
Kishan Dholakia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/734351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing Vibrational Strong Coupling of Molecules with Wavelengthâ€Modulated Raman Spectroscopy. Advanced Optical Materials, 2022, 10, .	7.3	10
2	A laser-driven optical atomizer: photothermal generation and transport of zeptoliter-droplets along a carbon nanotube deposited hollow optical fiber. Nanoscale, 2022, 14, 5138-5146.	5.6	3
3	Measurement of Variations in Gas Refractive Index with 10 ^{–9} Resolution Using Laser Speckle. ACS Photonics, 2022, 9, 830-836.	6.6	6
4	To focus-match or not to focus-match inverse spatially offset Raman spectroscopy: a question of light penetration. Optics Express, 2022, 30, 8876.	3.4	3
5	Fabrication on the microscale: a two-photon polymerized device for oocyte microinjection. Journal of Assisted Reproduction and Genetics, 2022, 39, 1503-1513.	2.5	7
6	The effect of discrete wavelengths of visible light on the developing murine embryo. Journal of Assisted Reproduction and Genetics, 2022, 39, 1825-1837.	2.5	5
7	Asymmetric longitudinal optical binding force between two identical dielectric particles with electric and magnetic dipolar responses. Physical Review A, 2022, 106, .	2.5	1
8	Incorporation of nitrogen in diamond films – A new way of tuning parameters for optical passive elements. Diamond and Related Materials, 2021, 111, 108221.	3.9	4
9	Transverse optical binding for a dual dipolar dielectric nanoparticle dimer. Physical Review A, 2021, 103, .	2.5	3
10	Optical Forces and Torques on Eccentric Nanoscale Core–Shell Particles. ACS Photonics, 2021, 8, 1103-1111.	6.6	11
11	BPM-Matlab: an open-source optical propagation simulation tool in MATLAB. Optics Express, 2021, 29, 11819.	3.4	17
12	Emergent physics-informed design of deep learning for microscopy. JPhys Photonics, 2021, 3, 021003.	4.6	9
13	Photonics: 20/20 Vision. ACS Photonics, 2021, 8, 943-944.	6.6	0
14	Optical manipulation of a dielectric particle along polygonal closed-loop geometries within a single water droplet. Scientific Reports, 2021, 11, 12690.	3.3	6
15	Optical manipulation: advances for biophotonics in the 21st century. Journal of Biomedical Optics, 2021, 26, .	2.6	28
16	Wavelength sensitivity of the speckle patterns produced by an integrating sphere. JPhys Photonics, 2021, 3, 035005.	4.6	12
17	Exploring the Limit of Multiplexed Near-Field Optical Trapping. ACS Photonics, 2021, 8, 2060-2066.	6.6	38
18	Polarization and Orbital Angular Momentum of Light in Biomedical Applications: feature issue introduction. Biomedical Optics Express, 2021, 12, 6255.	2.9	14

#	Article	IF	CITATIONS
19	Does artificial intelligence have a role in the IVF clinic?. Reproduction and Fertility, 2021, 2, C29-C34.	1.8	15
20	Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Advances in Physics: X, 2021, 6, 1838322.	4.1	15
21	Stochastic Hopf bifurcations in vacuum optical tweezers. Physical Review A, 2021, 104, .	2.5	7
22	High speed determination of laser wavelength using Poincaré descriptors of speckle. Optics Communications, 2020, 459, 124906.	2.1	10
23	Willin/FRMD6 Influences Mechanical Phenotype and Neuronal Differentiation in Mammalian Cells by Regulating ERK1/2 Activity. Frontiers in Cellular Neuroscience, 2020, 14, 552213.	3.7	6
24	Deep Learning Enabled Laser Speckle Wavemeter with a High Dynamic Range. Laser and Photonics Reviews, 2020, 14, 2000120.	8.7	47
25	Extended Kalman Filtering Projection Method to Reduce the $3i_f$ Noise Value of Optical Biosensors. ACS Sensors, 2020, 5, 3474-3482.	7.8	14
26	Through-bottle whisky sensing and classification using Raman spectroscopy in an axicon-based backscattering configuration. Analytical Methods, 2020, 12, 4572-4578.	2.7	8
27	Comparing acoustic and optical forces for biomedical research. Nature Reviews Physics, 2020, 2, 480-491.	26.6	69
28	Microscale diamond protection for a ZnO coated fiber optic sensor. Scientific Reports, 2020, 10, 19141.	3.3	7
29	Multi-photon attenuation-compensated light-sheet fluorescence microscopy. Scientific Reports, 2020, 10, 8090.	3.3	4
30	Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform. Communications Biology, 2020, 3, 236.	4.4	24
31	Nanostructural Diversity of Synapses in the Mammalian Spinal Cord. Scientific Reports, 2020, 10, 8189.	3.3	22
32	Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Science Advances, 2020, 6, eaaz9858.	10.3	30
33	Reducing data acquisition for lightâ€sheet microscopy by extrapolation between imaged planes. Journal of Biophotonics, 2020, 13, e202000035.	2.3	1
34	Multimodal Imaging at Depth Using Innovations in Raman Spectroscopy and Optical Coherence Tomography. , 2020, , 537-550.		1
35	Twisted mass transport enabled by the angular momentum of light. Journal of Nanophotonics, 2020, 14, 1.	1.0	15
36	Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter. Optics Letters, 2020, 45, 1926.	3.3	23

#	Article	IF	CITATIONS
37	Photopolymerization with high-order Bessel light beams. Optics Letters, 2020, 45, 4080.	3.3	19
38	Widefield light sheet microscopy using an Airy beam combined with deep-learning super-resolution. OSA Continuum, 2020, 3, 1068.	1.8	13
39	Speckle-based determination of the polarisation state of single and multiple laser beams. OSA Continuum, 2020, 3, 1302.	1.8	5
40	Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics, 2020, 10, 259-293.	6.0	118
41	Coherent oscillations of a birefringent microsphere in vacuum optical traps. , 2020, , .		Ο
42	New Directions in Sensing Using Raman Analysis on Paper and Microfluidic Platforms. Biological and Medical Physics Series, 2020, , 211-229.	0.4	0
43	Numerical comparison of robustness of shaped beam delivery through multimode and multicore fibre against fibre bending. , 2020, , .		0
44	Optical analysis of homocysteine metabolites using vibrational spectroscopy. OSA Continuum, 2020, 3, 1958.	1.8	1
45	Is laser repetition rate important for two-photon light sheet microscopy?. OSA Continuum, 2020, 3, 2935.	1.8	4
46	Optical manipulation: a step change for biomedical science. Contemporary Physics, 2020, 61, 277-294.	1.8	7
47	Light sheet fluorescence microscopy for neuroscience. Journal of Neuroscience Methods, 2019, 319, 16-27.	2.5	33
48	Twisted Materials: A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light (Advanced Optical Materials 14/2019). Advanced Optical Materials, 2019, 7, 1970052.	7.3	2
49	Numerical Comparison of Robustness of Multimode and Multicore Fibre Sensitivity against Fibre Bending. , 2019, , .		О
50	Light-Sheet Fluorescence Microscopy With Structured Light. , 2019, , 477-501.		1
51	A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light. Advanced Optical Materials, 2019, 7, 1801672.	7.3	89
52	Optical hooks. Nature Photonics, 2019, 13, 229-230.	31.4	40
53	The dyslexia susceptibility <i>KIAA0319</i> gene shows a specific expression pattern during zebrafish development supporting a role beyond neuronal migration. Journal of Comparative Neurology, 2019, 527, 2634-2643.	1.6	10
54	Light sheet microscopy with acoustic sample confinement. Nature Communications, 2019, 10, 669.	12.8	25

