graphene and graphene–carbon nanotube composites. Journal of Materials Chemistry, 2011, 21, 3391.	6.7	66
215	Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. Journal of Physical Chemistry C, 2011, 115, 16187-16192.	3.1	38
216	Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry, 2011, 21, 12259.	6.7	204

#	Article	IF	CITATIONS
217	Structure of Ultralong Polyaniline Nanofibers Using Initiators. Macromolecules, 2011, 44, 2735-2742.	4.8	62
218	Graphene Flash Memory. ACS Nano, 2011, 5, 7812-7817.	14.6	232
219	Direct Sub-Micrometer Patterning of Nanostructured Conducting Polymer Films via a Low-Energy Infrared Laser. Nano Letters, 2011, 11, 3128-3135.	9.1	26
220	High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosensors and Bioelectronics, 2011, 26, 2613-2618.	10.1	70
221	QCM based mercury vapor sensor modified with polypyrrole supported palladium. Sensors and Actuators B: Chemical, 2011, 160, 616-622.	7.8	28
222	The oxidation of aniline to produce "polyaniline― a process yielding many different nanoscale structures. Journal of Materials Chemistry, 2011, 21, 3534-3550.	6.7	269
223	Nano-architecture. Materials Today, 2011, 14, 175.	14.2	1
224	Applications of Oligomers for Nanostructured Conducting Polymers. Macromolecular Rapid Communications, 2011, 32, 35-49.	3.9	48
225	Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications. Advanced Functional Materials, 2011, 21, 2175-2196.	14.9	1,198
226	Solution-processed transparent electrodes. MRS Bulletin, 2011, 36, 749-755.	3.5	103
227	Electrochemical polymerization of PEDOT on catalyst-free patterned GaAs nanopillars for high efficiency hybrid photovoltaics 37 th IEEE photovoltaic specialists conference. , 2011, , .		1
228	Photothermal Deoxygenation of Graphene Oxide for Patterning and Distributed Ignition Applications. Advanced Materials, 2010, 22, 419-423.	21.0	168
229	Stenciling Graphene, Carbon Nanotubes, and Fullerenes Using Elastomeric Liftâ€Off Membranes. Advanced Materials, 2010, 22, 897-901.	21.0	18
230	Full elastic tensor of a crystal of the superhard compound ReB2. Acta Materialia, 2010, 58, 1530-1535.	7.9	64
231	Graphene, a promising transparent conductor. Materials Today, 2010, 13, 52-59.	14.2	469
232	Nanostructured Silicon-based Composites for High Temperature Thermoelectric Applications. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	0
233	Versatile solution for growing thin films of conducting polymers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19673-19678.	7.1	52
234	Nanostructured materials for thermoelectric applications. Chemical Communications, 2010, 46, 8311.	4.1	198

#	Article	IF	CITATIONS
235	Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2010, 110, 132-145.	47.7	6,210
236	Rapid Solid-State Synthesis of Nanostructured Silicon. Chemistry of Materials, 2010, 22, 2534-2540.	6.7	17
237	Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline–polysulfone ultrafiltration membranes. Journal of Materials Chemistry, 2010, 20, 4621.	6.7	95
238	Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines. Journal of the American Chemical Society, 2010, 132, 10365-10373.	13.7	217
239	Suppression of the magneto resistance in high electric fields of polyacetylene nanofibers. Synthetic Metals, 2010, 160, 1349-1353.	3.9	14
240	Facile Synthesis of Water-Dispersible Conducting Polymer Nanospheres. ACS Nano, 2010, 4, 5193-5202.	14.6	90
241	A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano, 2010, 4, 3845-3852.	14.6	565
242	Platinum/Graphene Nanosheet/SiC Contacts and Their Application for Hydrogen Gas Sensing. Journal of Physical Chemistry C, 2010, 114, 13796-13801.	3.1	160
243	Rhenium diboride's monocrystal elastic constants, 308 to 5 K. Journal of the Acoustical Society of America, 2010, 127, 2797-2801.	1.1	14
244	Synthesis of nanometre-thick MoO ₃ sheets. Nanoscale, 2010, 2, 429-433.	5.6	250
245	Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. Journal of Physical Chemistry C, 2010, 114, 16168-16173.	3.1	425
246	High Temperature Thermoelectric Properties of Nano-Bulk Silicon and Silicon Germanium. Materials Research Society Symposia Proceedings, 2009, 1166, 4.	0.1	8
247	Nanostructured Bulk Silicon as an Effective Thermoelectric Material. Advanced Functional Materials, 2009, 19, 2445-2452.	14.9	521
248	Advancements in the Search for Superhard Ultraâ€Incompressible Metal Borides. Advanced Functional Materials, 2009, 19, 3519-3533.	14.9	313
249	Oneâ€Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications. Advanced Materials, 2009, 21, 1487-1499.	21.0	465
250	Soft Transfer Printing of Chemically Converted Graphene. Advanced Materials, 2009, 21, 2098-2102.	21.0	177
251	Shear Modulus of Polycrystalline Rhenium Diboride Determined from Surface Brillouin Spectroscopy. Advanced Materials, 2009, 21, 4284-4286.	21.0	23
252	Fabrication of monolithic microstructures from polyaniline nanofibers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 162, 111-115.	3.5	11

