Richard B Kaner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7346049/publications.pdf

Version: 2024-02-01

437 papers 77,574 citations

112 h-index 271 g-index

469 all docs 469 docs citations

469 times ranked 59020 citing authors

#	Article	IF	CITATIONS
1	Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3, 101-105.	15.6	8,393
2	Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2010, 110, 132-145.	23.0	6,210
3	Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012, 335, 1326-1330.	6.0	3,627
4	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
5	High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2009, 4, 25-29.	15.6	1,941
6	A Chemical Route to Graphene for Device Applications. Nano Letters, 2007, 7, 3394-3398.	4.5	1,881
7	Polyaniline Nanofibers:Â Facile Synthesis and Chemical Sensors. Journal of the American Chemical Society, 2003, 125, 314-315.	6.6	1,602
8	Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4, 1475.	5.8	1,592
9	Graphene-Based Materials. Science, 2008, 320, 1170-1171.	6.0	1,359
10	Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano, 2009, 3, 301-306.	7.3	1,342
11	A General Chemical Route to Polyaniline Nanofibers. Journal of the American Chemical Society, 2004, 126, 851-855.	6.6	1,301
12	Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications. Advanced Functional Materials, 2011, 21, 2175-2196.	7.8	1,198
13	Polyaniline Nanofiber Gas Sensors:  Examination of Response Mechanisms. Nano Letters, 2004, 4, 491-496.	4.5	1,028
14	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	18.7	1,015
15	Low-Temperature Solution Processing of Grapheneâ^'Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Letters, 2009, 9, 1949-1955.	4.5	960
16	Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 2016, 1, .	23.3	925
17	Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research, 2009, 42, 135-145.	7.6	913
18	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	18.7	824

#	Article	IF	Citations
19	Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Letters, 2005, 5, 1077-1080.	4.5	802
20	Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure. Science, 2007, 316, 436-439.	6.0	735
21	Alkali-Fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding. Science, 1991, 252, 1154-1157.	6.0	730
22	Structure of single-phase superconducting K3C60. Nature, 1991, 351, 632-634.	13.7	730
23	A Chemical Route to Carbon Nanoscrolls. Science, 2003, 299, 1361-1361.	6.0	707
24	MATERIALS SCIENCE: Designing Superhard Materials. Science, 2005, 308, 1268-1269.	6.0	657
25	Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. Angewandte Chemie - International Edition, 2004, 43, 5817-5821.	7.2	654
26	A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358, 332-335.	6.0	576
27	A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano, 2010, 4, 3845-3852.	7.3	565
28	Nanostructured Bulk Silicon as an Effective Thermoelectric Material. Advanced Functional Materials, 2009, 19, 2445-2452.	7.8	521
29	Nanostructured Polyaniline Sensors. Chemistry - A European Journal, 2004, 10, 1314-1319.	1.7	504
30	Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4233-4238.	3.3	500
31	Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred. Journal of the American Chemical Society, 2006, 128, 968-975.	6.6	490
32	Polyaniline nanofibers: broadening applications for conducting polymers. Chemical Society Reviews, 2017, 46, 1510-1525.	18.7	484
33	Graphene, a promising transparent conductor. Materials Today, 2010, 13, 52-59.	8.3	469
34	Oneâ€Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications. Advanced Materials, 2009, 21, 1487-1499.	11.1	465
35	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	7.8	443
36	Osmium Diboride, An Ultra-Incompressible, Hard Material. Journal of the American Chemical Society, 2005, 127, 7264-7265.	6.6	439

#	Article	IF	Citations
37	Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. Journal of Physical Chemistry C, 2010, 114, 16168-16173.	1.5	425
38	Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semiâ€Heterogeneous Catalyst in Water. Angewandte Chemie - International Edition, 2007, 46, 7251-7254.	7.2	414
39	Conjugated Polymer Films for Gas Separations. Science, 1991, 252, 1412-1415.	6.0	406
40	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	11.1	390
41	Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 2005, 15, 974.	6.7	383
42	The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, , 367-376.	2.2	374
43	Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters, 2009, 467, 344-347.	1.2	354
44	Highly Ordered Mesoporous CuCo ₂ O ₄ Nanowires, a Promising Solution for High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3919-3926.	3.2	353
45	Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices. ACS Nano, 2012, 6, 1395-1403.	7.3	341
46	Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Supercapacitors. ACS Applied Mate	4.0	340
47	Advancements in the Search for Superhard Ultraâ€Incompressible Metal Borides. Advanced Functional Materials, 2009, 19, 3519-3533.	7.8	313
48	Grapheneâ€Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3822-3825.	7.2	309
49	Tunable Plasmon Resonances in Twoâ€Dimensional Molybdenum Oxide Nanoflakes. Advanced Materials, 2014, 26, 3931-3937.	11.1	308
50	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Advanced Materials, 2018, 30, 1704449.	11.1	302
51	Tungsten tetraboride, an inexpensive superhard material. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10958-10962.	3.3	299
52	Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chemical Communications, 2014, 50, 1972.	2.2	277
53	The oxidation of aniline to produce "polyaniline― a process yielding many different nanoscale structures. Journal of Materials Chemistry, 2011, 21, 3534-3550.	6.7	269
54	Boron-carbon-nitrogen materials of graphite-like structure. Materials Research Bulletin, 1987, 22, 399-404.	2.7	264

#	Article	IF	Citations
55	Rediscovering the Crystal Chemistry of Borides. Advanced Materials, 2017, 29, 1604506.	11.1	260
56	Synthesis of nanometre-thick MoO ₃ sheets. Nanoscale, 2010, 2, 429-433.	2.8	250
57	High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Physical Review B, 1995, 51, 12149-12156.	1.1	236
58	Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature, 1991, 349, 510-512.	13.7	235
59	Hydrogen Sensors Based on Conductivity Changes in Polyaniline Nanofibersâ€. Journal of Physical Chemistry B, 2006, 110, 22266-22270.	1.2	235
60	Graphene Flash Memory. ACS Nano, 2011, 5, 7812-7817.	7.3	232
61	Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors. Chemistry of Materials, 1996, 8, 333-343.	3.2	228
62	Flash welding of conducting polymer nanofibres. Nature Materials, 2004, 3, 783-786.	13.3	224
63	Magnetic-field penetration depth in K3C60 measured by muon spin relaxation. Nature, 1991, 352, 605-607.	13.7	222
64	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	6.4	222
65	Nextâ€Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Advanced Functional Materials, 2017, 27, 1605745.	7.8	220
66	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8, 14482.	5.8	219
67	Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines. Journal of the American Chemical Society, 2010, 132, 10365-10373.	6.6	217
68	Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano, 2014, 8, 1500-1510.	7.3	217
69	Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Letters, 2011, 11, 954-959.	4.5	215
70	Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide. Small, 2005, 1, 624-627.	5.2	214
71	Lanthanum carbide (La2C80): a soluble dimetallofullerene. The Journal of Physical Chemistry, 1991, 95, 10561-10563.	2.9	213
72	A layered surface acoustic wave gas sensor based on a polyaniline/In2O3nanofibre composite. Nanotechnology, 2006, 17, 4488-4492.	1.3	213