#	Article	IF	CITATIONS
55	Label-free optical hemogram of granulocytes enhanced by artificial neural networks. Optics Express, 2019, 27, 13706.	3.4	15
56	Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution. Optics Letters, 2019, 44, 1367.	3.3	45
57	Optimal compressive multiphoton imaging at depth using single-pixel detection. Optics Letters, 2019, 44, 4981.	3.3	20
58	Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica, 2019, 6, 274.	9.3	25
59	TRAFIX: Imaging at depth with temporal focusing and single-pixel detection. , 2019, , .		1
60	Wide-field multiphoton imaging with TRAFIX. , 2019, , .		1
61	Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Science Advances, 2018, 4, eaar4817.	10.3	76
62	Towards automated cancer screening: Labelâ€free classification of fixed cell samples using wavelength modulated Raman spectroscopy. Journal of Biophotonics, 2018, 11, e201700244.	2.3	20
63	Detecting Phenotypically Resistant Mycobacterium tuberculosis Using Wavelength Modulated Raman Spectroscopy. Methods in Molecular Biology, 2018, 1736, 41-50.	0.9	7
64	An Organic Vortex Laser. ACS Nano, 2018, 12, 2389-2394.	14.6	30
65	Depthâ€resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography. Journal of Biophotonics, 2018, 11, e201700129.	2.3	23
66	Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers. ACS Photonics, 2018, 5, 4156-4163.	6.6	33
67	Multimodal deep tissue imaging using Wavelength Modulated Spatially Offset Raman Spectroscopy and Optical Coherence Tomography. , 2018, , .		0
68	Wide-field multiphoton imaging through scattering media without correction. Science Advances, 2018, 4, eaau1338.	10.3	39
69	Fast volume-scanning light sheet microscopy reveals transient neuronal events. Biomedical Optics Express, 2018, 9, 2154.	2.9	25
70	Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica, 2018, 5, 910.	9.3	49
71	Optical trapping with planar silicon metalenses. Optics Letters, 2018, 43, 3224.	3.3	39

52 Speckle-based wavelength measurement at femtometer resolution using a multimode fibre. , 2018, , .

#	Article	IF	CITATIONS
73	The Temperature of an Optically Trapped, Rotating Microparticle. ACS Photonics, 2018, 5, 3772-3778.	6.6	25
74	Three-photon light-sheet fluorescence microscopy. Optics Letters, 2018, 43, 5484.	3.3	41
75	Dynamics of a Microparticle Levitated in Vacuum by an Optical Vortex Beam. The Review of Laser Engineering, 2018, 46, 192.	0.0	0
76	Structured illumination microscopy as a diagnostic tool for nephrotic disease. , 2017, , .		0
77	Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy. Scientific Reports, 2017, 7, 43631.	3.3	40
78	Rapid imaging of mammalian brain slices with a compact light sheet fluorescent microscope. Proceedings of SPIE, 2017, , .	0.8	0
79	Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum. , 2017, , .		0
80	Optical binding of two microparticles levitated in vacuum. , 2017, , .		0
81	Twisted polymeric microfiber formed by structured light illumination. Proceedings of SPIE, 2017, , .	0.8	0
82	Rotational dynamics and heating of trapped nanovaterite particles. , 2017, , .		1
83	Wavefront correction enables vibrational imaging of bacteria with multimode fibre probes. Proceedings of SPIE, 2017, , .	0.8	Ο
84	Probing neural tissue with airy light-sheet microscopy: investigation of imaging performance at depth within turbid media. , 2017, , .		0
85	Modal beam splitter: determination of the transversal components of an electromagnetic light field. Scientific Reports, 2017, 7, 9139.	3.3	7
86	Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease. Scientific Reports, 2017, 7, 9844.	3.3	24
87	Integrated single- and two-photon light sheet microscopy using accelerating beams. Scientific Reports, 2017, 7, 1435.	3.3	43
88	Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nature Communications, 2017, 8, 15610.	12.8	80
89	Multimode fibre based imaging for optically cleared samples. Biomedical Optics Express, 2017, 8, 5179.	2.9	5
90	Raman imaging through a single multimode fibre. Optics Express, 2017, 25, 13782.	3.4	48

#	Article	IF	CITATIONS
91	Is it possible to create a perfect fractional vortex beam?. Optica, 2017, 4, 330.	9.3	60
92	Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. Journal of the Optical Society of America B: Optical Physics, 2017, 34, C14.	2.1	34
93	Optical vortex illumination to form polymeric twisted fiber. , 2017, , .		0
94	A biophotonics platform based on optical trapping of photonic membranes. , 2017, , .		0
95	A Compact Two Photon Light Sheet Microscope for Applications in Neuroscience. , 2016, , .		0
96	Optically Trapped Microscopic Particles in a Perfect Fractional Vortex Beam. , 2016, , .		0
97	Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue. Biomedical Optics Express, 2016, 7, 4021.	2.9	46
98	Is there an optimal basis to maximise optical information transfer?. Scientific Reports, 2016, 6, 22821.	3.3	38
99	A compact light-sheet microscope for the study of the mammalian central nervous system. Scientific Reports, 2016, 6, 26317.	3.3	16
100	Rotational Dynamics and Heating of Trapped Nanovaterite Particles. ACS Nano, 2016, 10, 11505-11510.	14.6	39
101	Trapping in a Material World. ACS Photonics, 2016, 3, 719-736.	6.6	130
102	Visualization of podocyte substructure with structured illumination microscopy (SIM): a new approach to nephrotic disease. Biomedical Optics Express, 2016, 7, 302.	2.9	28
103	Measuring and structuring the spatial coherence length of organic lightâ€emitting diodes. Laser and Photonics Reviews, 2016, 10, 82-90.	8.7	12
104	Optical Spectroscopic Analysis for the Discrimination of Extra-Virgin Olive Oil. Applied Spectroscopy, 2016, 70, 1872-1882.	2.2	13
105	Orbital-angular-momentum transfer to optically levitated microparticles in vacuum. Physical Review A, 2016, 94, .	2.5	33
106	An inverted light sheet microscope optimized for studies in neuroscience. , 2016, , .		1
107	Identification of Single Human Immune Cells with Wavelength Modulation Raman Spectroscopy. , 2016, , .		0
108	Wavelength detection at sub-femtometer resolution and application to laser stabilization. , 2016, , .		0