#	Article	IF	CITATIONS
253	Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research, 2009, 11, 1441-1452.	1.9	136
254	Polyaniline nanofiber composites with amines: Novel materials for phosgene detection. Nano Research, 2009, 2, 135-142.	10.4	89
255	High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2009, 4, 25-29.	31.5	1,941
256	Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64° YX LiNbO3 for H2 sensing. Sensors and Actuators B: Chemical, 2009, 138, 85-89.	7.8	60
257	Layered Surface Acoustic Wave Hydrogen Sensor Based on Polyethylaniline Nanofibers. Procedia Chemistry, 2009, 1, 220-223.	0.7	3
258	Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters, 2009, 467, 344-347.	2.6	354
259	Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano, 2009, 3, 301-306.	14.6	1,342
260	Solid-state NMR of polyaniline nanofibers. Synthetic Metals, 2009, 159, 710-714.	3.9	24
261	Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research, 2009, 42, 135-145.	15.6	913
262	Polyaniline Nanofiberâ^'Metal Salt Composite Materials for Arsine Detection. Chemistry of Materials, 2009, 21, 3056-3061.	6.7	24
263	Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride. Journal of Materials Chemistry, 2009, 19, 2588.	6.7	65
264	Low-Temperature Solution Processing of Grapheneâ^'Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Letters, 2009, 9, 1949-1955.	9.1	960
265	Template-Free Growth of Aligned Bundles of Conducting Polymer Nanowires. Journal of Physical Chemistry C, 2009, 113, 10346-10349.	3.1	28
266	Hydrogen Detection by Polyaniline Nanofibers on Gold and Platinum Electrodes. Journal of Physical Chemistry C, 2009, 113, 6444-6449.	3.1	66
267	Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1â [~] 'xRuxB2. Chemistry of Materials, 2009, 21, 1915-1921.	6.7	70
268	Chemically induced folding of single and bilayer graphene. Chemical Communications, 2009, , 6285.	4.1	27
269	Polypyrrole nanofiber surface acoustic wave gas sensors. Sensors and Actuators B: Chemical, 2008, 134, 826-831.	7.8	119
270	Monolithic Actuators from Flashâ€Welded Polyaniline Nanofibers. Advanced Materials, 2008, 20, 155-158.	21.0	167

#	Article	IF	CITATIONS
271	Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3, 101-105.	31.5	8,393
272	Polyaniline nanofibers as a novel electrode material for fault-tolerant dielectric elastomer actuators. , 2008, , .		13
273	Toward an Understanding of the Formation of Conducting Polymer Nanofibers. ACS Nano, 2008, 2, 1841-1848.	14.6	158
274	Construction of a Polyaniline Nanofiber Gas Sensor. Journal of Chemical Education, 2008, 85, 1102.	2.3	40
275	Preparation and Properties of Metallic, Superhard Rhenium Diboride Crystals. Journal of the American Chemical Society, 2008, 130, 16953-16958.	13.7	119
276	A polyaniline/WO3 nanofiber composite-based ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Synthetic Metals, 2008, 158, 29-32.	3.9	80
277	Graphene-Based Materials. Science, 2008, 320, 1170-1171.	12.6	1,359
278	Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. Macromolecules, 2008, 41, 7405-7410.	4.8	80
279	Conductometric Hydrogen Gas Sensor Based on Polypyrrole Nanofibers. IEEE Sensors Journal, 2008, 8, 365-370.	4.7	66
280	A hydrogen gas sensor fabricated from polythiophene nanofibers deposited on a 36°YX LiTaO 3 layered surface acoustic wave transducer. Proceedings of SPIE, 2008, , .	0.8	4
281	Temperature dependent Raman spectroscopy of chemically derived graphene. Applied Physics Letters, 2008, 93, 193119.	3.3	42
282	Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride. Journal of Materials Research, 2008, 23, 1797-1801.	2.6	54
283	Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2. Applied Physics Letters, 2008, 92, .	3.3	183
284	Semiconducting graphite oxide films for large scale carbon based electronics. , 2007, , .		0
285	Metathetical Precursor Route to Molybdenum Disulfide. Inorganic Syntheses, 2007, , 33-37.	0.3	8
286	NANOCOMPOSITES TO ENHANCE ZT IN THERMOELECTRICS. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	19
287	Hydrogen gas sensor fabricated from polyanisidine nanofibers deposited on 36° YX LiTaO 3 layered surface acoustic wave transducer. , 2007, , .		1
288	A Chemical Route to Graphene for Device Applications. Nano Letters, 2007, 7, 3394-3398.	9.1	1,881

#	Article	IF	CITATIONS
289	Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure. Science, 2007, 316, 436-439.	12.6	735
290	Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors—Effect of Nanofiber Diameter on \$hbox{H}_{2}\$ Response. IEEE Sensors Journal, 2007, 7, 213-218.	4.7	84
291	How nucleation affects the aggregation of nanoparticles. Journal of Materials Chemistry, 2007, 17, 2279.	6.7	78
292	Patternable transparent carbon nanotube films for electrochromic devices. Journal of Applied Physics, 2007, 101, 016102.	2.5	60
293	Charge transfer effect in the polyaniline-gold nanoparticle memory system. Applied Physics Letters, 2007, 90, 053101.	3.3	164