#	Article	IF	CITATIONS
73	A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. Journal of the Chemical Society Chemical Communications, 1986, , 1758-1759.	2.0	208
74	Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry, 2011, 21, 12259.	6.7	204
75	Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers. Advanced Materials, 2005, 17, 77-80.	11.1	203
76	Nanostructured materials for thermoelectric applications. Chemical Communications, 2010, 46, 8311.	2.2	198
77	Pressure and field dependence of superconductivity inRb3C60. Physical Review Letters, 1992, 68, 1228-1231.	2.9	189
78	Pressure Dependence of Superconductivity in Single-Phase K3C60. Science, 1991, 252, 1829-1831.	6.0	186
79	Rapid Solid-State Precursor Synthesis of Materials. Science, 1992, 255, 1093-1097.	6.0	183
80	Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2. Applied Physics Letters, 2008, 92, .	1.5	183
81	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	8.2	181
82	Soft Transfer Printing of Chemically Converted Graphene. Advanced Materials, 2009, 21, 2098-2102.	11.1	177
83	Continuity of Graphene on Polycrystalline Copper. Nano Letters, 2011, 11, 251-256.	4.5	175
84	Elevated Temperature Anodized Nb ₂ O ₅ : A Photoanode Material with Exceptionally Large Photoconversion Efficiencies. ACS Nano, 2012, 6, 4045-4053.	7.3	174
85	Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Advanced Science, 2019, 6, 1802230.	5.6	174
86	Photothermal Deoxygenation of Graphene Oxide for Patterning and Distributed Ignition Applications. Advanced Materials, 2010, 22, 419-423.	11.1	168
87	Monolithic Actuators from Flashâ€Welded Polyaniline Nanofibers. Advanced Materials, 2008, 20, 155-158.	11.1	167
88	Charge transfer effect in the polyaniline-gold nanoparticle memory system. Applied Physics Letters, 2007, 90, 053101.	1.5	164
89	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. Journal of the American Chemical Society, 2019, 141, 13948-13953.	6.6	163
90	Printable magnesiumÂion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nature Communications, 2019, 10, 4913.	5.8	162

#	Article	IF	Citations
91	Platinum/Graphene Nanosheet/SiC Contacts and Their Application for Hydrogen Gas Sensing. Journal of Physical Chemistry C, 2010, 114, 13796-13801.	1.5	160
92	Toward an Understanding of the Formation of Conducting Polymer Nanofibers. ACS Nano, 2008, 2, 1841-1848.	7.3	158
93	Hydrazine Detection by Polyaniline Using Fluorinated Alcohol Additives. Chemistry of Materials, 2005, 17, 1256-1260.	3.2	155
94	Thionine Functionalized 3D Graphene Aerogel: Combining Simplicity and Efficiency in Fabrication of a Metalâ€Free Redox Supercapacitor. Advanced Energy Materials, 2018, 8, 1802869.	10.2	153
95	Mechanochemical Route to the Conducting Polymer Polyaniline. Macromolecules, 2005, 38, 317-321.	2.2	152
96	Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chemical Communications, 2005, , 3286.	2.2	151
97	Thermal Properties of Polyaniline and Poly(aniline-co-o-ethylaniline). Macromolecules, 1995, 28, 6522-6527.	2.2	145
98	High Surface Area Tunnels in Hexagonal WO ₃ . Nano Letters, 2015, 15, 4834-4838.	4.5	144
99	Trilayer Metal–Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. Journal of the American Chemical Society, 2022, 144, 3411-3428.	6.6	142
100	Design of hard crystals. International Journal of Refractory Metals and Hard Materials, 2006, 24, 1-5.	1.7	136
101	Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research, 2009, 11, 1441-1452.	0.8	136
102	Rapid Solid-State Synthesis of Refractory Nitrides. Inorganic Chemistry, 1994, 33, 5693-5700.	1.9	135
103	Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. ACS Nano, 2011, 5, 3469-3474.	7.3	134
104	Endohedral rare-earth fullerene complexes. The Journal of Physical Chemistry, 1992, 96, 6869-6871.	2.9	133
105	Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sensors and Actuators A: Physical, 2007, 139, 53-57.	2.0	132
106	Direct Laser Writing of Graphene Electronics. ACS Nano, 2014, 8, 8725-8729.	7.3	123
107	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. ACS Nano, 2017, 11, 10974-10983.	7.3	122
108	Polypyrrole nanofiber surface acoustic wave gas sensors. Sensors and Actuators B: Chemical, 2008, 134, 826-831.	4.0	119

#	Article	IF	Citations
109	Preparation and Properties of Metallic, Superhard Rhenium Diboride Crystals. Journal of the American Chemical Society, 2008, 130, 16953-16958.	6.6	119
110	Direct microscopic observation of membrane formation by nonsolvent induced phase separation. Journal of Membrane Science, 2013, 431, 212-220.	4.1	117
111	Oh, the Places You'll Go with Graphene. Accounts of Chemical Research, 2013, 46, 2244-2253.	7.6	114
112	Structure of Rb:C60compounds. Physical Review B, 1992, 45, 543-546.	1.1	113
113	Low-Fouling Antibacterial Reverse Osmosis Membranes via Surface Grafting of Graphene Oxide. ACS Applied Materials & Diterfaces, 2016, 8, 14334-14338.	4.0	113
114	Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte. Nano Today, 2017, 15, 15-25.	6.2	108
115	Aluminumâ€lonâ€Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Small, 2017, 13, 1700380.	5.2	107
116	Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. Advanced Materials, 2003, 15, 1158-1161.	11.1	106
117	Toward Inexpensive Superhard Materials: Tungsten Tetraboride-Based Solid Solutions. Journal of the American Chemical Society, 2012, 134, 20660-20668.	6.6	105
118	The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy, 2018, 44, 489-498.	8.2	105
119	Microwave exfoliation of a graphite intercalation compound. Carbon, 2007, 45, 1367-1369.	5.4	104
120	Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16, 431-439.	15.6	104
121	Solution-processed transparent electrodes. MRS Bulletin, 2011, 36, 749-755.	1.7	103
122	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	7. 3	100
123	Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals. Journal of the American Chemical Society, 2012, 134, 9251-9262.	6.6	99
124	Gas separation membranes: A novel application for conducting polymers. Synthetic Metals, 1991, 41, 1151-1154.	2.1	97
125	Giant vibrational resonances in A6C60 compounds. Physical Review B, 1992, 46, 1937-1940.	1.1	96
126	Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline–polysulfone ultrafiltration membranes. Journal of Materials Chemistry, 2010, 20, 4621.	6.7	95