#	Article	IF	CITATIONS
109	Can information Capacity be Increased with Orbital Angular Momentum?. , 2016, , .		1
110	Integrating sphere based speckle generation for wavelength determination and laser stabilization. , 2016, , .		1
111	Internal physiology of live krill revealed using new aquaria techniques and mixed optical microscopy and optical coherence tomography (OCT) imaging techniques. Marine and Freshwater Behaviour and Physiology, 2015, 48, 455-466.	0.9	2
112	New directions in optical manipulation. , 2015, , .		1
113	New directions in light sheet microscopy. , 2015, , .		0
114	Multimode fibre: Light-sheet microscopy at the tip of a needle. Scientific Reports, 2015, 5, 18050.	3.3	46
115	Airy Beams for Light-sheet Microscopy. Microscopy and Microanalysis, 2015, 21, 1723-1724.	0.4	2
116	Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level. Sensors, 2015, 15, 13680-13704.	3.8	50
117	The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells. PLoS ONE, 2015, 10, e0125158.	2.5	42
118	Quantitative Detection of Pharmaceuticals Using a Combination of Paper Microfluidics and Wavelength Modulated Raman Spectroscopy. PLoS ONE, 2015, 10, e0123334.	2.5	13
119	Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles. Optics Letters, 2015, 40, 4847.	3.3	16
120	Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances. Optics Letters, 2015, 40, 4751.	3.3	24
121	Fibre-based imaging: new challenges. , 2015, , .		0
122	Creating and probing of a perfect vortex in situ with an optically trapped particle. Optical Review, 2015, 22, 162-165.	2.0	30
123	Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Biomedical Optics Express, 2015, 6, 1512.	2.9	8
124	Macro-optical trapping for sample confinement in light sheet microscopy. Biomedical Optics Express, 2015, 6, 2778.	2.9	19
125	Enhancement of optical forces using slow light in a photonic crystal waveguide. Optica, 2015, 2, 816.	9.3	37

126 Integrated 3D macro-trapping and light-sheet imaging system. , 2015, , .

0

#	Article	IF	CITATIONS
127	Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles. ACS Photonics, 2015, 2, 1403-1409.	6.6	8
128	A compact Airy beam light sheet microscope with a tilted cylindrical lens. Biomedical Optics Express, 2014, 5, 3434.	2.9	78
129	Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle. , 2014, ,		1
130	Gold nanorod assisted intracellular optical manipulation of silica microspheres. Optics Express, 2014, 22, 19735.	3.4	7
131	Development of a fiber based Raman probe compatible with interventional magnetic resonance imaging. , 2014, , .		0
132	Shaping the Future of Biophotonics: Imaging and Manipulation. , 2014, , .		0
133	Multi-mode fibre correction for applications in optomechanics using a digital micromirror device. , 2014, , .		0
134	Biologically enabled sub-diffractive focusing. Optics Express, 2014, 22, 27214.	3.4	36
135	Nonredundant Raman imaging using optical eigenmodes. Optica, 2014, 1, 257.	9.3	20
136	Attenuation compensating Airy beams generated by using a digital micro-mirror device. , 2014, , .		0
137	Femtosecond optical injection of intact plant cells using a reconfigurable platform. , 2014, , .		1
138	Optical trapping with a perfect vortex beam. Proceedings of SPIE, 2014, , .	0.8	18
139	Imaging the cellular response to transient shear stress using time-resolved digital holography. Proceedings of SPIE, 2014, , .	0.8	0
140	Combined information from Raman spectroscopy and optical coherence tomography for enhanced diagnostic accuracy in tissue discrimination. , 2014, , .		0
141	Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset. Proceedings of SPIE, 2014, , .	0.8	1
142	Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11, 541-544.	19.0	679
143	GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Optics Express, 2014, 22, 2933.	3.4	56
144	The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chemistry, 2014, 6, 1091-1099.	13.6	942

#	Article	IF	CITATIONS
145	Introduction to the Issue on Nanobiophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 3-6.	2.9	0
146	Generation of attenuation-compensating Airy beams. Optics Letters, 2014, 39, 4950.	3.3	28
147	Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: Combined application of atomic force microscopy and modulated Raman spectroscopy. Acta Biomaterialia, 2014, 10, 2043-2055.	8.3	56
148	Random super-prism wavelength meter. Optics Letters, 2014, 39, 96.	3.3	53
149	Dynamics of Microparticles Trapped in a Perfect Vortex Beam. , 2014, , .		0
150	A Raman spectroscopy bioâ€sensor for tissue discrimination in surgical robotics. Journal of Biophotonics, 2014, 7, 103-109.	2.3	22
151	Sub-diffractive light confinement: A biological-based approach. , 2014, , .		Ο
152	The Application of Optical Coherence Tomography to Image Subsurface Tissue Structure of Antarctic Krill Euphausia superba. PLoS ONE, 2014, 9, e110367.	2.5	7
153	Real-time optical eigenmode characterisation. , 2014, , .		0
154	Rotation induced cooling of an optically trapped microgyroscope in vacuum. , 2014, , .		0
155	Optofluidic Raman sensor for simultaneous detection of the toxicity and quality of alcoholic beverages. Journal of Raman Spectroscopy, 2013, 44, 795-797.	2.5	7
156	Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Communications, 2013, 4, 2374.	12.8	251
157	Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation. Scientific Reports, 2013, 3, 3281.	3.3	27
158	Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. Nanoscale, 2013, 5, 12192.	5.6	66
159	Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation. Analytical Methods, 2013, 5, 4608.	2.7	22
160	Coherent control of plasmonic nanoantennas using optical eigenmodes. Scientific Reports, 2013, 3, 1808.	3.3	21
161	Laser-induced breakdown of an optically trapped gold nanoparticle for single cell transfection. Optics Letters, 2013, 38, 3402.	3.3	32
162	Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection. Analyst, The, 2013, 138, 2816.	3.5	8