294	Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semiâ€Heterogeneous Catalyst in Water. Angewandte Chemie - International Edition, 2007, 46, 7251-7254.	13.8	414
295	A Templateâ€Free Route to Polypyrrole Nanofibers. Macromolecular Rapid Communications, 2007, 28, 2289-2293.	3.9	89
296	Microwave exfoliation of a graphite intercalation compound. Carbon, 2007, 45, 1367-1369.	10.3	104
297	Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon, 2007, 45, 1578-1582.	10.3	53
298	Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sensors and Actuators A: Physical, 2007, 139, 53-57.	4.1	132
299	Detection of Toxic Chemicals for Homeland Security Using Polyaniline Nanofibers. ACS Symposium Series, 2007, , 101-115.	O.5	7
300	Enhanced Solid-State Metathesis Routes to Carbon Nanotubes. Inorganic Chemistry, 2006, 45, 4243-4246.	4.0	13
301	Microwave initiated solid-state metathesis routes to Li2SiN2. Journal of Materials Chemistry, 2006, 16, 1318.	6.7	21
302	Hydrogen Sensors Based on Conductivity Changes in Polyaniline Nanofibersâ€. Journal of Physical Chemistry B, 2006, 110, 22266-22270.	2.6	235
303	A layered surface acoustic wave gas sensor based on a polyaniline/In2O3nanofibre composite. Nanotechnology, 2006, 17, 4488-4492.	2.6	213
304	A Room Temperature Polyaniline/SnO <inf>2</inf> Nanofiber Composite Based Layered ZnO/64° YX LiNbO <inf>3</inf> SAW Hydrogen Gas Sensor. , 2006, , .		5
305	Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred. Journal of the American Chemical Society, 2006, 128, 968-975.	13.7	490
306	A general synthetic route to nanofibers of polyaniline derivatives. Chemical Communications, 2006, , 3915.	4.1	72

#	Article	IF	CITATIONS
307	The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, , 367-376.	4.1	374
308	Direct Electrical Measurement of the Conversion of Metal Acetates to Metal Sulfides by Hydrogen Sulfide. Inorganic Chemistry, 2006, 45, 10467-10471.	4.0	29
309	Design of hard crystals. International Journal of Refractory Metals and Hard Materials, 2006, 24, 1-5.	3.8	136
310	Emerging memory devices. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2006, 22, 12-21.	0.4	40
311	Nanocomposites of Polyaniline/Poly(2-methoxyaniline-5-sulfonic acid). Macromolecular Rapid Communications, 2006, 27, 1995-2000.	3.9	38
312	Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers. Advanced Materials, 2005, 17, 77-80.	21.0	203
313	A Solid-State Metathesis Route to MgSiN2 ChemInform, 2005, 36, no.	0.0	0
314	Osmium Diboride, an Ultra-Incompressible, Hard Material ChemInform, 2005, 36, no.	0.0	2
315	Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide. Small, 2005, 1, 624-627.	10.0	214
316	Polymeric nanocomposite for memory application. , 2005, 5940, 254.		1
317	Mechanochemical Route to the Conducting Polymer Polyaniline. Macromolecules, 2005, 38, 317-321.	4.8	152
318	Osmium Diboride, An Ultra-Incompressible, Hard Material. Journal of the American Chemical Society, 2005, 127, 7264-7265.	13.7	439
319	A Solid-State Metathesis Route to MgSiN2. Chemistry of Materials, 2005, 17, 2155-2161.	6.7	23
320	Hydrazine Detection by Polyaniline Using Fluorinated Alcohol Additives. Chemistry of Materials, 2005, 17, 1256-1260.	6.7	155
321	Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chemical Communications, 2005, , 3286.	4.1	151
322	Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Letters, 2005, 5, 1077-1080.	9.1	802
323	Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 2005, 15, 974.	6.7	383
324	MATERIALS SCIENCE: Designing Superhard Materials. Science, 2005, 308, 1268-1269.	12.6	657

#	Article	IF	CITATIONS
325	Flash welding of conducting polymer nanofibres. Nature Materials, 2004, 3, 783-786.	27.5	224
326	Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. Angewandte Chemie - International Edition, 2004, 43, 5817-5821.	13.8	654
327	Controlling Surface Area of Titanium Nitride Using Metathesis Reactions ChemInform, 2004, 35, no.	0.0	1
328	Nanostructured Polyaniline Sensors. Chemistry - A European Journal, 2004, 10, 1314-1319.	3.3	504
329	A General Chemical Route to Polyaniline Nanofibers. Journal of the American Chemical Society, 2004, 126, 851-855.	13.7	1,301
330	Polyaniline Nanofiber Gas Sensors:  Examination of Response Mechanisms. Nano Letters, 2004, 4, 491-496.	9.1	1,028
331	A Chemical Route to Carbon Nanoscrolls. Science, 2003, 299, 1361-1361.	12.6	707
332	Polyaniline Nanofibers:Â Facile Synthesis and Chemical Sensors. Journal of the American Chemical Society, 2003, 125, 314-315.	13.7	1,602
333	Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. Advanced Materials, 2003, 15, 1158-1161.	21.0	106
334	Rapid Solid-State Metathesis Routes to Aluminum Nitride ChemInform, 2003, 34, no.	0.0	0
335	Rapid Solid-State Synthesis of Titanium Aluminides ChemInform, 2003, 34, no.	0.0	0
336	Rapid Solid-State Synthesis of Titanium Aluminides. Chemistry of Materials, 2003, 15, 3286-3293.	6.7	28
337	Controlling Surface Area of Titanium Nitride Using Metathesis Reactions. Chemistry of Materials, 2003, 15, 4431-4435.	6.7	56