#	Article	IF	Citations
127	Ultra-sensitive chemosensors for Fe(iii) and explosives based on highly fluorescent oligofluoranthene. Chemical Science, 2013, 4, 1970.	3.7	94
128	Chemical Vapor Deposition of Graphene on Copper from Methane, Ethane and Propane: Evidence for Bilayer Selectivity. Small, 2012, 8, 1415-1422.	5 . 2	93
129	Ultraincompressible, Superhard Materials. Annual Review of Materials Research, 2016, 46, 465-485.	4.3	92
130	A chiral recognition polymer based on polyaniline. Synthetic Metals, 1999, 101, 44-47.	2.1	91
131	Facile Synthesis of Water-Dispersible Conducting Polymer Nanospheres. ACS Nano, 2010, 4, 5193-5202.	7.3	90
132	Exploring the high-pressure behavior of superhard tungsten tetraboride. Physical Review B, 2012, 85, .	1.1	90
133	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications, 2014, 5, 3200.	5.8	90
134	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	13.3	90
135	A Templateâ€Free Route to Polypyrrole Nanofibers. Macromolecular Rapid Communications, 2007, 28, 2289-2293.	2.0	89
136	Polyaniline nanofiber composites with amines: Novel materials for phosgene detection. Nano Research, 2009, 2, 135-142.	5.8	89
137	Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Advanced Energy Materials, 2017, 7, 1700358.	10.2	88
138	Synthesis of Graphene Nanoribbons via the Topochemical Polymerization and Subsequent Aromatization of a Diacetylene Precursor. CheM, 2016, 1, 78-90.	5.8	87
139	Optical properties of the alkali-metal-doped superconducting fullerenes:K3C60andRb3C60. Physical Review B, 1994, 49, 7012-7025.	1.1	86
140	Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 2014, 6, 13613-13622.	2.8	86
141	Oligotriphenylene Nanofiber Sensors for Detection of Nitroâ€Based Explosives. Advanced Functional Materials, 2012, 22, 726-735.	7.8	85
142	Self-healing flexible/stretchable energy storage devices. Materials Today, 2021, 44, 78-104.	8.3	85
143	Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensorsâ€"Effect of Nanofiber Diameter on \$hbox{H}_{2}\$ Response. IEEE Sensors Journal, 2007, 7, 213-218.	2.4	84
144	Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation. ACS Nano, 2021, 15, 7821-7832.	7.3	83

#	Article	IF	CITATIONS
145	Normal-State Magnetic Properties of K ₃ C ₆₀ . Europhysics Letters, 1992, 18, 79-84.	0.7	82
146	Structure of superhard tungsten tetraboride: A missing link between MB $<$ sub $>$ 2 $<$ /sub $>$ and MB $<$ sub $>$ 12 $<$ /sub $>$ higher borides. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3223-3228.	3.3	82
147	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	9.5	82
148	Optical response of the superconducting state of K3C60 and Rb3C60. Physical Review Letters, 1992, 69, 2987-2990.	2.9	80
149	A polyaniline/WO3 nanofiber composite-based ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Synthetic Metals, 2008, 158, 29-32.	2.1	80
150	Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. Macromolecules, 2008, 41, 7405-7410.	2.2	80
151	Sulfonated Polyaniline Nanostructures Synthesized via Rapid Initiated Copolymerization with Controllable Morphology, Size, and Electrical Properties. Macromolecules, 2012, 45, 1570-1579.	2.2	80
152	Flash Converted Graphene for Ultraâ€High Power Supercapacitors. Advanced Energy Materials, 2015, 5, 1500786.	10.2	80
153	Rapid synthesis of transition-metal borides by solid-state metathesis. Journal of Materials Research, 1995, 10, 353-361.	1.2	78
154	How nucleation affects the aggregation of nanoparticles. Journal of Materials Chemistry, 2007, 17, 2279.	6.7	78
155	Synthesis of $\langle i \rangle N \langle i \rangle = 8$ Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. Journal of the American Chemical Society, 2017, 139, 15878-15890.	6.6	78
156	Polyaniline Membranes for Pervaporation of Carboxylic Acids and Water. Macromolecules, 1998, 31, 5456-5464.	2.2	77
157	Perspective: Superhard metal borides: A look forward. APL Materials, 2018, 6, 070901.	2.2	77
158	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. Nature Communications, 2019, 10, 4645.	5.8	76
159	Polyaniline sol-gels and their third-order nonlinear optical effects. Synthetic Metals, 1991, 43, 3183-3187.	2.1	75
160	Superhard Monoborides: Hardness Enhancement through Alloying in W _{1a^'} <i>_x<</i>	11.1	75
161	Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. Chemistry of Materials, 2020, 32, 4808-4819.	3.2	75
162	Fabrication of Low-Fouling Ultrafiltration Membranes Using a Hydrophilic, Self-Doping Polyaniline Additive. Chemistry of Materials, 2013, 25, 3597-3602.	3.2	74

#	Article	IF	Citations
163	Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. ACS Applied Energy Materials, 2020, 3, 923-932.	2.5	73
164	A general synthetic route to nanofibers of polyaniline derivatives. Chemical Communications, 2006, , 3915.	2.2	72
165	Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1â^'xRuxB2. Chemistry of Materials, 2009, 21, 1915-1921.	3.2	70
166	High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosensors and Bioelectronics, 2011, 26, 2613-2618.	5.3	70
167	Enhanced Gas Permeation through Graphene Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 13700-13712.	1.5	70
168	Intercalation and Solution Processing of Bismuth Telluride and Bismuth Selenide. Advanced Materials, 2001, 13, 797-800.	11.1	69
169	Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor. ACS Applied Materials & Diterfaces, 2018, 10, 15609-15615.	4.0	69
170	Solid-state metathesis as a quick route to transition-metal mixed dichalcogenides. Inorganic Chemistry, 1992, 31, 2127-2132.	1.9	67
171	Conductometric Hydrogen Gas Sensor Based on Polypyrrole Nanofibers. IEEE Sensors Journal, 2008, 8, 365-370.	2.4	66
172	Hydrogen Detection by Polyaniline Nanofibers on Gold and Platinum Electrodes. Journal of Physical Chemistry C, 2009, 113, 6444-6449.	1.5	66
173	The effects of thionyl chloride on the properties of graphene and graphene–carbon nanotube composites. Journal of Materials Chemistry, 2011, 21, 3391.	6.7	66
174	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	7.3	66
175	Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride. Journal of Materials Chemistry, 2009, 19, 2588.	6.7	65
176	Plastics that Conduct Electricity. Scientific American, 1988, 258, 106-111.	1.0	64
177	Full elastic tensor of a crystal of the superhard compound ReB2. Acta Materialia, 2010, 58, 1530-1535.	3.8	64
178	Extrinsic Hardening of Superhard Tungsten Tetraboride Alloys with Group 4 Transition Metals. Journal of the American Chemical Society, 2016, 138, 5714-5721.	6.6	64
179	Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy and Environmental Science, 2021, 14, 1602-1611.	15.6	64
180	Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. ACS Nano, 2017, 11, 7995-8001.	7.3	63

#	Article	IF	CITATIONS
181	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 2019, 12, 26-36.	2.5	63
182	Liquidâ€Metalâ€Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 2020, 32, e2001997.	11.1	63
183	Structure of Ultralong Polyaniline Nanofibers Using Initiators. Macromolecules, 2011, 44, 2735-2742.	2.2	62
184	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS ₂ nanosheets. Nanoscale, 2016, 8, 16276-16283.	2.8	62
185	Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Composites Science and Technology, 2018, 160, 50-59.	3.8	62
186	Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes. Nanoscale, 2013, 5, 3856.	2.8	61
187	Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy, 2019, 59, 336-345.	8.2	61
188	Low-temperature liquid platinum catalyst. Nature Chemistry, 2022, 14, 935-941.	6.6	61
189	Reversible electrochemical reduction of polyacetylene, (CH)x. Synthetic Metals, 1986, 14, 3-12.	2.1	60
190	Patternable transparent carbon nanotube films for electrochromic devices. Journal of Applied Physics, 2007, 101, 016102.	1.1	60
191	Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64° YX LiNbO3 for H2 sensing. Sensors and Actuators B: Chemical, 2009, 138, 85-89.	4.0	60
192	Enhancing the Hardness of Superhard Transition-Metal Borides: Molybdenum-Doped Tungsten Tetraboride. Chemistry of Materials, 2016, 28, 632-637.	3.2	60
193	2D MoS ₂ PDMS Nanocomposites for NO ₂ Separation. Small, 2015, 11, 5035-5040.	5.2	59
194	Gas, liquid and enantiomeric separations using polyaniline. Synthetic Metals, 2001, 125, 65-71.	2.1	58
195	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022 34, e2105789.	'11.1	58
196	Superhard Mixed Transition Metal Dodecaborides. Chemistry of Materials, 2016, 28, 6605-6612.	3.2	57
197	Synthesis of III-V semiconductors by solid-state metathesis. Inorganic Chemistry, 1993, 32, 2745-2752.	1.9	56
198	Partial separation of fullerenes by gradient sublimation. The Journal of Physical Chemistry, 1993, 97, 10097-10101.	2.9	56