#	Article	IF	CITATIONS
163	Exploiting multimode waveguides for pure fibre based fluorescence imaging. , 2013, , .		Ο
164	Femtosecond optical transfection of individual mammalian cells. Nature Protocols, 2013, 8, 1216-1233.	12.0	67
165	Dynamics of microparticles trapped in a perfect vortex beam. Optics Letters, 2013, 38, 4919.	3.3	263
166	Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon. Biomedical Optics Express, 2013, 4, 2179.	2.9	77
167	Enhanced cell transfection using subwavelength focused optical eigenmode beams [Invited]. Photonics Research, 2013, 1, 42.	7.0	9
168	Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity. New Journal of Physics, 2013, 15, 113053.	2.9	46
169	High-throughput optical injection of mammalian cells using a non-diffracting beam in a microfluidic platform. , 2013, , .		0
170	Holographic approach for optical poration and trapping of developing embryos. , 2013, , .		0
171	Optical manipulation, beam-shaping and scanner-free bright-ï¬eld and dark-ï¬eld imaging via multimode optical ï¬bre. , 2013, , .		0
172	Optimisation of Wavelength Modulated Raman Spectroscopy: Towards High Throughput Cell Screening. PLoS ONE, 2013, 8, e67211.	2.5	11
173	Femtosecond Optoinjection of Intact Tobacco BY-2 Cells Using a Reconfigurable Photoporation Platform. PLoS ONE, 2013, 8, e79235.	2.5	11
174	Rotation induced cooling of an optically trapped microgyroscope in vacuum. , 2013, , .		0
175	Tissue surface as the reference arm in Fourier domain optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 071305.	2.6	10
176	Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation. Proceedings of SPIE, 2012, , .	0.8	1
177	Optical sorting of gold nanoparticles based on the red-shift of plasmon resonance. Proceedings of SPIE, 2012, , .	0.8	Ο
178	Auto-focusing and self-healing of Pearcey beams. Optics Express, 2012, 20, 18955.	3.4	252
179	An interacting dipole model to explore broadband transverse optical binding. Journal of Physics Condensed Matter, 2012, 24, 464117.	1.8	8
180	Exploiting multimode waveguides for pure fibre-based imaging. Nature Communications, 2012, 3, 1027.	12.8	450

#	Article	IF	CITATIONS
181	Resonance enhanced optical manipulation: the push and pull of light. , 2012, , .		3
182	The role of spectral bandwidth in transverse optical binding. , 2012, , .		0
183	Multimode fibre as a light mode convertor: principles and applications. , 2012, , .		Ο
184	A multimodal holographic system for optical manipulation and injection of developing embryos. , 2012, , ,		0
185	Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells. Scientific Reports, 2012, 2, 858.	3.3	15
186	Manipulation and control of light in multimode fibres. , 2012, , .		0
187	Etaloning, fluorescence and ambient light suppression by modulated wavelength Raman spectroscopy. Biomedical Spectroscopy and Imaging, 2012, 1, 383-389.	1.2	21
188	Wavelength Modulated Raman Spectroscopy for Biomedical Applications. Biomedizinische Technik, 2012, 57, .	0.8	1
189	Microfluidic Raman Spectroscopy for Bio-chemical Sensing and Analysis. Springer Series on Chemical Sensors and Biosensors, 2012, , 247-268.	0.5	6
190	Raman-Activated Cell Counting for Profiling Carbon Dioxide Fixing Microorganisms. Journal of Physical Chemistry A, 2012, 116, 6560-6563.	2.5	36
191	Optical eigenmodes for imaging applications. , 2012, , .		Ο
192	Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions. Optics Letters, 2012, 37, 4949.	3.3	56
193	High-throughput optical injection of mammalian cells using a Bessel light beam. Lab on A Chip, 2012, 12, 4816.	6.0	33
194	Wavefront corrected light sheet microscopy in turbid media. Applied Physics Letters, 2012, 100, .	3.3	30
195	Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene, 2012, 31, 238-250.	5.9	93
196	Bidirectional Optical Sorting of Gold Nanoparticles. Nano Letters, 2012, 12, 1923-1927.	9.1	124
197	Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum. Applied Physics Letters, 2012, 100, .	3.3	45
198	Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis. Journal of Biomedical Optics, 2012, 17, 0770061.	2.6	19

#	Article	lF	CITATIONS
199	Optical trapping for analytical biotechnology. Current Opinion in Biotechnology, 2012, 23, 16-21.	6.6	66
200	Multimodal biophotonic workstation for live cell analysis. Journal of Biophotonics, 2012, 5, 9-13.	2.3	19
201	Shaped Light for Biophotonics. , 2012, , .		Ο
202	Fluorescence Suppression Using Modulated Wavelength Raman Spectroscopy for Tissue and Cell Analysis. , 2012, , .		0
203	Waveguide confined Raman spectroscopy for microfluidic interrogation. Lab on A Chip, 2011, 11, 1262.	6.0	65
204	Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle. Analytical Chemistry, 2011, 83, 8855-8858.	6.5	43
205	Far field subwavelength focusing using optical eigenmodes. Applied Physics Letters, 2011, 98, .	3.3	65
206	Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples. Journal of Biomedical Optics, 2011, 16, 037002.	2.6	57
207	Integrated holographic system for all-optical manipulation of developing embryos. Biomedical Optics Express, 2011, 2, 1564.	2.9	29
208	Optical Eigenmodes; exploiting the quadratic nature of the light-matter interaction. Optics Express, 2011, 19, 933.	3.4	77
209	Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Optics Express, 2011, 19, 5760.	3.4	95
210	Numerical investigation of passive optical sorting of plasmon nanoparticles. Optics Express, 2011, 19, 13922.	3.4	12
211	Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Optics Express, 2011, 19, 18871.	3.4	292
212	Near infrared spectroscopic analysis of single malt Scotch whisky on an optofluidic chip. Optics Express, 2011, 19, 22982.	3.4	41
213	Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells. Proceedings of SPIE, 2011, , .	0.8	0
214	Shaping the future of manipulation. Nature Photonics, 2011, 5, 335-342.	31.4	848
215	Valve controlled fluorescence detection system for remote sensing applications. Microfluidics and Nanofluidics, 2011, 11, 529-536.	2.2	6
216	Enhancement and optimization of plasmid expression in femtosecond optical transfection. Journal of Biophotonics, 2011, 4, 229-235.	2.3	17