338	Rapid Solid-State Metathesis Routes to Aluminum Nitride. Inorganic Chemistry, 2003, 42, 2714-2719.	4.0	28
339	CESIUM. Chemical & Engineering News, 2003, 81, 132.	0.1	1
340	Influence of water on the chirality of camphorsulfonic acid-doped polyaniline. Chemical Communications, 2001, , 801-802.	4.1	31
341	Rapid Synthesis of Carbon Nanotubes by Solid-State Metathesis Reactions. Journal of Physical Chemistry B, 2001, 105, 1921-1924.	2.6	39
342	Structural study of chiral camphorsulfonic acid doped polyaniline. Synthetic Metals, 2001, 119, 403-404.	3.9	14

#	Article	IF	CITATIONS
343	Gas, liquid and enantiomeric separations using polyaniline. Synthetic Metals, 2001, 125, 65-71.	3.9	58
344	Rapid, energetic metathesis routes to crystalline metastable phases of zirconium and hafnium dioxide. Journal of Materials Chemistry, 2001, 11, 1951-1956.	6.7	41
345	Rapid Solid-State Synthesis of Tantalum, Chromium, and Molybdenum Nitrides. Inorganic Chemistry, 2001, 40, 2240-2245.	4.0	48
346	Thermal Control of Metathesis Reactions Producing GaN and InNâ€. Journal of Physical Chemistry B, 2001, 105, 11922-11927.	2.6	38
347	Intercalation and Solution Processing of Bismuth Telluride and Bismuth Selenide. Advanced Materials, 2001, 13, 797-800.	21.0	69
348	Pervaporation studies with polyaniline membranes and blends. Journal of Membrane Science, 2000, 174, 161-176.	8.2	46
349	Self-Propagating Metathesis Routes to Metastable Group 4 Phosphides. Inorganic Chemistry, 2000, 39, 3243-3246.	4.0	52
350	A chiral recognition polymer based on polyaniline. Synthetic Metals, 1999, 101, 44-47.	3.9	91
351	The pervaporation of ethanol/water feeds with polyaniline membranes and blends. Synthetic Metals, 1999, 102, 1311-1312.	3.9	24
352	Rapid Synthesis of Crystalline Gallium Nitride from Solid Precursors at Atmospheric Pressure. Chemistry of Materials, 1999, 11, 2299-2301.	6.7	34
353	Polyaniline Membranes for Pervaporation of Carboxylic Acids and Water. Macromolecules, 1998, 31, 5456-5464.	4.8	77
354	Conductivity and magnetoconductivity of polyaniline films implanted with and ions near the critical regime of the metal-insulator transition. Journal of Physics Condensed Matter, 1998, 10, 4867-4875.	1.8	5
355	Solid-state metathesis reactions under pressure: A rapid route to crystalline gallium nitride. Applied Physics Letters, 1998, 72, 596-598.	3.3	37
356	The Synthesis of Crystalline Gallium Nitride Using Solid-State Metathesis Reactions at High Pressures Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 1040-1042.	0.0	2
357	A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity. Chemistry of Materials, 1997, 9, 1004-1011.	6.7	54
358	Chemical synthesis and characterization of fluoro-substituted polyanilines. Synthetic Metals, 1997, 84, 95-96.	3.9	43
359	The influence of weak localization and coulomb interaction on the low temperature resistance and magnetoresistance of ion implanted metallic polyaniline films. Synthetic Metals, 1997, 84, 769-771.	3.9	5
360	Permselectivity and temperature-dependent permeability of polyaniline membranes. Synthetic Metals, 1997, 84, 799-800.	3.9	13

#	Article	IF	CITATIONS
361	Polyaniline/polyimide blends for pervaporation and gas separation studies. Synthetic Metals, 1997, 84, 801-802.	3.9	39
362	Anhydrous Halogen Acid Interaction with Polyaniline Membranes:Â A Gas Permeability Study. The Journal of Physical Chemistry, 1996, 100, 8425-8429.	2.9	14
363	Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors. Chemistry of Materials, 1996, 8, 333-343.	6.7	228
364	Intercalation of hydrazines in lead iodide. Journal of Physics and Chemistry of Solids, 1996, 57, 1153-1158.	4.0	17
365	Transport properties of ion-implanted and chemically doped polyaniline films. Physical Review B, 1996, 54, 11638-11643.	3.2	32
366	Electrical Properties of Ion Implanted and Chemically Doped Polyaniline Films. Materials Research Society Symposia Proceedings, 1995, 413, 609.	0.1	0
367	High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Physical Review B, 1995, 51, 12149-12156.	3.2	236
368	Rapid synthesis of transition-metal borides by solid-state metathesis. Journal of Materials Research, 1995, 10, 353-361.	2.6	78
369	Thermal Properties of Polyaniline and Poly(aniline-co-o-ethylaniline). Macromolecules, 1995, 28, 6522-6527.	4.8	145
370	Materials Synthesis Via Solid-State Metathesis Reactions. Comments on Inorganic Chemistry, 1995, 16, 313-337.	5.2	34
371	Rapid Solid-State Synthesis of Refractory Nitrides. Inorganic Chemistry, 1994, 33, 5693-5700.	4.0	135
372	Optical properties of the alkali-metal-doped superconducting fullerenes:K3C60andRb3C60. Physical Review B, 1994, 49, 7012-7025.	3.2	86
373	Rapid Solid-State-Precursor Synthesis of Crystalline Boron Nitride. Inorganic Chemistry, 1994, 33, 3210-3211.	4.0	46
374	Metathetical Synthesis of Binary and Ternary Antiferromagnetic Gadolinium Pnictides (P, As, and Sb). Inorganic Chemistry, 1994, 33, 5701-5707.	4.0	34