#	Article	IF	CITATIONS
199	Controlling Surface Area of Titanium Nitride Using Metathesis Reactions. Chemistry of Materials, 2003, 15, 4431-4435.	3.2	56
200	Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. Materials Horizons, 2014, 1, 58-64.	6.4	55
201	Low-temperature precursor synthesis of crystalline nickel disulfide. Inorganic Chemistry, 1990, 29, 2511-2514.	1.9	54
202	A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity. Chemistry of Materials, 1997, 9, 1004-1011.	3.2	54
203	Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride. Journal of Materials Research, 2008, 23, 1797-1801.	1.2	54
204	Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon, 2007, 45, 1578-1582.	5.4	53
205	Self-Propagating Metathesis Routes to Metastable Group 4 Phosphides. Inorganic Chemistry, 2000, 39, 3243-3246.	1.9	52
206	Versatile solution for growing thin films of conducting polymers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19673-19678.	3.3	52
207	Synthesis of NiMnO ₃ /C nano-composite electrode materials for electrochemical capacitors. Nanotechnology, 2016, 27, 315401.	1.3	51
208	Highâ€Throughput Continuous Production of Shearâ€Exfoliated 2D Layered Materials using Compressible Flows. Advanced Materials, 2018, 30, e1800200.	11.1	51
209	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	6.4	51
210	Rapid synthesis of gallium phosphide and gallium arsenide from solid-state precursors. Chemistry of Materials, 1992, 4, 9-11.	3.2	50
211	Collisional probes and possible structures of La2C80. Chemical Physics Letters, 1992, 196, 337-342.	1.2	50
212	Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives. Electrochimica Acta, 2014, 136, 182-188.	2.6	49
213	Rapid Solid-State Synthesis of Tantalum, Chromium, and Molybdenum Nitrides. Inorganic Chemistry, 2001, 40, 2240-2245.	1.9	48
214	Applications of Oligomers for Nanostructured Conducting Polymers. Macromolecular Rapid Communications, 2011, 32, 35-49.	2.0	48
215	Superhard Rhenium/Tungsten Diboride Solid Solutions. Journal of the American Chemical Society, 2016, 138, 14398-14408.	6.6	48
216	3D Graphene Network with Covalently Grafted Aniline Tetramer for Ultralong‣ife Supercapacitors. Advanced Functional Materials, 2021, 31, 2102397.	7.8	48

#	Article	IF	CITATIONS
217	Fabrication of Graphene–Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43230-43238.	4.0	47
218	Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. Nanotechnology, 2018, 29, 175402.	1.3	47
219	Rapid Solid-State-Precursor Synthesis of Crystalline Boron Nitride. Inorganic Chemistry, 1994, 33, 3210-3211.	1.9	46
220	Pervaporation studies with polyaniline membranes and blends. Journal of Membrane Science, 2000, 174, 161-176.	4.1	46
221	Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. ACS Nano, 2015, 9, 9486-9496.	7.3	46
222	Electrodynamic response of Rb3C60. Physical Review B, 1992, 46, 11250-11253.	1.1	45
223	Polyaniline-Lignin Interpenetrating Network for Supercapacitive Energy Storage. Nano Letters, 2021, 21, 9485-9493.	4.5	45
224	Carbon nanotube/polyaniline nanofiber ultrafiltration membranes. Journal of Materials Chemistry A, 2013, 1, 15390.	5.2	44
225	Chemical synthesis and characterization of fluoro-substituted polyanilines. Synthetic Metals, 1997, 84, 95-96.	2.1	43
226	Laser-reduced graphene-oxide/ferrocene: a 3-D redox-active composite for supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 20463-20472.	5.2	43
227	Temperature dependent Raman spectroscopy of chemically derived graphene. Applied Physics Letters, 2008, 93, 193119.	1.5	42
228	Maintaining Cytocompatibility of Biopolymers Through a Graphene Layer for Electrical Stimulation of Nerve Cells. Advanced Functional Materials, 2014, 24, 769-776.	7.8	42
229	All printable snow-based triboelectric nanogenerator. Nano Energy, 2019, 60, 17-25.	8.2	42
230	A Rechargeable Battery Employing a Reduced Polyacetylene Anode and a Titanium Disulfide Cathode. Journal of the Electrochemical Society, 1984, 131, 2744-2750.	1.3	41
231	Rapid, energetic metathesis routes to crystalline metastable phases of zirconium and hafnium dioxide. Journal of Materials Chemistry, 2001, 11, 1951-1956.	6.7	41
232	Three-Dimensional Core–Shell Hybrid Solar Cells via Controlled in Situ Materials Engineering. Nano Letters, 2012, 12, 3581-3586.	4.5	41
233	Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. Nano Letters, 2020, 20, 2209-2218.	4.5	41
234	Selfâ€Deposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	7.8	41