#	Article	IF	CITATIONS
217	Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation. Journal of Biophotonics, 2011, 4, 514-518.	2.3	20
218	Optical eigenmode imaging. Physical Review A, 2011, 84, .	2.5	34
219	Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles. Applied Physics Letters, 2011, 98, .	3.3	39
220	Optical transfection using an endoscope-like system. Journal of Biomedical Optics, 2011, 16, 028002.	2.6	17
221	Imaging the cellular response to transient shear stress using stroboscopic digital holography. Journal of Biomedical Optics, 2011, 16, 120508.	2.6	4
222	Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation. , 2011, , .		1
223	10.1063/1.3554415.1.,2011,,.		1
224	SHAPING THE FUTURE OF NANOBIOPHOTONICS. , 2011, , .		0
225	Integration Methods for Raman Spectroscopy and Passive Sorting in Optofluidics. , 2011, , .		0
226	Optimal focusing In Situ: new routes for optical trapping and Biophotonics. , 2011, , .		0
227	Optical Sculpting: trapping through disorder. , 2011, , .		0
228	Enhancement of the efficiency of femtosecond optical transfection. , 2010, , .		0
229	Flexible dual-beam geometry for advanced optical micromanipulation experiments. , 2010, , .		0
230	Transfection by Optical Injection. Series in Medical Physics and Biomedical Engineering, 2010, , 87-118.	0.1	7
231	Fluorescence-free biochemical characterization of cells using modulated Raman spectroscopy. Proceedings of SPIE, 2010, , .	0.8	0
232	Optical Sculpting: Shaping the Future of Biophotonic. , 2010, , .		0
233	Intracellular Dielectric Tagging for Improved Optical Manipulation of Mammalian Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 608-618.	2.9	6
234	Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. Journal of Biophotonics, 2010, 3, 696-705.	2.3	48

#	Article	IF	CITATIONS
235	Innovative photonic micromanipulation tools: Light takes hold in Biophotonics. Journal of Biophotonics, 2010, 3, 183-183.	2.3	0
236	Light beats the spread: "nonâ€diffracting―beams. Laser and Photonics Reviews, 2010, 4, 529-547.	8.7	134
237	In situ wavefront correction and its application to micromanipulation. Nature Photonics, 2010, 4, 388-394.	31.4	390
238	Advanced Studies of â€~Non-Diffracting' Light Fields. , 2010, , .		0
239	Phototransfection of mammalian cells using femtosecond laser pulses: optimization and applicability to stem cell differentiation. Journal of Biomedical Optics, 2010, 15, 041507.	2.6	37
240	Modulated Raman spectroscopy technique for real-time fluorescence rejection. , 2010, , .		1
241	Fluorescence-Free Biochemical Characterization of Cells Using Modulated Raman Spectroscopy. , 2010, , .		0
242	Formation of one-dimensional optically bound structures of polystyrene particles near the surface. Proceedings of SPIE, 2010, , .	0.8	0
243	Determination of optical forces in the proximity of a nanoantenna. Proceedings of SPIE, 2010, , .	0.8	0
244	In situ wavefront optimization: towards the ideal performance of a biophotonics system. Proceedings of SPIE, 2010, , .	0.8	0
245	Light forces the pace: optical manipulation for biophotonics. Journal of Biomedical Optics, 2010, 15, 041503.	2.6	110
246	Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation. Biomedical Optics Express, 2010, 1, 414.	2.9	37
247	Optical injection of mammalian cells using a microfluidic platform. Biomedical Optics Express, 2010, 1, 527.	2.9	33
248	Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery. Biomedical Optics Express, 2010, 1, 694.	2.9	27
249	Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation. Optics Express, 2010, 18, 6396.	3.4	24
250	Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers. Optics Express, 2010, 18, 7554.	3.4	53
251	Fiber probe based microfluidic raman spectroscopy. Optics Express, 2010, 18, 7642.	3.4	48
252	Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Optics Express, 2010, 18, 11382.	3.4	79

#	Article	IF	CITATIONS
253	Optical path clearing and enhanced transmission through colloidal suspensions. Optics Express, 2010, 18, 17130.	3.4	48
254	Experimental and theoretical determination of optical binding forces. Optics Express, 2010, 18, 25389.	3.4	60
255	<i>Colloquium</i> : Gripped by light: Optical binding. Reviews of Modern Physics, 2010, 82, 1767-1791.	45.6	449
256	Multiple optical trapping and binding: new routes to self-assembly. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 102001.	1.5	135
257	Single cell optical transfection. Journal of the Royal Society Interface, 2010, 7, 863-871.	3.4	163
258	Online Fluorescence Suppression in Modulated Raman Spectroscopy. Analytical Chemistry, 2010, 82, 738-745.	6.5	106
259	Fabrication of polymer microlens at the apex of optical fiber. Proceedings of SPIE, 2010, , .	0.8	1
260	Transient transfection of mammalian cells using a violet diode laser. Journal of Biomedical Optics, 2010, 15, 041506.	2.6	11
261	Fluorescence background suppression in Raman spectroscopy. , 2010, , .		1
262	Optical Sculpting: Changing The Shape of Micromanipulation. , 2010, , .		0
263	Laser-induced Breakdown (LIB) of Optically Trapped Nanoparticles for Gene Transfection. , 2010, , .		0
264	Light Takes Shape for Biophotonics: New Directions in Trapping and Cell Transfection. , 2010, , .		0
265	High Throughput Photoporation of Mammalian Cells using Microfluidic Cell Delivery. , 2010, , .		0
266	High Throughput Photoporation of Mammalian Cells using Microfluidic Cell Delivery. , 2010, , .		0
267	Transient transfection of mammalian cells using a violet diode laser. , 2009, , .		0
268	Photo-transfection of mammalian cells via femtosecond laser pulses. , 2009, , .		0
269	Axial intensity shaping of a Bessel beam. , 2009, , .		2
270	Dielectric enhanced nanoparticles for three-dimensional optical manipulation. Proceedings of SPIE, 2009, , .	0.8	0

#	Article	IF	CITATIONS
271	Optical "snowblowing" of microparticles and cells in a microfluidc environment using Airy and parabolic wavepackets. , 2009, , .		1
272	Revisiting transverse optical binding. , 2009, , .		4
273	Accelerating vortices in Airy beams. Proceedings of SPIE, 2009, , .	0.8	31
274	Optical detection and grading of lung neoplasia by Raman microspectroscopy. International Journal of Cancer, 2009, 124, 376-380.	5.1	29
275	Targeted optical injection of gold nanoparticles into single mammalian cells. Journal of Biophotonics, 2009, 2, 736-743.	2.3	56
276	Automated laser guidance of neuronal growth cones using a spatial light modulator. Journal of Biophotonics, 2009, 2, 682-692.	2.3	20
277	Nanoshells for Surface-Enhanced Raman Spectroscopy in Eukaryotic Cells: Cellular Response and Sensor Development. ACS Nano, 2009, 3, 3613-3621.	14.6	97
278	In-fiber common-path optical coherence tomography using a conical-tip fiber. Optics Express, 2009, 17, 2375.	3.4	109
279	Nonlinear optical response of colloidal suspensions. Optics Express, 2009, 17, 10277.	3.4	79
280	Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength. Optics Express, 2009, 17, 13236.	3.4	103
281	Tunable Bessel light modes: engineering the axial propagation. Optics Express, 2009, 17, 15558.	3.4	150
282	Supercontinuum Airy beams. , 2009, , .		3
283	Optical redistribution of microparticles and cells between microwells. Lab on A Chip, 2009, 9, 1334.	6.0	81
284	Optically bound chain of microparticles. , 2009, , .		0
285	Optical vortices: Optical manipulation to crystal dislocations. Physica C: Superconductivity and Its Applications, 2008, 468, 508-513.	1.2	1
286	Propagation and diffraction of optical vortices. Physica C: Superconductivity and Its Applications, 2008, 468, 514-517.	1.2	7
287	Enhanced operation of femtosecond lasers and applications in cell transfection. Journal of Biophotonics, 2008, 1, 183-199.	2.3	57
288	Against the spread of the light. Nature, 2008, 451, 413-413.	27.8	13