375	Quantitative evaluation of gallium phosphide samples prepared from rapid solid state metathesis. Analytica Chimica Acta, 1993, 283, 987-995.	5.4	5
376	Characterization of solution-synthesized CdTe and HgTe. Applied Physics A: Materials Science and Processing, 1993, 56, 317-321.	2.3	15
377	Rapid solid state metathesis reactions for the synthesis of copper oxide and other metal oxides. Materials Research Bulletin, 1993, 28, 893-900.	5.2	23
378	Solid-solution rubidium/potassium mixed-metal fullerides. Synthetic Metals, 1993, 56, 3160-3166.	3.9	1

#	Article	IF	CITATIONS
379	High-quality mixed-transition-metal dichalcogenides from solid-state exchange reactions. Inorganic Chemistry, 1993, 32, 6084-6087.	4.0	18
380	Synthesis of III-V semiconductors by solid-state metathesis. Inorganic Chemistry, 1993, 32, 2745-2752.	4.0	56
381	Morphological modification of polyaniline films for the separation of gases. Synthetic Metals, 1993, 57, 3655-3660.	3.9	34
382	Polyaniline capacitors. Synthetic Metals, 1993, 57, 4047-4052.	3.9	34
383	Divalent cation dopants for polyparaphenylene. Synthetic Metals, 1993, 55, 930-935.	3.9	4
384	Phases, kinetics and structure of alkali-C60 compounds: preparation of Rb3- and (Rb3â^'xKx)-C60 superconductors. Synthetic Metals, 1993, 59, 307-316.	3.9	1
385	Partial separation of fullerenes by gradient sublimation. The Journal of Physical Chemistry, 1993, 97, 10097-10101.	2.9	56
386	Non-Korringa ¹³ C Nuclear Relaxation in the Normal State of the K ₃ C ₆₀ Superconductor. Europhysics Letters, 1993, 23, 63-69.	2.0	38
387	Synthesis of High-Temperature Silicides Via Rapid Solid-State Metathesis. Materials Research Society Symposia Proceedings, 1993, 322, 133.	0.1	5
388	Rapid Solid-State Precursor Synthesis of Non-Oxide Ceramics. Materials Research Society Symposia Proceedings, 1993, 327, 227.	0.1	0
389	Normal-State Magnetic Properties of K ₃ C ₆₀ . Europhysics Letters, 1992, 18, 79-84.	2.0	82
390	Solution Synthesis and Photoluminescence Studies of Small Crystallites of Cadmium Telluride. Materials Research Society Symposia Proceedings, 1992, 272, 229.	0.1	9
391	Pressure and field dependence of superconductivity inRb3C60. Physical Review Letters, 1992, 68, 1228-1231.	7.8	189
392	Measurements of the upper critical field ofK3C60andRb3C60powders to 60 T. Physical Review B, 1992, 46, 14936-14939.	3.2	31
393	Electrical resistivity ofK3C60. Physical Review B, 1992, 46, 11247-11249.	3.2	34
394	Upper-critical-field–temperature phase diagram of alkali-metal-intercalatedC60superconductors. Physical Review B, 1992, 46, 5880-5882.	3.2	35
395	From Ceramics to Superconductors: Rapid Materials Synthesis by Solid-State Metathesis Reactions. Materials Research Society Symposia Proceedings, 1992, 271, 169.	0.1	5
396	Structure and properties of superconducting and nonsuperconducting alkaliâ€metal fullerides a _x c ₆₀ (A = Na, K, Rb, or Cs). Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 389-397.	0.6	2

#	Article	IF	CITATIONS
397	Endohedral rare-earth fullerene complexes. The Journal of Physical Chemistry, 1992, 96, 6869-6871.	2.9	133
398	Structure of Rb:C60compounds. Physical Review B, 1992, 45, 543-546.	3.2	113
399	Optical response of the superconducting state ofK3C60andRb3C60. Physical Review Letters, 1992, 69, 2987-2990.	7.8	80
400	Electrodynamic response ofRb3C60. Physical Review B, 1992, 46, 11250-11253.	3.2	45
401	Giant vibrational resonances inA6C60compounds. Physical Review B, 1992, 46, 1937-1940.	3.2	96
402	Rapid synthesis of gallium phosphide and gallium arsenide from solid-state precursors. Chemistry of Materials, 1992, 4, 9-11.	6.7	50
403	Solid-state metathesis as a quick route to transition-metal mixed dichalcogenides. Inorganic Chemistry, 1992, 31, 2127-2132.	4.0	67
404	Rapid Solid-State Precursor Synthesis of Materials. Science, 1992, 255, 1093-1097.	12.6	183
405	Solid-State Metathesis Routes to Layered Transition-Metal Dichalcogenides and Refractory Materials. ACS Symposium Series, 1992, , 369-383.	0.5	7
406	Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342.	2.6	50
407	Polyaniline sol-gels and their third-order nonlinear optical effects. Synthetic Metals, 1991, 43, 3183-3187.	3.9	75
408	A boron-nitrogen conducting polymer. Synthetic Metals, 1991, 43, 3075-3078.	3.9	1
409	Be2+, Mg2+ and Al3+ N-dopants for polyacetylene. Synthetic Metals, 1991, 41, 101-105.	3.9	2
410	Alkali-Fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding. Science, 1991, 252, 1154-1157.	12.6	730
411	Conjugated Polymer Films for Gas Separations. Science, 1991, 252, 1412-1415.	12.6	406
412	Gas separation membranes: A novel application for conducting polymers. Synthetic Metals, 1991, 41, 1151-1154.	3.9	97
413	Pressure Dependence of Superconductivity in Single-Phase K3C60. Science, 1991, 252, 1829-1831.	12.6	186
414	Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature, 1991, 349, 510-512.	27.8	235