#	Article	lF	CITATIONS
235	Emerging memory devices. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2006, 22, 12-21.	0.8	40
236	Construction of a Polyaniline Nanofiber Gas Sensor. Journal of Chemical Education, 2008, 85, 1102.	1.1	40
237	Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. Nano Research, 2016, 9, 3229-3246.	5.8	40
238	Facile Fabrication of Multivalent VO <i>_{<}</i> /Graphene Nanocomposite Electrodes for Highâ€Energyâ€Density Symmetric Supercapacitors. Advanced Energy Materials, 2021, 11, 2100768.	10.2	40
239	Polyaniline/polyimide blends for pervaporation and gas separation studies. Synthetic Metals, 1997, 84, 801-802.	2.1	39
240	Rapid Synthesis of Carbon Nanotubes by Solid-State Metathesis Reactions. Journal of Physical Chemistry B, 2001, 105, 1921-1924.	1.2	39
241	Graphene/oligoaniline based supercapacitors: Towards conducting polymer materials with high rate charge storage. Energy Storage Materials, 2019, 19, 137-147.	9.5	39
242	Non-Korringa ¹³ C Nuclear Relaxation in the Normal State of the K ₃ C ₆₀ Superconductor. Europhysics Letters, 1993, 23, 63-69.	0.7	38
243	Thermal Control of Metathesis Reactions Producing GaN and InNâ€. Journal of Physical Chemistry B, 2001, 105, 11922-11927.	1.2	38
244	Nanocomposites of Polyaniline/Poly(2-methoxyaniline-5-sulfonic acid). Macromolecular Rapid Communications, 2006, 27, 1995-2000.	2.0	38
245	Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. Journal of Physical Chemistry C, 2011, 115, 16187-16192.	1.5	38
246	Solid-state metathesis reactions under pressure: A rapid route to crystalline gallium nitride. Applied Physics Letters, 1998, 72, 596-598.	1.5	37
247	Hollow Pt-Functionalized SnO ₂ Hemipill Network Formation Using a Bacterial Skeleton for the Noninvasive Diagnosis of Diabetes. ACS Sensors, 2018, 3, 661-669.	4.0	37
248	Thin-Film Composite Membranes with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration. Nano Letters, 2022, 22, 1039-1046.	4.5	37
249	Superhard Tungsten Diboride-Based Solid Solutions. Inorganic Chemistry, 2018, 57, 15305-15313.	1.9	36
250	Upper-critical-field–temperature phase diagram of alkali-metal-intercalatedC60superconductors. Physical Review B, 1992, 46, 5880-5882.	1.1	35
251	Novel chlorine resistant low-fouling ultrafiltration membrane based on a hydrophilic polyaniline derivative. Journal of Materials Chemistry A, 2015, 3, 8725-8733.	5.2	35
252	Effects of Variable Boron Concentration on the Properties of Superhard Tungsten Tetraboride. Journal of the American Chemical Society, 2017, 139, 17120-17127.	6.6	35

#	Article	IF	CITATIONS
253	Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Advanced Functional Materials, 2022, 32, .	7.8	35
254	Electrical resistivity of K3C60. Physical Review B, 1992, 46, 11247-11249.	1.1	34
255	Morphological modification of polyaniline films for the separation of gases. Synthetic Metals, 1993, 57, 3655-3660.	2.1	34
256	Polyaniline capacitors. Synthetic Metals, 1993, 57, 4047-4052.	2.1	34
257	Metathetical Synthesis of Binary and Ternary Antiferromagnetic Gadolinium Pnictides (P, As, and Sb). Inorganic Chemistry, 1994, 33, 5701-5707.	1.9	34
258	Materials Synthesis Via Solid-State Metathesis Reactions. Comments on Inorganic Chemistry, 1995, 16, 313-337.	3.0	34
259	Rapid Synthesis of Crystalline Gallium Nitride from Solid Precursors at Atmospheric Pressure. Chemistry of Materials, 1999, 11, 2299-2301.	3.2	34
260	Lattice stress states of superhard tungsten tetraboride from radial x-ray diffraction under nonhydrostatic compression. Physical Review B, 2014, 90, .	1.1	34
261	Electrochemical voltage spectroscopy oftrans-(CH)x. Physical Review B, 1982, 26, 2327-2330.	1.1	33
262	Stabilization of HfB ₁₂ in Y _{1â€"<i>x</i>} Hf _{<i>x</i>} B ₁₂ under Ambient Pressure. Inorganic Chemistry, 2016, 55, 5051-5055.	1.9	33
263	Highly Permeable Polyaniline–Graphene Oxide Nanocomposite Membranes for CO ₂ Separations. ACS Applied Polymer Materials, 2019, 1, 3233-3241.	2.0	33
264	Transport properties of ion-implanted and chemically doped polyaniline films. Physical Review B, 1996, 54, 11638-11643.	1.1	32
265	Measurements of the upper critical field of K3C6O and Rb3C6O powders to 60 T. Physical Review B, 1992, 46, 14936-14939.	1.1	31
266	Influence of water on the chirality of camphorsulfonic acid-doped polyaniline. Chemical Communications, 2001, , 801-802.	2.2	31
267	Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Research, 2018, 11, 2836-2846.	5.8	31
268	Electric Field Enhanced Diffusion in Trans â€â€‰â€‰(  CH  )  x. Journal of the Elect 571-574.	rochemica	ıl Society, 198
269	Carbon Nanodots for Capacitor Electrodes. Trends in Chemistry, 2019, 1, 858-868.	4.4	30
270	Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges. Nano Letters, 2021, 21, 3699-3707.	4.5	30

#	Article	IF	Citations
271	Direct Electrical Measurement of the Conversion of Metal Acetates to Metal Sulfides by Hydrogen Sulfide. Inorganic Chemistry, 2006, 45, 10467-10471.	1.9	29
272	Hardness and fracture toughness of thermoelectric La3â^'x Te4. Journal of Materials Science, 2014, 49, 1150-1156.	1.7	29
273	Rapid Solid-State Synthesis of Titanium Aluminides. Chemistry of Materials, 2003, 15, 3286-3293.	3.2	28
274	Rapid Solid-State Metathesis Routes to Aluminum Nitride. Inorganic Chemistry, 2003, 42, 2714-2719.	1.9	28
275	Template-Free Growth of Aligned Bundles of Conducting Polymer Nanowires. Journal of Physical Chemistry C, 2009, 113, 10346-10349.	1.5	28
276	QCM based mercury vapor sensor modified with polypyrrole supported palladium. Sensors and Actuators B: Chemical, 2011, 160, 616-622.	4.0	28
277	Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chemical Communications, 2013, 49, 6349.	2.2	28
278	Graphene closer to fruition. Nature Materials, 2014, 13, 328-329.	13.3	28
279	Scalable Antifouling Reverse Osmosis Membranes Utilizing Perfluorophenyl Azide Photochemistry. Macromolecular Rapid Communications, 2014, 35, 1528-1533.	2.0	28
280	Furthering Our Understanding of the Doping Mechanism in Conjugated Polymers Using Tetraaniline. Macromolecules, 2017, 50, 5892-5897.	2.2	28
281	Next-Generation Asymmetric Membranes Using Thin-Film Liftoff. Nano Letters, 2019, 19, 5036-5043.	4.5	28
282	Graphene's Role in Emerging Trends of Capacitive Energy Storage. Small, 2021, 17, e2006875.	5.2	28
283	Preparation and characterization of the platinum metal phosphides RuP2 and IrP2. Materials Research Bulletin, 1977, 12, 1143-1147.	2.7	27
284	High-pressure phase transformation of platinum sulfide. Inorganic Chemistry, 1979, 18, 727-729.	1.9	27
285	Electrochemistry of polyacetylene, (CH)x. Characteristics of the reduced polyacetylene electrode. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2109.	1.0	27
286	Chemically induced folding of single and bilayer graphene. Chemical Communications, 2009, , 6285.	2.2	27
287	Toward Highâ€Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap. Advanced Materials Technologies, 2020, 5, 2000520.	3.0	27
288	Laserâ€Scribed Graphene–Polyaniline Microsupercapacitor for Internetâ€ofâ€Things Applications. Advanced Functional Materials, 2022, 32, .	7.8	27