#	Article	IF	CITATIONS
289	Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2, 675-678.	31.4	1,067
290	Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular and Optical Physics, 2008, 56, 261-337.	2.3	59
291	Optical micromanipulation. Chemical Society Reviews, 2008, 37, 42-55.	38.1	366
292	A dual beam photonic crystal fiber trap for microscopic particles. Applied Physics Letters, 2008, 93, 041110.	3.3	42
293	Green laser light (532nm) activates a chloride current in the C1 neuron of Helix aspersa. Neuroscience Letters, 2008, 433, 265-269.	2.1	10
294	Optical deflection and sorting of microparticles in a near-field optical geometry. Optics Express, 2008, 16, 3712.	3.4	105
295	Optical vortex trap for resonant confinement of metal nanoparticles. Optics Express, 2008, 16, 4991.	3.4	213
296	Optical trapping and spectral analysis of aerosols with a supercontiuum laser source. Optics Express, 2008, 16, 7655.	3.4	33
297	Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams. Optics Express, 2008, 16, 10117.	3.4	28
298	Guided neuronal growth using optical line traps. Optics Express, 2008, 16, 10507.	3.4	50
299	Generation of multiple Bessel beams for a biophotonics workstation. Optics Express, 2008, 16, 14024.	3.4	88
300	Fibre based cellular transfection. Optics Express, 2008, 16, 17007.	3.4	45
301	Novel dual beam fiber traps using endlessly single-mode photonic crystal fiber. Proceedings of SPIE, 2008, , .	0.8	0
302	Stability and dynamics of self-arranged structures in longitudinal optical binding. Proceedings of SPIE, 2008, , .	0.8	0
303	Aerosol tweezing with a super-continuum laser beam. , 2008, , .		0
304	Optical trapping using ultrashort 12.9fs pulses. , 2008, , .		4
305	Near-Field Optical Micromanipulation. , 2008, , 107-137.		3
306	Laser beam interference and its applications in optical micromanipulation. Proceedings of SPIE, 2008, , .	0.8	0

#	Article	IF	CITATIONS
307	Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers. Applied Physics Letters, 2008, 93, 243107.	3.3	8
308	Near-field optical trapping with an ultrashort pulsed laser beam. Applied Physics Letters, 2008, 92, 081108.	3.3	6
309	Long-Range One-Dimensional Longitudinal Optical Binding. Physical Review Letters, 2008, 101, 143601.	7.8	116
310	One-dimensional long-range self-arranged optically bound structures. , 2008, , .		0
311	Optically bound chain of microparticles. , 2008, , .		Ο
312	Early identification of cervical neoplasia with Raman spectroscopy and advanced methods for biomedical applications. , 2008, , .		0
313	Novel Methods for Cellular Transfection with Femtosecond Laser Pulses. , 2008, , .		Ο
314	Optically trapped and controlled microapertures for studies of spatial coherence in an arbitrary light field. Applied Physics Letters, 2007, 90, 261101.	3.3	1
315	Two-photon ablation with 1278 nm laser radiation. Journal of Optics, 2007, 9, S19-S23.	1.5	4
316	Passive optical separation within a 'nondiffracting' light beam. Journal of Biomedical Optics, 2007, 12, 054017.	2.6	20
317	<title>How to use laser radiative and evanescent interference fields to control movement of the sub-micron objects</title> . , 2007, , .		Ο
318	Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes. Optics Letters, 2007, 32, 1144.	3.3	99
319	Direct detection of optical phase conjugation in a colloidal medium. Optics Express, 2007, 15, 6330.	3.4	16
320	The dark spots of Arago. Optics Express, 2007, 15, 11860.	3.4	13
321	The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP). Optics Express, 2007, 15, 12619.	3.4	73
322	Transverse particle dynamics in a Bessel beam. Optics Express, 2007, 15, 13972.	3.4	80
323	Experimental Observation of Modulation Instability and Optical Spatial Soliton Arrays in Soft Condensed Matter. Physical Review Letters, 2007, 98, 203902.	7.8	95
324	Cellular and Colloidal Separation Using Optical Forces. Methods in Cell Biology, 2007, 82, 467-495.	1.1	50

#	Article	IF	CITATIONS
325	Early detection of cervical neoplasia by Raman spectroscopy. International Journal of Cancer, 2007, 121, 2723-2728.	5.1	150
326	Construction and calibration of an optical trap on a fluorescence optical microscope. Nature Protocols, 2007, 2, 3226-3238.	12.0	113
327	Optical Separation of Cells on Potential Energy Landscapes: Enhancement With Dielectric Tagging. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1646-1654.	2.9	30
328	Optical sorting and detection of submicrometer objects in a motional standing wave. Physical Review B, 2006, 74, .	3.2	132
329	Integrated monolithic optical manipulation. Lab on A Chip, 2006, 6, 1122.	6.0	61
330	Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation. Journal of Modern Optics, 2006, 53, 547-556.	1.3	50
331	White Light Takes Shape. Optics and Photonics News, 2006, 17, 37.	0.5	0
332	Visualization of optical binding of microparticles using a femtosecond fiber optical trap. Optics Express, 2006, 14, 3677.	3.4	69
333	Orbital angular momentum transfer in helical Mathieu beams. Optics Express, 2006, 14, 4182.	3.4	115
334	Orbital angular momentum transfer in helical Mathieu beams. Optics Express, 2006, 14, 4183.	3.4	10
335	Dual beam fibre trap for Raman micro-spectroscopy of single cells. Optics Express, 2006, 14, 5779.	3.4	172
336	Enhanced optical guiding of colloidal particles using a supercontinuum light source. Optics Express, 2006, 14, 5792.	3.4	20
337	Femtosecond optical transfection of cells:viability and efficiency. Optics Express, 2006, 14, 7125.	3.4	185
338	Interference from multiple trapped colloids in an optical vortex beam. Optics Express, 2006, 14, 7436.	3.4	11
339	Optical impedance of metallic nano-structures. Optics Express, 2006, 14, 7709.	3.4	14
340	Monolithic integration of microfluidic channels and semiconductor lasers. Optics Express, 2006, 14, 7723.	3.4	29
341	Optically guided neuronal growth at near infrared wavelengths. Optics Express, 2006, 14, 9786.	3.4	54
342	<title>Optical conveyor belt for delivery of sub-micron objects</title> . , 2006, , .		0