111Structure of single-phase superconducting K3C60. Nature, 1991, 351, 632-634.27.8700114Designing a slow leak. Nature, 1991, 352, 23-23.27.832.8117Magnetic-field penetration depth in K3C60 messured by muon spin relaxation. Nature, 1991, 352, 605-607.27.822.9118Enthanum carbide (La2C80): a soluble dimetal of ullerene. The Journal of Physical Chemistry, 1991, 95.2.92.13119Spinless charge carriers in dowlent cation doped polyacetylene. Solid State Communications, 1990, 74.064120Usw-temperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29.6.064121Hephy Charged Dopant loss for Polyacetylene. 1990, 87.99.064122Desayetigene in Journal of Chemical Physics, 1999, 90, 5102 5107.8.022123Desayetigene, Journal of Chemical Physics, 1999, 90, 5102 5107.1.064124Reserve lar equication of electrochemistry to the messurement of selected intrinsic properties of physics, 1998, 90, 5102 5107.8.022124Besties that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064125Besties that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064126Reversible electrochemistry of polyacetylene with necescal reducting agents. Journal of the serversible electrochemistry of polyacetylene with selected reducing agents. Journal of the selected reduction of polyacetylene with selected reducing agents. Journal of the selected selectry frames/citian of polyacetylene Mittelse Science Physics, 1984, 82, 2223.6.0 <th>#</th> <th>Article</th> <th>IF</th> <th>CITATIONS</th>	#	Article	IF	CITATIONS
116Designing a slow leak. Nature, 1991, 352, 23-23.27.83117Mancta-field penetration depth in K3C60 measured by muon spin refaxation. Nature, 1991, 352, 2000.21.9118Insthanum carbide (La2C80): a soluble dimetallofullerene. The Journal of Physical Chemistry, 1991, 95.2.921.9119Splites charge carriers in divident cation doped polyacetylene. Solid State Communications, 1990, 74.3.05.0120Lewtemperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29.3.05.0121Help Charged Depart tans for Polyacetylene., 1990, 87.99.3.02.02.0122Designification of electrochemistry to the measurement of selected Intrinsic properties of Beausetylene. Journal of electrochemistry to the measurement of selected Intrinsic Properties of Beausetylene. Journal of electrochemistry to the measurement of selected Intrinsic Properties of Beauset State Conduct Electricity. Scientific American, 1988, 258, 106-111.3.02.0122Beauset and conduct Electricity. Scientific American, 1988, 258, 106-111.3.03.03.0123Beauset and conduct Electricity. Scientific American, 1988, 258, 106-111.3.03.03.0124Beauset and conduct Electricity. Scientific American, 1988, 258, 106-111.3.03.03.0125Beauset and conduct Electricity. Scientific American, 1988, 258, 106-111.3.03.03.0126Beauset and conduction of polyacetylene (CH)X. Synthetic Matsal, 1980, 14, 31.03.03.03.0126Beauset and conduction of polyacetylene (CH)X. Synthetic Matsa	415	Structure of single-phase superconducting K3C60. Nature, 1991, 351, 632-634.	27.8	730
111Magnetic field penetration depth in K3C60 measured by muon spin relaxation. Nature, 1991, 352, 605 607.27.8222148Ionthanum carbide (La2C80): a soluble dimetallofullerene. The Journal of Physical Chemistry, 1991, 95, (Spinless charge carriers in divalent cation doped polyacetylene. Solid State Communications, 1990, 74, (J17112514).1.95.1140Spinless charge carriers in divalent cation doped polyacetylene. Solid State Communications, 1990, 74, (J17112514).1.05.1141Highly Charged Dopant Ions for Polyacetylene., 1990, 87.99.06.05.2142The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1989, 90, S102 S107.8.007.2142Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic teals, 1989, 28, 011 S-D125.9.06.2142Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.06.4143The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the chemical Society Faraday Transactions I, 1986, 82, 2323.1.01.3144The electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.9.00.0145Anowel graphite-like material of composition 8C3, and nitrogenSC carbon graphites. Journal of the chemical Society Chemical Communications, 1986, 1728-1759.1.02.0146Chentical Society Chemical Communications, 1986, 1728-1759.1.02.02.08147Anowel graphite-like material of composition 8C3, and nitrogenSC carbon	416	Designing a slow leak. Nature, 1991, 352, 23-23.	27.8	3
118Lanthanum carbide (La2C80): a soluble dimetallofullerene. The Journal of Physical Chemistry, 1991, 95,2.9213119Spinless charge carriers in divalent cation doped polyacetylene. Solid State Communications, 1990, 74,1.9a120Low-temperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29,4.054121Highly Charged Dopant Ions for Polyacetylene, 1990, 78-99.0022122The application of electrochemistry to the measurement of selected intrinsic properties of heighly 2, 25, 115-112.3.022123Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic3.07124Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064125The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Lemical Scienty Faraday Transactions I, 1986, 82, 2323.1.01.3126Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.020124Anovel graphite-like material of composition BC3, and nitrogen#" carbon graphites. Journal of the Lemical Society Faraday Transactions I, 1986, 82, 2323.2.0208126Anovel graphite-like material of composition BC3, and nitrogen#" carbon graphites. Journal of the Lemical Society Chemical Communications, 1986, 7358-1759.2.02.0127Anovel graphite-like material of composition BC3, and nitrogen#" carbon graphites. Journal of the Lemical Society Chemical Communications, 1986, 7358-1759.2.02.0128Ele	417	Magnetic-field penetration depth in K3C60 measured by muon spin relaxation. Nature, 1991, 352, 605-607.	27.8	222