#	Article	IF	CITATIONS
289	Direct Sub-Micrometer Patterning of Nanostructured Conducting Polymer Films via a Low-Energy Infrared Laser. Nano Letters, 2011, 11, 3128-3135.	4.5	26
290	Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene. Chemical Science, 2015, 6, 2087-2101.	3.7	26
291	Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries. Current Applied Physics, 2016, 16, 611-617.	1.1	26
292	Calligraphy-inspired brush written foldable supercapacitors. Nano Energy, 2017, 38, 428-437.	8.2	26
293	A Surprising Failure Mechanism in Symmetric Supercapacitors at High Voltages. ChemElectroChem, 2017, 4, 2660-2668.	1.7	26
294	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	5.2	26
295	Macro―and Nanoâ€Porous 3Dâ€Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	25
296	The pervaporation of ethanol/water feeds with polyaniline membranes and blends. Synthetic Metals, 1999, 102, 1311-1312.	2.1	24
297	Solid-state NMR of polyaniline nanofibers. Synthetic Metals, 2009, 159, 710-714.	2.1	24
298	Polyaniline Nanofiberâ^'Metal Salt Composite Materials for Arsine Detection. Chemistry of Materials, 2009, 21, 3056-3061.	3.2	24
299	Effects of Dodecaboride-Forming Metals on the Properties of Superhard Tungsten Tetraboride. Chemistry of Materials, 2018, 30, 3559-3570.	3.2	24
300	Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society, 2020, 142, 18093-18102.	6.6	24
301	Rapid solid state metathesis reactions for the synthesis of copper oxide and other metal oxides. Materials Research Bulletin, 1993, 28, 893-900.	2.7	23
302	A Solid-State Metathesis Route to MgSiN2. Chemistry of Materials, 2005, 17, 2155-2161.	3.2	23
303	Shear Modulus of Polycrystalline Rhenium Diboride Determined from Surface Brillouin Spectroscopy. Advanced Materials, 2009, 21, 4284-4286.	11.1	23
304	Carbon Nanodots as Feedstock for a Uniform Hematiteâ€Graphene Nanocomposite. Small, 2018, 14, e1803656.	5.2	23
305	Patching laser-reduced graphene oxide with carbon nanodots. Nanoscale, 2019, 11, 12712-12719.	2.8	23
306	The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene. Journal of Chemical Physics, 1989, 90, 5102-5107.	1.2	22

#	Article	IF	Citations
307	A 3Dâ€Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. Small, 2022, 18, .	5.2	22
308	Microwave initiated solid-state metathesis routes to Li2SiN2. Journal of Materials Chemistry, 2006, 16, 1318.	6.7	21
309	Roll-to-Roll Functionalization of Polyolefin Separators for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3292-3300.	2.5	21
310	Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes. Polymer Chemistry, 2013, 4, 4814.	1.9	20
311	Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction. Applied Physics Letters, 2015, 107, .	1.5	20
312	A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. Inorganic Chemistry Frontiers, 2015, 2, 35-41.	3.0	20
313	Stabilization of LnB ₁₂ (Ln = Gd, Sm, Nd, and Pr) in Zr _{1â€"<i>x</i>} Ln _{<i>x</i>} B ₁₂ under Ambient Pressure. Inorganic Chemistry, 2016, 55, 12419-12426.	1.9	20
314	Ultrapermeable Organic Solvent Nanofiltration Membranes with Precisely Tailored Support Layers Fabricated Using Thin-Film Liftoff. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30796-30804.	4.0	20
315	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. Journal of Materials Chemistry A, 2021, 9, 7712-7725.	5.2	20
316	Liquid metal enabled continuous flow reactor: A proof-of-concept. Matter, 2021, 4, 4022-4041.	5.0	20
317	Hardening Effects in Superhard Transition-Metal Borides. Accounts of Materials Research, 2022, 3, 100-109.	5.9	20
318	NANOCOMPOSITES TO ENHANCE ZT IN THERMOELECTRICS. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	19
319	Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La _{3â^'x} Ca _x Te ₄ . Journal of Materials Chemistry C, 2015, 3, 10459-10466.	2.7	19
320	Characterization of Aniline Tetramer by MALDI TOF Mass Spectrometry upon Oxidative and Reductive Cycling. Polymers, 2016, 8, 401.	2.0	19
321	Fast response electrochemical capacitor electrodes created by laser-reduction of carbon nanodots. Materials Today Energy, 2019, 11, 114-119.	2.5	19
322	Inâ€Operando Calorimetric Measurements for Activated Carbon Electrodes in Ionic Liquid Electrolytes under Large Potential Windows. ChemSusChem, 2020, 13, 1013-1026.	3.6	19
323	Onâ€Chip Chemiresistive Sensor Array for Onâ€Road NO <i></i> < Monitoring with Quantification. Advanced Science, 2020, 7, 2002014.	5.6	19
324	Low Temperature Nano Mechano-electrocatalytic CH ₄ Conversion. ACS Nano, 2022, 16, 8684-8693.	7.3	19

#	Article	IF	Citations
325	High-quality mixed-transition-metal dichalcogenides from solid-state exchange reactions. Inorganic Chemistry, 1993, 32, 6084-6087.	1.9	18
326	Stenciling Graphene, Carbon Nanotubes, and Fullerenes Using Elastomeric Liftâ€Off Membranes. Advanced Materials, 2010, 22, 897-901.	11.1	18
327	Superhard W0.5Ta0.5B nanowires prepared at ambient pressure. Applied Physics Letters, 2016, 109, .	1.5	18
328	Crystalline tetra-aniline with chloride interactions towards a biocompatible supercapacitor. Materials Horizons, 2022, 9, 383-392.	6.4	18
329	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Advanced Materials, 2022, 34, e2200254.	11.1	18
330	Synthesis of poorly crystallized platinum metal dichalcogenides. Inorganic Chemistry, 1981, 20, 501-503.	1.9	17
331	Intercalation of hydrazines in lead iodide. Journal of Physics and Chemistry of Solids, 1996, 57, 1153-1158.	1.9	17
332	Rapid Solid-State Synthesis of Nanostructured Silicon. Chemistry of Materials, 2010, 22, 2534-2540.	3.2	17
333	Organic dispersion of polyaniline and single-walled carbon nanotubes and polyblends with poly(methyl methacrylate). Polymer, 2017, 129, 1-4.	1.8	17
334	Investigation of Hardness of Ternary Borides of the YCrB ₄ , Y ₂ ReB ₆ , Y ₃ ReB ₇ , and YMo ₃ B ₇ Structural Types. Chemistry of Materials, 2018, 30, 6494-6502.	3.2	17
335	Performance, Energy and Cost of Produced Water Treatment by Chemical and Electrochemical Coagulation. Water (Switzerland), 2020, 12, 3426.	1.2	17
336	¹⁰ B and ¹¹ B NMR Study of Elemental Boron. Journal of Physical Chemistry C, 2015, 119, 13807-13813.	1.5	16
337	Direct grafting of tetraaniline <i>via</i> perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces. Chemical Science, 2019, 10, 4445-4457.	3.7	16
338	Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped)carbons. Carbon, 2021, 176, 500-510.	5.4	16
339	Characterization of solution-synthesized CdTe and HgTe. Applied Physics A: Materials Science and Processing, 1993, 56, 317-321.	1.1	15
340	A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. Journal of the Iranian Chemical Society, 2017, 14, 2579-2590.	1.2	15
341	Synthesis and Characterization of Single-Phase Metal Dodecaboride Solid Solutions: Zr _{1â€"<i>x</i>xxxxxxx<}	6.6	15
342	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals., 2022, 1, 158-169.		15