#	Article	IF	CITATIONS
343	Optical transfection of mammalian cells. , 2006, 6191, 105.		2
344	Enhanced particle guiding using supercontinuum radiation. , 2006, , .		0
345	Compact and efficient femtosecond lasers. , 2006, , .		0
346	Near-field optical manipulation with cavity enhanced evanescent fields. , 2006, 6131, 142.		0
347	Optical micromanipulation takes hold. , 2006, , .		0
348	Dielectric resonator: cavity-enhanced optical manipulation in the near field. , 2006, 6326, 74.		0
349	Optical micromanipulation takes hold. Nano Today, 2006, 1, 18-27.	11.9	183
350	Analysis of optical binding in one dimension. Applied Physics B: Lasers and Optics, 2006, 84, 149-156.	2.2	71
351	Optical vortices produced by diffraction from dislocations in two-dimensional colloidal crystals. New Journal of Physics, 2006, 8, 257-257.	2.9	7
352	Theory and simulation of the bistable behaviour of optically bound particles in the Mie size regime. New Journal of Physics, 2006, 8, 139-139.	2.9	25
353	Size resolution with light-induced dielectrophoresis (LIDEP). , 2006, 6326, 303.		4
354	Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects. , 2006, , .		1
355	Near-field optical micromanipulation with cavity enhanced evanescent waves. Applied Physics Letters, 2006, 88, 221116.	3.3	60
356	Sorting via injection of particle streams into an optical lattice. , 2005, , .		1
357	Real time observation of the ultrasound stimulated disintegration of optically trapped microbubbles in proximity to biological cells. , 2005, , .		1
358	Colloidal holography and crystal dislocations. , 2005, 5930, 320.		1
359	Shedding light on life. Physics World, 2005, 18, 35-37.	0.0	1

Light-induced separation and flow of microscopic and biological particles. , 2005, 5736, 46.

0

#	Article	IF	CITATIONS
361	Optical landscapes for biological and nanosciences: trapping in a new light. , 2005, 5736, 1.		0
362	Optically actuated form birefringent microfluidic components. , 2005, , .		0
363	Dual technique decoupled raman micro spectroscopy. , 2005, , .		0
364	Optical conveyor belt based on Bessel beams. , 2005, , .		1
365	Single-scan spectroscopy of mercury at 253.7nm by sum frequency mixing of violet and red microlensed diode lasers. Optics Communications, 2005, 255, 261-266.	2.1	15
366	All-optical control of microfluidic components using form birefringence. Nature Materials, 2005, 4, 530-533.	27.5	161
367	Optoelectronic tweezers. Nature Materials, 2005, 4, 579-580.	27.5	20
368	Membrane disruption by optically controlled microbubble cavitation. Nature Physics, 2005, 1, 107-110.	16.7	501
369	Optically Anisotropic Colloids of Controllable Shape. Advanced Materials, 2005, 17, 680-684.	21.0	76
370	Cell sorting in a static optical potential landscape. , 2005, 5930, 424.		0
371	Light-induced cell separation in a tailored optical landscape. Applied Physics Letters, 2005, 87, 123901.	3.3	94
372	Bessel beams: Diffraction in a new light. Contemporary Physics, 2005, 46, 15-28.	1.8	1,112
373	Optical conveyor belt for delivery of submicron objects. Applied Physics Letters, 2005, 86, 174101.	3.3	194
374	Photoporation and cell transfection using a violet diode laser. Optics Express, 2005, 13, 595.	3.4	84
375	White light propagation invariant beams. Optics Express, 2005, 13, 6657.	3.4	67
376	Microfluidic optical sorting: particle selection in an optical lattice. , 2004, , .		3
377	Micromanipulation with Bessel beams: studies of angular momentum and reconstruction. , 2004, , .		0
378	Optical levitation in a Bessel light beam. Applied Physics Letters, 2004, 85, 4001-4003.	3.3	131

#	Article	IF	CITATIONS
379	Microlensed red and violet diode lasers in an extended cavity geometry. Review of Scientific Instruments, 2004, 75, 3360-3362.	1.3	2
380	Optical trapping in counter-propagating Bessel beams. , 2004, , .		29
381	Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step. Optics Communications, 2004, 239, 129-135.	2.1	104
382	Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1749.	2.1	66
383	Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays. Optics Express, 2004, 12, 593.	3.4	117
384	Optical trapping and fluorescence excitation with violet diode lasers and extended cavity surface emitting lasers. Optics Express, 2004, 12, 670.	3.4	9
385	Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams. Optics Express, 2004, 12, 2560.	3.4	52
386	Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Optics Express, 2004, 12, 3011.	3.4	152
387	Biophotonics. Optics and Photonics News, 2004, 15, 19.	0.5	1
388	Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation. Applied Physics Letters, 2004, 85, 5784-5786.	3.3	75
389	Interference patterns for advanced optical micromanipulation. , 2004, , .		0
390	Tailored optical landscapes for biological and colloidal sciences. , 2004, , .		0
391	Imaging in optical micromanipulation using two-photon excitation. New Journal of Physics, 2004, 6, 136-136.	2.9	25
392	Optical guiding with continuous wave and femtosecond lasers. , 2004, , .		0
393	Rectifying transport of a mixture of Brownian particles on an asymmetric periodic optical potential. , 2004, , .		0
394	Optoelectronic integrated tweezers. , 2004, , .		0
395	Optically bound arrays of microscopic particles in one dimension. , 2004, 5514, 318.		0
396	Guiding and trapping microparticles in an extended surface field. , 2004, , .		2