110Splinless charge carriers in divalent cation doped polyacetylene. Solid State Communications, 1990, 74,1.96120Low-temperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29, S112514.4.0054121Highly Charged Dopant Ions for Polyacetylene, 1990, 87-99.0122The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1999, 90, 5102 5107.3.0022123Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic3.97124Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064125Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 999-404.5.22.64126The electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960126Anovel graphite-like material of graphite-like structure. Materials Research Bulletin, 1987, 23.3.960127Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960128Anovel graphite-like material of composition BC3, and nitrogena€"carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, 1728-1729.2.0208129Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrochemical Cell.1.52130Electrochemical Society Transactions I, 1984, 80, 2109.1.027131Society Family Transactions I, 1984, 80, 2109.<	418	Lanthanum carbide (La2C80): a soluble dimetallofullerene. The Journal of Physical Chemistry, 1991, 95, 10561-10563.	2.9	213
420Low-temperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29, 2511-2514.4.054421Highly Charged Dopant lons for Polyacetylene., 1990, 87-99.0422The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1989, 90, 5102-5107.3.022423Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic Metals, 1989, 28, D115-D125.3.97424Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064425Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 399-404.5.2264426The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.01.3427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 312.0.92.08428Anovel graphite-like material of composition BC3, and nitrogen#" carbon graphites. Journal of the Chemical Society Chemical Society Faraday Transactions I, 1986, 82, 2328.2.02.08429Anovel graphite-like material of composition BC3, and nitrogen#" carbon graphites. Journal of the Chemical Society Chemical Society Faraday Transactions I, 1986, 82, 2328.2.02.08429Anovel graphite-like material of composition BC3, and nitrogen#" carbon graphites. Journal of the Chemical Society Chemical Society Faraday Transactions I, 1984, 80, 2109.1.52.0429Anovel graphite-like mate	419	Spinless charge carriers in divalent cation doped polyacetylene. Solid State Communications, 1990, 74, 1217-1220.	1.9	5
121Highly Charged Dopant Ions for Polyacetylene., 1990,, 87-99.0122The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1989, 90, 5102-5107.3.022123Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic Metals, 1989, 28, D115 D125.3.97124Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064125Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 94.4.5.22.24126The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.01.3127Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.0.9208128Anovel graphite-like material of composition BC3, and nitrogenãe ^{Cer} carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, 1758-1759.1.02.0129Anin study after n-Doping of acit-Rich Polyacetylene Electrochemical Cell. Japanese Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.02.7130Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrochem.1.02.7131A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.94.1	420	Low-temperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29, 2511-2514.	4.0	54
422The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1989, 90, 5102-5107.3.022423Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic3.97424Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064425Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 399-404.6.2264426the electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.013427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.9.960428Anovel graphite-like material of composition BC3, and nitrogenä6t* carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, 1758-1759.2.0208429Anini situRaman Study after n-Doping of acts-Rich Polyacetylene Electrochemical Cell. Japanese Journal of Applied Physics, 1984, 23, L883-L885.1.02.7430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Jurnal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.02.7431Ancechargesble Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.94.1	421	Highly Charged Dopant Ions for Polyacetylene. , 1990, , 87-99.		0
423Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic3.97424Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064425Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 399-404.5.2264426The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.013427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960428Anovel graphite-like material of composition BC3, and nitrogenãe" carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, , 1758-1759.2.0208429Anin situRaman Study after n.Doping of acits-Rich Polyacetylene Electroche in an Electrochemical Cell.1.027430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431ARechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode.2.941	422	The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1989, 90, 5102-5107.	3.0	22
424Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.1.064425Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, sp9-404.5.2264426Che electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.013427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960428Anovel graphite-like material of composition BC3, and nitrogené€"carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, 1758-1759.2.0208429Anin studkaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. apanese Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027430Secchargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathodee. 2.92.941	423	Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic Metals, 1989, 28, D115-D125.	3.9	7
425Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 399-404.5.2264426The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.013427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960428Anovel graphite-like material of composition BC3, and nitrogenãe"carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, , 1758-1759.2.0208429Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell.1.52430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431ARechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.941	424	Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.	1.0	64
426The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.1.013427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960428A novel graphite-like material of composition BC3, and nitrogen〠carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, 1758-1759.2.0208429Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. apanese Journal of Applied Physics, 1984, 23, L883-L885.1.52430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.941	425	Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 399-404.	5.2	264
427Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.3.960428A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, , 1758-1759.2.0208429Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. Japanese Journal of Applied Physics, 1984, 23, L883-L885.1.52430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. 	426	The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.	1.0	13
428A novel graphite-like material of composition BC3, and nitrogenâ€"carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, 1758-1759.2.0208429Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. Japanese Journal of Applied Physics, 1984, 23, L883-L885.1.52430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.941	427	Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.	3.9	60
429Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell.1.52430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.941	428	A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, , 1758-1759.	2.0	208
430Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.1.027431A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.2.941	429	Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. Japanese Journal of Applied Physics, 1984, 23, L883-L885.	1.5	2
A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. 2.9 41 Journal of the Electrochemical Society, 1984, 131, 2744-2750.	430	Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.	1.0	27
	431	A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.	2.9	41

432 Electric Field Enhanced Diffusion in Trans â€â€‰â€‰(  CH  )  x. Journal of the Electrochemical Society, 1985
571-574.

#	Article	IF	CITATIONS
433	Electrochemical voltage spectroscopy oftrans-(CH)x. Physical Review B, 1982, 26, 2327-2330.	3.2	33
434	Synthesis of poorly crystallized platinum metal dichalcogenides. Inorganic Chemistry, 1981, 20, 501-503.	4.0	17
435	High-pressure phase transformation of platinum sulfide. Inorganic Chemistry, 1979, 18, 727-729.	4.0	27
436	Preparation and characterization of the platinum metal phosphides RuP2 and IrP2. Materials Research Bulletin, 1977, 12, 1143-1147.	5.2	27
437	Effective Liquid Metal Seeds for Silver Nanovines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	2