#	Article	IF	CITATIONS
343	Reverse osmosis membrane compaction and embossing at ultra-high pressure operation. Desalination, 2022, 537, 115875.	4.0	15
344	Anhydrous Halogen Acid Interaction with Polyaniline Membranes:Â A Gas Permeability Study. The Journal of Physical Chemistry, 1996, 100, 8425-8429.	2.9	14
345	Structural study of chiral camphorsulfonic acid doped polyaniline. Synthetic Metals, 2001, 119, 403-404.	2.1	14
346	Suppression of the magneto resistance in high electric fields of polyacetylene nanofibers. Synthetic Metals, 2010, 160, 1349-1353.	2.1	14
347	Rhenium diboride's monocrystal elastic constants, 308 to 5 K. Journal of the Acoustical Society of America, 2010, 127, 2797-2801.	0.5	14
348	Efficient synthesis of oligofluoranthene nanorods with tunable functionalities. Chemical Science, 2015, 6, 7190-7200.	3.7	14
349	The electrochemical reduction of polyacetylene with selected reducing agents. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 2323.	1.0	13
350	Permselectivity and temperature-dependent permeability of polyaniline membranes. Synthetic Metals, 1997, 84, 799-800.	2.1	13
351	Enhanced Solid-State Metathesis Routes to Carbon Nanotubes. Inorganic Chemistry, 2006, 45, 4243-4246.	1.9	13
352	Polyaniline nanofibers as a novel electrode material for fault-tolerant dielectric elastomer actuators., 2008,,.		13
353	Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition. Nanoscale, 2012, 4, 3075.	2.8	13
354	Enhancing cycling stability of tungsten oxide supercapacitor electrodes <i>via</i> electrodes <i>via</i> electrodes <i>via</i>	5 . 2	13
355	Ultrapermeable nanofiltration membranes with tunable selectivity fabricated with polyaniline nanofibers. Journal of Materials Chemistry A, 2022, 10, 4392-4401.	5. 2	13
356	Synthesis and Crystal Structure of Cubic Ca16Si17N34. Inorganic Chemistry, 2012, 51, 12626-12629.	1.9	12
357	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. RSC Advances, 2015, 5, 50433-50439.	1.7	12
358	Investigation of ternary metal dodecaborides (M ₁ M ₂ Md>sub>3)B ₁₂ (M ₁ , M ₂ and) Tj E	TQq&OO	rgBī[2/Overloc
359	Synthesis and High-Pressure Mechanical Properties of Superhard Rhenium/Tungsten Diboride Nanocrystals. ACS Nano, 2019, 13, 10036-10048.	7.3	12
360	Radial Xâ€Ray Diffraction Study of Superhard Early Transition Metal Dodecaborides under High Pressure. Advanced Functional Materials, 2019, 29, 1900293.	7.8	12

#	Article	IF	Citations
361	Gold Sunflower Microelectrode Arrays with Dendritic Nanostructures on the Lateral Surfaces for Antireflection and Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2022, 5, 1873-1890.	2.4	12
362	Fabrication of monolithic microstructures from polyaniline nanofibers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 162, 111-115.	1.7	11
363	An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket. Carbon, 2016, 106, 279-283.	5.4	11
364	Laserâ€Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation. Small, 2019, 15, e1904918.	5.2	11
365	Enhancing Polyvalent Cation Rejection Using Perfluorophenylazide-Grafted-Copolymer Membrane Coatings. ACS Applied Materials & Interfaces, 2020, 12, 42030-42040.	4.0	11
366	Understanding How Bonding Controls Strength Anisotropy in Hard Materials by Comparing the High-Pressure Behavior of Orthorhombic and Tetragonal Tungsten Monoboride. Journal of Physical Chemistry C, 2018, 122, 5647-5656.	1.5	10
367	Self-Assembled Functionally Graded Graphene Films with Tunable Compositions and Their Applications in Transient Electronics and Actuation. ACS Applied Materials & Electronics and Actuation. ACS Applied Materials & Electronics and Electronics and Actuation.	4.0	10
368	Solution Synthesis and Photoluminescence Studies of Small Crystallites of Cadmium Telluride. Materials Research Society Symposia Proceedings, 1992, 272, 229.	0.1	9
369	⟨sup>11B NMR Spectral and Nuclear Spin–Lattice Relaxation Analyses of ReB ₂ . Journal of Physical Chemistry C, 2016, 120, 2901-2907.	1.5	9
370	Understanding the mechanism of hardness enhancement in tantalum-substituted tungsten monoboride solid solutions. Journal of Applied Physics, 2019, 125, .	1.1	9
371	Metathetical Precursor Route to Molybdenum Disulfide. Inorganic Syntheses, 2007, , 33-37.	0.3	8
372	High Temperature Thermoelectric Properties of Nano-Bulk Silicon and Silicon Germanium. Materials Research Society Symposia Proceedings, 2009, 1166, 4.	0.1	8
373	Chemical reduction of polyacetylene with incorporation of divalent dopant cations. Synthetic Metals, 1989, 28, D115-D125.	2.1	7
374	Solid-State Metathesis Routes to Layered Transition-Metal Dichalcogenides and Refractory Materials. ACS Symposium Series, 1992, , 369-383.	0.5	7
375	Detection of Toxic Chemicals for Homeland Security Using Polyaniline Nanofibers. ACS Symposium Series, 2007, , 101-115.	0.5	7
376	Thermoelastic properties of ReB2 at high pressures and temperatures and comparison with Pt, Os, and Re. Journal of Applied Physics, 2011, 110 , .	1.1	7
377	Lattice strain of osmium diboride under high pressure and nonhydrostatic stress. Journal of Applied Physics, 2012, 112, .	1.1	7
378	Microscopic investigation of local structural and electronic properties of tungsten tetraboride: a superhard metallic material. Journal of Materials Science, 2019, 54, 3547-3557.	1.7	7