#	Article	IF	CITATIONS
397	Three-dimensional arrays of optical bottle beams. Optics Communications, 2003, 225, 215-222.	2.1	119
398	Microfluidic sorting in an optical lattice. Nature, 2003, 426, 421-424.	27.8	1,279
399	Interfering Bessel beams for optical micromanipulation. Optics Letters, 2003, 28, 657.	3.3	212
400	Applications of spatial light modulators in atom optics. Optics Express, 2003, 11, 158.	3.4	175
401	Optical trapping of three-dimensional structures using dynamic holograms. Optics Express, 2003, 11, 3562.	3.4	118
402	Optical tweezers in a new light. Journal of Modern Optics, 2003, 50, 1501-1507.	1.3	21
403	Controlled simultaneous rotation of multiple optically trapped particles. Journal of Modern Optics, 2003, 50, 1591-1599.	1.3	11
404	Brownian Particle in an Optical Potential of the Washboard Type. Physical Review Letters, 2003, 91, 038101.	7.8	84
405	Transient response of a cold atomic beam in the presence of a far-off resonance light guide. Journal of Modern Optics, 2003, 50, 1751-1755.	1.3	5
406	<title>Laguerre-Gaussian laser modes for biophotonics and micromanipulation</title> ., 2003, 5147, 48.		1
407	Optical guiding using Gaussian and Bessel light beams. , 2003, 5121, 68.		1
408	Continuous motion of interference patterns using the angular Doppler effect. , 2003, 5121, 98.		1
409	Optical trapping in a new light: rotation and advanced manipulation of microscopic objects. , 2003, 4969, 30.		0
410	Preface: Optical tweezers in a new light. Journal of Modern Optics, 2003, 50, 1501-1507.	1.3	23
411	One-Dimensional Optically Bound Arrays of Microscopic Particles. Physical Review Letters, 2002, 89, 283901.	7.8	218
412	Cavity-enhanced optical bottle beam as a mechanical amplifier. Physical Review A, 2002, 66, .	2.5	25
413	Optical tweezers: the next generation. Physics World, 2002, 15, 31-35.	0.0	140
414	Moving interference patterns created using the angular Doppler-effect. Optics Express, 2002, 10, 844.	3.4	36

#	Article	IF	CITATIONS
415	Orbital angular momentum of a high-order Bessel light beam. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S82-S89.	1.4	357
416	Creation and Manipulation of Three-Dimensional Optically Trapped Structures. Science, 2002, 296, 1101-1103.	12.6	481
417	Revolving interference patterns for the rotation of optically trapped particles. Optics Communications, 2002, 201, 21-28.	2.1	88
418	Cavity-enhanced toroidal dipole force traps for dark-field seeking species. Optics Communications, 2002, 201, 99-104.	2.1	5
419	Guiding a cold atomic beam along a co-propagating and oblique hollow light guide. Optics Communications, 2002, 214, 247-254.	2.1	39
420	Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 2002, 419, 145-147.	27.8	962
421	Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Optics Letters, 2001, 26, 863.	3.3	124
422	Controlled Rotation of Optically Trapped Microscopic Particles. Science, 2001, 292, 912-914.	12.6	960
423	Optical dipole traps and atomic waveguides based on Bessel light beams. Physical Review A, 2001, 63, .	2.5	118
424	Optical micromanipulation using a Bessel light beam. Optics Communications, 2001, 197, 239-245.	2.1	531
425	Realization of a mirror magneto-optical trap. Journal of Modern Optics, 2001, 48, 1123-1128.	1.3	7
426	Beth's experiment using optical tweezers. American Journal of Physics, 2001, 69, 271-276.	0.7	32
427	Spatial transformation of Laguerre-Gaussian laser modes. Journal of Modern Optics, 2001, 48, 783-787.	1.3	24
428	Generation of high-order Bessel beams by use of an axicon. Optics Communications, 2000, 177, 297-301.	2.1	710
429	Characterisation of an extended cavity violet diode laser. Optics Communications, 2000, 175, 185-188.	2.1	37
430	Atom guiding along Laguerre-Gaussian and Bessel light beams. Applied Physics B: Lasers and Optics, 2000, 71, 549-554.	2.2	190
431	A visible extended cavity diode laser for the undergraduate laboratory. American Journal of Physics, 2000, 68, 925-931.	0.7	15
432	An extended-cavity diode laser with a circular output beam. Review of Scientific Instruments, 2000, 71, 3646.	1.3	13

#	Article	IF	CITATIONS
433	Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect. Journal of Modern Optics, 2000, 47, 1933-1940.	1.3	9
434	A compact high-performance extended-cavity diode laser at 635 nm. Journal of Modern Optics, 1999, 46, 1787-1791.	1.3	1
435	An experiment to study a "nondiffracting―light beam. American Journal of Physics, 1999, 67, 912-915.	0.7	57
436	A driven, trapped, laser cooled ion cloud: a forced damped oscillator. Optics Communications, 1999, 159, 169-176.	2.1	9
437	A polarisation spectrometer locked diode laser for trapping cold atoms. Optics Communications, 1999, 170, 79-84.	2.1	26
438	Efficiency of second-harmonic generation with Bessel beams. Physical Review A, 1999, 60, 2438-2441.	2.5	49
439	Parametric down-conversion for light beams possessing orbital angular momentum. Physical Review A, 1999, 59, 3950-3952.	2.5	105
440	The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. Journal of Modern Optics, 1998, 45, 1231-1237.	1.3	269
441	High-order Laguerre–Gaussian laser modes for studies of cold atoms. Optics Communications, 1998, 156, 300-306.	2.1	121
442	An experiment to demonstrate the angular Doppler effect on laser light. American Journal of Physics, 1998, 66, 1007-1010.	0.7	13
443	Measurement of the Rotational Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum. Physical Review Letters, 1998, 80, 3217-3219.	7.8	241
444	Rotational Frequency Shift of a Light Beam. Physical Review Letters, 1998, 81, 4828-4830.	7.8	285
445	Optical tweezers with increased axial trapping efficiency. Journal of Modern Optics, 1998, 45, 1943-1949.	1.3	113
446	Atom Hosepipes. Contemporary Physics, 1998, 39, 351-369.	1.8	20
447	Ion dynamics in perturbed quadrupole ion traps. Physical Review A, 1998, 57, 1944-1956.	2.5	24
448	Guiding atoms along hollow optical fibres: creating an atom hosepipe. Physics Education, 1998, 33, 316-319.	0.5	0
449	Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Physical Review A, 1997, 56, 4193-4196.	2.5	254
450	Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics Letters, 1997, 22, 52.	3.3	1,030

#	Article	IF	CITATIONS
451	Gaussian beams with very high orbital angular momentum. Optics Communications, 1997, 144, 210-213.	2.1	160
452	Second-harmonic generation and the orbital angular momentum of light. Physical Review A, 1996, 54, R3742-R3745.	2.5	348
453	Investigation of ion dynamics in a Penning trap using a pulse-probe technique. Applied Physics B: Lasers and Optics, 1995, 60, 375-382.	2.2	5
454	Spectroscopy of Laser-cooled lons. Journal of Modern Optics, 1994, 41, 1087-1098.	1.3	1
455	Photon-correlation detection of ion-oscillation frequencies in quadrupole ion traps. Physical Review A, 1993, 47, 441-448.	2.5	30
456	Quantum optics with trapped and laser cooled magnesium ions. Physica Scripta, 1992, 46, 285-288.	2.5	11
457	Ion Oscillation Frequencies in a Combined Trap. Journal of Modern Optics, 1992, 39, 305-316.	1.3	52
458	Photon Correlation Measurement of Ion Oscillation Frequencies in a Combined Trap. Journal of Modern Optics, 1992, 39, 2179-2185.	1.3	15