#	Article	IF	Citations
379	Oriented Polythiophene Nanofibers Grown from CdTe Quantum Dot Surfaces. Small, 2012, 8, 1191-1196.	5.2	6
380	Semiconductors: Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater.) Tj ETQq0	0 0 ggT /C	Overlock 10 Tf
381	Catalytic Effects of Aniline Polymerization Assisted by Oligomers. ACS Catalysis, 2019, 9, 6596-6606.	5.5	6
382	Spinless charge carriers in divalent cation doped polyacetylene. Solid State Communications, 1990, 74, 1217-1220.	0.9	5
383	From Ceramics to Superconductors: Rapid Materials Synthesis by Solid-State Metathesis Reactions. Materials Research Society Symposia Proceedings, 1992, 271, 169.	0.1	5
384	Quantitative evaluation of gallium phosphide samples prepared from rapid solid state metathesis. Analytica Chimica Acta, 1993, 283, 987-995.	2.6	5
385	Synthesis of High-Temperature Silicides Via Rapid Solid-State Metathesis. Materials Research Society Symposia Proceedings, 1993, 322, 133.	0.1	5
386	The influence of weak localization and coulomb interaction on the low temperature resistance and magnetoresistance of ion implanted metallic polyaniline films. Synthetic Metals, 1997, 84, 769-771.	2.1	5
387	Conductivity and magnetoconductivity of polyaniline films implanted with and ions near the critical regime of the metal-insulator transition. Journal of Physics Condensed Matter, 1998, 10, 4867-4875.	0.7	5
388	A Room Temperature Polyaniline/SnO <inf>2</inf> Nanofiber Composite Based Layered ZnO/64° YX LiNbO <inf>3</inf> SAW Hydrogen Gas Sensor., 2006,,.		5
389	Optically Active Poly[2-(<i>sec</i> -butyl)aniline] Nanofibers Prepared via Enantioselective Polymerization. ACS Omega, 2018, 3, 18895-18905.	1.6	5
390	Silicon expansion at the service of safety $\hat{a}\in$ A reversible potential-dependent switch for safer batteries. Materials Today Energy, 2018, 10, 89-97.	2.5	5
391	Divalent cation dopants for polyparaphenylene. Synthetic Metals, 1993, 55, 930-935.	2.1	4
392	A hydrogen gas sensor fabricated from polythiophene nanofibers deposited on a $36 \hat{A}^{\circ}YX$ LiTaO 3 layered surface acoustic wave transducer. Proceedings of SPIE, 2008, , .	0.8	4
393	Raman scattering from superhard rhenium diboride under high pressure. Applied Physics Letters, 2014, 104, .	1.5	4
394	Introducing the micro-super-capacitor laser-etched graphene brings Moore's law to energy storage. IEEE Spectrum, 2015, 52, 40-45.	0.5	4
395	11B NMR Study of WB2. Journal of Physical Chemistry C, 2017, 121, 1315-1320.	1.5	4
396	Synthesis and characterization of aluminum diboride products using 27Al, 11B NMR and ab initio studies. Journal of Materials Science, 2018, 53, 3309-3322.	1.7	4

#	Article	IF	Citations
397	How permeable could a reverse osmosis membrane be if it was specifically developed for uncharged organic solute rejection?. AWWA Water Science, 2020, 2, e1189.	1.0	4
398	Designing a slow leak. Nature, 1991, 352, 23-23.	13.7	3
399	Layered Surface Acoustic Wave Hydrogen Sensor Based on Polyethylaniline Nanofibers. Procedia Chemistry, 2009, 1, 220-223.	0.7	3
400	Optimizing Thermoelectric Efficiency of La3-xTe4 with Calcium Metal Substitution. Materials Research Society Symposia Proceedings, 2013, 1490, 83-88.	0.1	3
401	Conducting Polymers. , 2013, , 1-8.		3
402	Synthesis and applications of conducting polymer nanofibers. MRS Bulletin, 2016, 41, 785-790.	1.7	3
403	Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. Applied Physics Letters, 2016, 109, .	1.5	3
404	A multipronged approach for systematic in vitro quantification of catheter-associated biofilms. Journal of Hazardous Materials Letters, 2021, 2, 100032.	2.0	3
405	Anin situRaman Study after n-Doping of acis-Rich Polyacetylene Electrode in an Electrochemical Cell. Japanese Journal of Applied Physics, 1984, 23, L883-L885.	0.8	2
406	Be2+, Mg2+ and Al3+ N-dopants for polyacetylene. Synthetic Metals, 1991, 41, 101-105.	2.1	2
407	Structure and properties of superconducting and nonsuperconducting alkaliâ€metal fullerides a _x c ₆₀ (A = Na, K, Rb, or Cs). Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 389-397.	0.6	2
408	Osmium Diboride, an Ultra-Incompressible, Hard Material ChemInform, 2005, 36, no.	0.1	2
409	Rapid Prototyping of a Low-cost Graphene-based Impedimetric Biosensor. Procedia Technology, 2017, 27, 274-276.	1.1	2
410	Carbon Nanodots: Laserâ€Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation (Small 52/2019). Small, 2019, 15, 1970285.	5.2	2
411	The Synthesis of Crystalline Gallium Nitride Using Solid-State Metathesis Reactions at High Pressures Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 1040-1042.	0.1	2
412	Effective Liquid Metal Seeds for Silver Nanovines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	2
413	Enhanced Hardening Effects on Molybdenum-Doped WB ₂ and WB ₂ â€"SiC/B ₄ C Composites. Chemistry of Materials, 2022, 34, 5461-5470.	3.2	2
414	A boron-nitrogen conducting polymer. Synthetic Metals, 1991, 43, 3075-3078.	2.1	1

#	Article	IF	CITATIONS
415	Solid-solution rubidium/potassium mixed-metal fullerides. Synthetic Metals, 1993, 56, 3160-3166.	2.1	1
416	Phases, kinetics and structure of alkali-C60 compounds: preparation of Rb3- and (Rb3â^'xKx)-C60 superconductors. Synthetic Metals, 1993, 59, 307-316.	2.1	1
417	CESIUM. Chemical & Engineering News, 2003, 81, 132.	0.2	1
418	Controlling Surface Area of Titanium Nitride Using Metathesis Reactions ChemInform, 2004, 35, no.	0.1	1
419	Polymeric nanocomposite for memory application. , 2005, 5940, 254.		1
420	Hydrogen gas sensor fabricated from polyanisidine nanofibers deposited on $36 \hat{A}^\circ$ YX LiTaO 3 layered surface acoustic wave transducer., 2007,,.		1
421	Nano-architecture. Materials Today, 2011, 14, 175.	8.3	1
422	Electrochemical polymerization of PEDOT on catalyst-free patterned GaAs nanopillars for high efficiency hybrid photovoltaics 37 th IEEE photovoltaic specialists conference., 2011,,.		1
423	Hybrid Solar Cells: Materials, Interfaces, and Devices. Springer Series in Materials Science, 2014, , 357-387.	0.4	1
424	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices (Adv. Mater. 20/2022). Advanced Materials, 2022, 34, .	11.1	1
425	Rapid Solid-State Precursor Synthesis of Non-Oxide Ceramics. Materials Research Society Symposia Proceedings, 1993, 327, 227.	0.1	0
426	Electrical Properties of Ion Implanted and Chemically Doped Polyaniline Films. Materials Research Society Symposia Proceedings, 1995, 413, 609.	0.1	0
427	Rapid Solid-State Metathesis Routes to Aluminum Nitride ChemInform, 2003, 34, no.	0.1	0
428	Rapid Solid-State Synthesis of Titanium Aluminides ChemInform, 2003, 34, no.	0.1	0
429	A Solid-State Metathesis Route to MgSiN2 ChemInform, 2005, 36, no.	0.1	0
430	Semiconducting graphite oxide films for large scale carbon based electronics., 2007,,.		0
431	Nanostructured Silicon-based Composites for High Temperature Thermoelectric Applications. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	0
432	Oligoaniline crystals: morphology control, hierarchical assembly and structure-property relationships. Materials Research Society Symposia Proceedings, 2012, 1402, 48.	0.1	0

#	Article	IF	CITATIONS
433	InnenrÃ $\frac{1}{4}$ cktitelbild: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. 16/2012). Angewandte Chemie, 2012, 124, 4045-4045.	1.6	0
434	Inside Back Cover: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew.) Tj ETQ	q0 <u>,0</u> 0 rgE	BT Overlock
435	Polyaniline. , 2013, , 1-11.		0
436	Highly Charged Dopant Ions for Polyacetylene. , 1990, , 87-99.		0
437	LATE-BREAKING ABSTRACT: Activity limitation and exacerbations in smokers with emphysema on CT but preserved pulmonary function. SPIROMICS., 2016,,.		O